ATMOSPHERIC NOISE MEASUREMENTS

Data Summary Nº 4 - Station ARN-2 Nº 10

bу

W.S. TAVEIRA

and

F. DE MENDONÇA

Report Nº LAFE-58 July 1967

The measurements reported herein were performed in cooperation with the Electromagnetic Interference Environment Section, Tropospheric Telecommunications Laboratory of ESSA-Boulder, Colorado.

Comissão Nacional de Atividades Espaciais São José dos Campos São Paulo - Brasil

CONTENTS

		Abstract	1
Ι	-	Description of data	1
II	-	References	3
		TABLES	
1	-	to 11- Month-hour values of radio noise for the period July 65- June 66	4
		ILLUSTRATIONS	
Fi	g.•	1 to 11 Radio Noise Curves	15

ABSTRACT

Under the designation of Project "OBRA", one of the sixteen Atmospheric Radio Noise Receiving Stations of the world-wide network coordinated by the Environmental Science Services Administration, has been in operation at this Laboratory since August 1963.

This report presents the data collected during the period July-65 June 1966.

I. DESCRIPTION OF DATA

This is a continuation of the reports LAFE 13, LAFE 23 and LAFE 24 of this Laboratory.

The data presented were acquired through the standard ARN-2 equipment developed by the National Bureau of Standards. Also the processing and presentation of data follow their recommendations. An exhaustive description can be found in the references.

It follows some pertinent information on the data:

Receiving site: São José dos Campos - Brazil (23.30S, 45.80W)

Time used: GMT minus 3 hours

Receiver: ARN-2 (NBS) with a vertical omnidirectional whip antenna above a ground plane.

Effective noise bandwidth: 200 c.p.s.

Data is presented in tables 1 to 11, as:

 F_{am} = median value of daily F_a figures for a given hour (local time) over the month.

 D_u and D_1 = upper and lower deciles of the distribution of daily values of F_a for a given hour.

 L_{dm} = median value of daily L_d figures for a given hour over the month.

Vdm = the same for Vd figures.

where

F_a = effective noise figure = external noise available from an equivalent short, lossless vertical antenna, in db above kTB (Boltz mann's constant, absolute room temperature, taken as 288°C, and receiver bandwidth) this can be converted to:

 $\rm E_n$ (equivalent vertically polarized ground wave rms noise field strength in db above 1 V/m for a 1kc/s bandwidth) through

 $E_n = F_a 20 \log_{10} f (mc/s) - 65.5$

 L_d = db value of the ratio between the rms value and the logarithmic average of the noise envelope.

 $V_{\mbox{\scriptsize d}}$ = db value of the ratio between the rms value and the average of the noise envelope.

A detailed description of the equipment and measurement tech - nique employed can be found in the references.

The power measurements (F_a) are obtained by integration on a 15 minutes interval, and this value is taken as representative of the conditions for the whole hour.

The eight channels are scanned two at a time, so that the four low er frequencies are recorded in successive intervals of fifteen minutes during one hour; the same for the four higher one, through another recorder. $L_{\rm D}$ and $V_{\rm D}$ are recorded simultaneously, one week with the high frequency channels and the next with the low frequency ones.

Hence, the measurements related to a given hour, for 51 kc/s and 2.5 mc/s were obtained between this hour and the hour plus fifteen minutes. The next two frequencies (113 kc/s and 5.0 mc/s) between the hour plus fifteen minutes and the hour plus thirty minutes, and so on for the oth er pairs of simultaneous frequencies (246 kc/s with 10.0 mc/s, and 545 kc/s with 20.0 mc/s) until the eight channels were scanned during one hour. This time difference between measurements was considered when the values of $F_{\rm am}$ were plotted (Figs. 1 to 11).

Although special care is taken to avoid interference of man-made noise in the measurements, it is possible that sometimes the received sig nal is contaminated with fields other than atmospheric noise. In this case it has been verified (Crichlow, et al., 1960) that the first parameter reflect this is the log deviation (LD), whose absolute value will decrease so that, with the corresponding value of VD they will not provide a solution for the amplitude probability as concluded from experimental data by Crichlow, et al. (1960). The NBS has published (Crichlow, Disney Jenkins, 1959) curves that, for a given value of $V_{
m D}$, give the minimum value of LD providing a solution of the amplitude probability distribution curve of the kind proper to atmospheric noise; also, the value of LD that will give a best-fit to this solution. The above authors suggest that, when ever a value of LD is found to be smaller than the minimum required, implying in a possible contamination of the signal, the most probable value of LD should be used instead of the actually recorded one. This has been followed throughout this summary; a small circle above an LDm value indicates a quantity which is not the actually measured value, but a quantity obtained from the corresponding $V_{\mathbf{D}}$ from the above referred curves.

An asterisk above a median value indicates it was obtained from less than fifteen measurements for $F_{\mbox{am}}$ or less than seven measurements for $L_{\mbox{Dm}}$ and $V_{\mbox{Dm}}$.

II. REFERENCES

- Ahlbeck, W.H., W.Q. Crichlow, R.T. Disney, F.F. Fulton, Jr. and C. A. Samson, Instruction book for ARN-2 radio noise recorder, serial numbers 1 to 10, NBS, 1958.
- Crichlow, W. Q., C.I. Roubique, A.D. Spaulding and W. M. Berry, Determination of the amplitude-probability distribution of atmospheric radio noise from statistical moments, I. Research NBS, 64-D (Radio Propagation), 49 (1960).
- Crichlow, W.Q., Noise investigation at VLF by the National Bureau of Standards, Proc. IRE, 45, (6), 778 (1957).
- Crichlow, W.Q., Q. D. Spaulding, C.I. Roubique and R. T. Disney, Amplitude-probability distributions for atmospheric radio noise. NBS Monograph 23, (1960).
- Crichlow, W.Q., R.T. Disney and M.A. Jenkins, Quarterly radio noise data, NBS Technical Notes nos 18 1 to 18 26 and ESSA Technical Reports nos 18 27 to 18 28.
- Disney, R. T. and C. A. Samson, Operating instructions for ARN-2 auxiliary log-linear noise recorder, NBS Technical Note no 45, (1960).
- Meira, F? L.G. and de Mendonça, F., Atmospheric Noise Measurements, CNAE reports nos LAFE-13, LAFE-23 and LAFE-24.
- Watt, A.D., R.M. Coon, E.L. Maxwell, and R.W. Plush, Performance of some radio systems in the presence of thermal and atmospheric noise, Proc. IRE, 46, (12), 1914 (1958).

Cart. 23. 3°S Long. 45. 8°W Month Lat. 123. 3°S Long. 45. 8°W Month Lat. 120. 6°C 6 10 5°C 9°C 110 11 12 11 30 Cart. 140 61 12 7 6°C 110 11 12 11 30 Cart. 140 61 12 7 6°C 110 11 12 10 30 Cart. 140 61 12 12 12 10 10 11 11 11 11 11 11 11 11 11 11 11	MONTH-HOUR VALUES OF RADIO NOISE Station São José
--	---

Form a medicine volte of effective contentes notes in do becord into D_U a rento of upper decide to medican in da D_A a rento of medican to lower decide in db V_{off} a medican deviation of overage voltage in db below mean power L_{dm} anedican deviation of overage logarithm in db below mean power

- KN-13 4

L	MON	MONTH-HOUR VALUES	K	*	3		유	er	ADIO	<u>Ω</u>	NOISE	SE		S)	Station		São	São José			ا	ţ	23, 3°S	So	ğ	45.	Long 45,8°W	~1	Month	-	August	ıst	<u></u>	1965	1
1\$1			Ē					F				F		ļ	Frec	Frequency	5	(Mc)	~					:											$\lceil -$
1 41		1aL	7		33		-		4					545	žo.		-		r C				'n			_		-	,		_	ľ	١,	İ	
IOH	Ferr Du	Of Vam Lam Fam Du	Eg.	E .	- +	Dr Vem Lem	اد	n Fam	3	70	Vdm	Vam Lam	r. E	ລ້	•	√dm √dm	Ldm Fa	Fam D	٥	- F	Vdm Ldm	Fam		2	Vdm Ldm		E	2	DZ Vdm	m Ldm	Fam	0.0	0 70	Vdmldm	Ę
8	181	12 8.0	13.00.118 11	8	=	12 5	200.5	5.5 10.5 10.4	9	32	4.5	0 11	84		5 61	7.5	7.5 66	- 24	=	35	55		0-	3	*4			9	LZ.	30 4.5	3	+	\		Ţ <u> </u>
ō	131 8	14 80 8.5 115	14.5		7	20 20 120 109	- č	9	13	٥	1.00	001	15	=	10	9.6 9.5	5 62	2 80	=		77		=	_		, ,		+-	† "		+	9 0	,	3	2
Ö	132 1	12 80 150 120 6	150	120	_	14 6.0 11.0 124	2.11.0	201	-	7	50	120	98	=		1.3		—			, ,		2	:	1 7	5	+	+	1-		5 6	+	٦,	60 1	35
8	9 EE! 6	9	8.5 150 120		17 01	1	-3	50: 011 8 4		77	25	¥2.	84	77	7. 2.	90.9			 -		+-	4	10		_	_	+-	+,	2 6	_	-	+-	9 4	9 7	7 ,
8	8 661	321 9.9 21	15.0	11 21	- 5		-5	70 135 102	1	17	4.5	100	84	_	4	4.0	69 00	2	<u> </u>		_	, r	۲-	†			-	1		_		<u>, '</u>		+	7
8	13.5	14 95 163 120	16.0		5 18		12.	86 251 03	15	, <u>o</u>	7.0	140	-	1	1			 	 -			300	, oc	1 -	J 4		₩	7 0	+~	+-				+	200
90		131 10 12 11.0 195 114 10	19.5	14			96	50 95 89		3	80 175		├		1	50 9 9		+	┿-				2		+			+	1	0.0	7 5	7			70,
20	121 9	15 80	85 145 107 12	107	_	12 110	21.5	115 210 83	17	6	80			-	7"	-	 	₩-		_	- ==		9	2 ~	_	*	+-	9 0	ט ע ט ע		+	, ,	y 1	<u> </u> ₹	31 °
8	121 12 11		6.0 10 106 73	1 30		0.9	10	6.0 110 82	ور	7	07	13.0	L.,	-	w			 	├	+			×		4		-	+-	-		+-	-	٦ ٢	4 6	4 7
8	123 12	11 40 75		1060	9	7.0	<u>.</u> 9	70 35 84	_ \	وب	7.5 135	*56	82	4 [1]	- 2	*30'	5.00		ļ <u>-</u>	3.5		23	=	ſ		•	_	+ -	1		-	┵—	+	+	3 4
2	The second second	125 7 10 60 109 11	101	1,00	6		80 45 84	75	=	ه			7.8	- 6		40* 80	38			40	7.5	45		1	404		<u> </u>	╁┈	T -	_		-		+	ا د
<u>=</u> .		123 9 12 55 95 104 11	3.5	- - - -	=		90	50 95 82	.0	1,0	5.5	0.6	86.4	- 15	*0°	*0	37	a	و	3.5	65	42		7				و	202	125			T	_	2,5
01	वा स्था	15. 90 60 106	90	300		15 80 145 82	07	52	9	œ	*Q		83	9	(V)	5,0	34	6	7	*0	, 3	38	8	2	60	125 1	41 0		1	* C		و	\vdash		*0
10	7	7 11 65 120 125	202		8 13	3 09 06 21	9	28	10	ه	100 175		84	7	10 55	*00 100	34	0	2	25	50	38	٩	-		7 <u>5</u> 0	\vdash	7 11		* 95	28	, α	 		*O
4	2	12 80	8 0 40 08	3		म गा गा विड 84	<u>5</u>	8	14	8	63	150	34	7	9.5	o lao	36	5	7	3.0	0,9	75	7	2	4.5	6.5	900	- 6		0110	22	\Q			20
<u>.</u> 5	125	8 13 80 145 166	45		7 16	18 90 00 84	160	8	19	0	9	19.5	82	7 7		30 80	36	20	4	40	7.5	94	~	ر و	101	140	51 8	9	60	0 1	26	'n	_	35	, ç,
9	123 9	12 65 120 108	1 62	30,	5	13 80		13 SET	6	7	'9	130	80	7	CH 21	2 10	2 41	=	7	40	*0 9	52	7	8	55	100	5/ 8	9 ~	94	85			00	_	200
2	120 12	120 12 10 80 45 102 14	57	70	크	10 9 0 115 86	115	8	7	27	9	120	8	구		4.5	100 46	9		45	9.0	38	9	- - \	£5.5	50*	53 13		4.5	80	24	Ξ		30	60
9	125 to	12 95 170 110	Io	8 0	7	8 19 60 11.5	5	90	15	12	55	120	84	8	10.2	20 50	58	9	7	4.5	8.5	62	7	-	5.04	100	51 8	5	145	œ,	24	12	7	25	50
<u>6</u>	121 9	17 65 140 42 14	7 05.	2	7	14 60 10 96	<u>. 9</u>	2	4	14	40	901	86	13	3 30	0 7.0	29 6	3	13	97	6.5	58	╗	Q	*05	90,	- 25	7 7	3.5	6.5	24	6	4	25	0.0
20	131 6 10	10 20 27 01	40 1	11		13 55 120 101	120	<u></u>	4	25	50	9.5	88	8	40	2,5	89	2	ç	1. N. N.	10 d	79	=	5	* 50	125	51 11	7	3.0	6.5	22.	Ol	9	2.00 4	45
2	131 lo	11 75 30 115	1702		भ	13.55	릨	001	75	6	20	95	98	9	25	6	5 65	33	7		0.1	50	0	10 5	50° ID	D.O.	50 q	7					-	2.0 4	0.7
22	181 10	10 12 15 125 114 17 8 50 100 106	52	힐	- 2	9	Signal Property of the	135	9	15	115	205	89.8	80	3	30 60	909	<u>m</u>	9	25,110	101	Ŷ	00	4 91	45	\$ \$ 5	51 7	8	_	6.0	22	7			¥ 0
23	23 180 9	9 In 70 25 115	25	15	1	14 13 65 125 105	1.5	ò	۲۷	75	20	11.5	86.	١	2 40	985	62	2		15 65 115 66	35		ড	19 40		; * 4	ol 847					7	7	2	.0
	Fam = merfa	Fam = meritan value of effective entence inche in dis discus	132	er er	energe a	in serie	g g	cr.ca	412																			ŧ						1	}

Form = meritan value of effective orderes insize is disclosed this by a rettle of upper design to medical in dis Dg. = rettle of insellion to lover decide in dis Vgm.= medican deutorison of overspe verificiale in dis below mean power Lam.= medican devitation of oversign logarithism in dis below mean power

RN-13 Tyrian majori

ž	HTNC	I-HOUR	MONTH-HOUR VALUES	S OF	RADIO NOISE		Station São José	José	ت 	Lat, 23,305 Long, 45,80W	ong. <u>45,</u>	M _O 8	Mor	ath Se	ptemb	Month September 19 65
(TS						Fre	Frequency	(Mc)								
i 1). 4	30	1.	*17		245.	.545		2.5		5.0			0			200
IUOH	Fam Du	D. Volm Leim Fam Du		Dg Vdm Ldm	Form Du	۵	γ Gm [di	Forn Du De	Dz Vam Lam	Fam Du Dz V	Dz Vem Lem	Form Du	DEV	Dr Vem Lem Fam	Fam Du	DZ VemLem
8	90	12	120 6 18		104 6 12	72 20 10	9	91 01 59		01 9 99		43	40		22 5	7
ō		(2)	_		न। न भेग	74 18 14	-	65 11 19		91 9 09		45 6	9		22 3	25
8	8 28	<u>.</u>	118 10 14		91 4 401	69 23 7	9	63 13 15		59 7 13		43 12	9		22	-77
<u> </u>	8 62	2			F1 21 001	69 20 11	9	64 10 16		58 B 12		39	60		7 72	9
40	04 130 10	00			В	20 20 12	3	हा श रब		54 12 10		35 8	٩		22 4	7
05	32 10	(2)			10.0 8 16	H 24 14	9	61 13 11		56 10 12	1	35	9		24 2	RC.
06 //28	9 82	12	104 14 12		80 16 10	67.13 5	3	El 11 19		69 5 17		मु हम	ıg	-	24 4	9
20	30 0	81	102 14 12		80 14 10	2 01 89	7	48 10 12		01 91 09		45	2	-	24.7	4
8		OC	8 21 20		80 14 8	65 15 7	7	42 10 8		56 4 14		43 12	5		24, 5	و
8	0	<u> </u>	٥		81 17 8	66 12 4		3B 13 6		01 9 84		43	9		74	- -
0_			2		14	8 8 8		38 8		44 4 4		<u>a</u>	g	\dashv	22 6	4
=	24	_	01 01 401	,	78 20 4	4 OI 49	ц,	36 8 6		44 4 18		41 6	2	-	23 3	٠,
12 124	21 40		7	,		64 12 8	_ N	36 12 6		38, 10 4		39 8	2		22 7	و
E.	01 661	1 .	3		Io	64 10 6	R)	36 13 8		40 4 B		39 16	y		22 4	9
4	27 861					67 11 12	m	8 8		40 10 B		7	g		34.6	œ
15	9	, T	7		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	66 17 5		40 19 B		49 B 22		43 8	9		24 4	4
9	128.10	13	111 15 15	·		64 12 4	9	40 24 12		52 10 22		43 10	4	-	26 4	5
1			106 12 14		86 14 12	9 8 99	4	44 26 10		62 6 24		43 B	7	-	30 2	9
8			9		12	68 10 6	**	81 11 95		8 01 29	7	48 15	٧		28 4	7
6	2		9		01	72 10 10	,	8 99		01 4 99		49	G		28 5	7
8			9			72 19 8		64 to 15		9 01 89		49 12	JS		26 7	7
2	ی		116 12 12		100 12 14	73 17 9		66 12 16		72 4 12		45 14	5	1	24 7	*
22	9	01	41 9 BII		102 6 14	72 16 6	3	64 10 14		ZO 8 IO	7	45 8	60	-	24.6	4
23	[181	=	11.0 8 14		102 6 14	01 41 42		68 4 1B		0 0 0		45 12	g	$\overline{}$	22 11	2
		in value of eff	milen	e qp ui eag	-											

ignation and the of effective ontwerned neares in all description of the second of upper decile to medien in the

 D_{ij} is ratio of upper decile to medien in 40 D_{ij} is ratio of median to lawer decile in 40

O g. romo es messam to arrier sectors in sec Vent medion dedeption of severage vallegie in de betou medin power The medion design of managem beautifes in de betou mean prover

RN-13

20	Frequency (Mc)	50.0	Vam Lam Fam Du	25 55 67 9 7 40 80 62 6 6 36 70 45 3 6 45 85 23 4 2 2 4 2 2 4 5	62 6 6 20 50 45 6 7 35 75 22 9 3 320	67 8 11 404 75 62 5 7 30 20 45 5 8 45 85 30 6 4 15	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	*** 0 1 1	*O. C 9 25 7 7 00 01	5 9 55 125 ug 10 7 60 90 4 4 2 2 4	52 9 6 65 148 33 13 3 60 0 X 23 3 3 45\$	25 × 25 × 25 × 25 × 25 × 25 × 25 × 25 ×	36 12 5 50 95 42 9 6 55 10 33 9 8 80 12 3 6 4 25	8 70 125 40 10 8 50 95 29 18 2 90 100 23 6 6 30	15 40 13 5 60 105 33 10 6 70 125 23 8 8 9 40	15 40 15 5 50 90 33 11 6 55 95 7 23 8 4 30	30 60 41 27 4 65 20 41 11 5 40 110 35 11 4 60 110 25 4 8 35 60	7 4 20	45 6 6 25 50 29 6 4 30	115 45 4 2 40 75 32 3 3 2 3	100 64 2 6 35 70 47 6 6 45 95 31 6 3 30*	5 7 18 09 5E 7 9 54 406	05 66 6 6 40 80 51 2 6 35 70 29 5 4 3 5	60 115 68 6 8 45 95 49 4 6 30 70 26 5 7 45	69 6 6 55 12.0 68 4 6 55 10 45 6 6 30 60 25 5 5 3 34	67 10 6 50 95 68 6 5 50 90 45 B 6 35 70 25 4 1 D.	# 1
CONTH-HOUR VALUES OF RADIO NOISE	<u> </u>	11.	P Fam Du Dr Vdm tom Fam Du Dr Vdm tom Fam Du Dr Vdm tom Du	00 135 12 12 120 125 10 8 60 11.5 108 8 8 60 110	01 135 10 B 85 140 127 10 12 70 130 188 6 B 25 140	02 134 11 5 80 130 124 13 7 75 130 108 7 8 70 130	03 133 12 6 20 150 123 12 8 6.5 120 106 6 8 6.0 120	04 135 B 10 65 120 121 14 B 70 130 104 12 B 65 125	05 121 10 8 90 155 119 B 14 70 120 86 20 6 105 10°	127 14 14 95 170 101 24 6 60 110 76 22 2	07 123 14 10 70 12 105 12 10 95 16 80 12 4 46 25	08 123 14 10 78 25 103 10 6 80 12 80 17 6 75 125		10 125 12 10 60 10 107 14 10 75 125 84 14 8 65 130	11 124 10 14 92 60 113 12 16 55 60 82 24 4 55 60	129 12 10 70 125 113 18 14 55 100 84 30 8 60	133 14 12 6.0 100 117 19 14 5.0 100 94 26 18 5.5 11.5	132 11 9 45 85 119 15 15 55 95 95 17 17 50°	15 139 8 12 40 75 121 16 16 40 75 95 20 18 65 120	16 134 11 8 50 34 120 15 15 65 120 85 29 9 56 110	17 137 8 12 50 95 122 9 19 70 125 96 19 20 65 110	18 136 5 13 55 95 120 11 15 65 120 10 11 9 65 120	19 137 8 12 50 95 123 12 10 45 90 106 6 10 40 80		21 137 10 12 60 05 125 12 B 55 100 108 B 6 50 100	22 137 12 10 60 110 125 12 6 60 110 110 8 10 50 165	223 134 14 7 7 130 130 11 11 120 130 13 130 130 130 130 130 130 130 130

 $F_{\alpha m}$ = median value of effective antenna noise in dis above kib D_{ij} = ratio of upper decile to median in dis D_{ij} = ratio of median by bollever decile in dis $V_{\alpha m}$ = median deviation of average voltrage in dis below mean power $V_{\alpha m}$ = median deviation of average logarithm in dis below mean power

RN-f3

2	QN	H	MONTH-HOUR VALUES	퍼	≸	LUE		유	Œ	ADIO	₽	2	NOISE	1.1	U)	Station	ا ج	ζύ.	São José)36,		1	Ē	Lat, 23, 3°S	3°S	. Long		45.8°W	A	ž	Month		November	jer	6	65
(1S				F												Fre	Frequency	길		(Mc)																
וג (ד		.05/			ŀ	. 113					9	9			5	545				Ų	'n				5.0				0	Q				ď	Q	
HOH		Fam Du	D. Voten Laten		Fam Oc	_	Dz Vám Lám Fam	ᄛ	٥	<u>a</u>	\dashv	, de	DZ Vem Ldm	Fam	م	ŗ	Vem Lem	L-dm	Fam	n o	<u>۸</u> ر	De Vem Lem Fam	F.	un Du		ر روا	De Vam Lam	Fam	O _u	ď	De Vam Lam	Ę.	Fam	0 00	PA ZO	VdmLdm
8	134	'n	11 90	90 15.0 111		<u>=</u> e	5.5	*,,	100	00	60	70*	12,	7.8	'n	١'n	\$.0° 90.2		7.3		- 33	8.5*	19 09		_	15*	13 0	51, 12			55 105		22		30	*0
ō	13.3	v)	8 90	90 155 110		4 7		80 145	5 90	و	٧	7.5	130	79	4	æ	75	q	70	q	5	*59	125 58	9	৩	*0		42	, 4	œ	0,0		88	-	7.5*	9 kg
8	134	'n	10 80 140 110	0 31	g	7	8 75 125 gr	*, -	200	_ 7	و	7.5	135	77	S	9	6.5	20		7	9		16.0 56	9	2		* * *	£4 ×	4	2	7.0	_	25		¥5.5x	*O.
93	133	9	*50 H	15.5	9	_	8	8.0° 14.0° 88	3 BB	60	4	60	1.20	7.7	ی	<u>0</u>	5	5	89	7	٥	80,1	14.5 56	9	-7	707	12.5	43	6	8	5.5.		24		4.0	75*
8	133	G	13 no 160 199	160		2	8 90 160 88	**	88	7	۵	*o	160	7.5	-5-	60	65	3.5	67	ι	8	Ro 14 5		55 11	2,7			, (c)			50.	4.0	26		2.5	5 50
8	127	٥c	10 70" 125" 96	12	9	-1	γ 20 9	85 55 66	40 40		-	135	2.5 5.5 5.5		2	4	* 0	10°	78		7	75* 14	160 63			70,	* 6.5	49			100	5	26		20*	40
90	123	Ø	12 105	105 185 90 13	Ş	<u>6</u>		90* 14.5 64	\$150 25	2	- 7	, to	*0.0	77	Ø	2	*0	*0	5.2	0	18	100 16	160 59	8		80		39	6	8	70 11		53		40	40 7.5
04	_2	٩	*0.6	15.0 92 12	25		4 95 16.0 66	₽. *^	66	4	- 7	7.0	12.5	8.	-37	Q	5.0	*5	44	و	7.		9.5	46 8	-	5.5	00	95			7.0	12.5	- 5		6.0	0
8	121	80	0 90 60	*0 !	90	-2	7	7.0 [2.5]	99	'n	্য	J. J.	000	7.7	60	٩			42	8	10 3	, 0,	£.69 €.	38 8	4	ڊ د	* 0	33	Q	4	* 8	130	356		30	
8	123	- oc	B 11 10 6 185 94	8.5	75			80 3.0 66	99	1	7	.6	65 120	75	8	9	8.0	65	42	55	6	20 5	5.0	38 6	7	5.5		3)	12	2	7.5	_		9		
<u>°</u>	133	œ	14 10.0	10.01	7	- 2	50T A	कि उँग उँव	89	9	9	2.0	÷0	77	æ	~	20.	*50	7	Ŋ	<u>ر</u>	70,	20.00	34	7	*0	9	23	_6	4	*08		တ္ထ		*vo	¥0
<u>=</u> [125	9	12 15 135 97	, M		7	7 85	8.5° 15° 72	72	3	٩	- 9	10, 175	75	60	Ø	5.6 11.0		717		-2"	*1	85 43	m		75	# ° #	35	7	9	75	13.5	24	01	70	30.
2	131	8	20 90 160 100 16	9	.8	$\overline{}$	8 120	120 210 76	26	28	9	70	12.5	78	0	9	*0	90	44	2	8	, a a	11.0 35	9	- 60	100	\$ 17.5	37	و	9	7.0	125	24	8	χ. 5,	*9
13		9	133 10 10 90 160 106 14	0.0	90	1 P	12 75 35 90	13.6	30	2	7	80	130	79	¥	7	50 85		52.1	<u> </u>	14 7	7.5 13	135 40	8	9	2+	500	30	٥	9	*05		30	9	50	*\r.
4	137	8	10 90 00 01	90	2	12 14	14 130 230 96	3.	9	Š	9	110	IBS	81	14	6	6.5	1.5	7 4.9	22	24 8	8.013	13:0			70	2 5 5	43	12	8	100	175	32	12 10	50	6.5
15	138	9	*50	10.5 17.0 114	7	91 01	16 75 3.5 92	, E	뀰	99	7	*5	125	225 83	ė	6)	\$ 51	35	99		26 4	*00	175 5	50 LB	2		* 0 120 *	7.7	12	g	5.5	9.5	05		35	30 60
91	15	<u> </u>	14 10 120 186 16 14 16 120 210 95	8.6	9	7	121	12.15	3 9.5	15	~	*5	230	R 7	2	7	125 220	220	29	7	22	7.5	79 4521	59	_	* 0	120	49	9	2	* S	80.4	40	-	*0Z	12.5
17	137	-	120	120 210 118		15	14 12.5	5 22.0	90	<u>-</u>	٥	35	-30¢	79	11	ۍ	120	270	68	32	7 81	75	135 60	24	13	7.0	125	47	6	۷	50	9.0	36		20	50 95
<u>œ</u>	136	9	6 10 90 iso m	9	7	13	16. T.S.	7.0	13.5	9	ᆿ	•°	00 110	7.7	占	m	*5	× 5	77	-	17	6.0 110	<u>ق</u>	9		₹ 29 PE	105	47	૭	4	* 0	, Y.	28 16	٥	45	2,4
61	135	5	80*	80 135 112	_	15	70	140	140 90	<u>-</u>	7	9.0	160	83	5	7	4.0	7.5	74	7	0	60 u	9 01	62 10	2	45	'S	49	٥	œ	4o		30	20	40	7.5*
ଥ	135 11	=	6 70 115 112 17	11.5	~	<u>-1</u>	4 7.0	7.0 11.5 92	26	크	7	55	11.5	83	80	9	909	9.5	79	× ×	83	60.10	105	8 49	2	45	90	47	g	0	4.5	* 0	30		30	30 60
2	135	7	5 80	80 45 112		و. 0	9		10.0	90	2	7.5	15.0	83	ه	4	20,	90,	78		-	50,9	90, 69	6	_	5.5	100	49			50.5	9.6	-27		5.5	0.0
8		9	135 6 6 90 160 112 10	16.01	2	<i>و</i> 0		75 140 92	92	80	9	7.5	13.5	85	4	હ	*09	10	7.8		=	30 2	230 68	82	-	40	52	46			50.9	90	27		20	20 40
ន	23 134	-5	5. 5 90 150 112	<u>Isal</u>	쾰	9	3 90	25.5	50 92	હ	و	7.5	-	130 B L	v	4	5.0 100		74	\dashv		30 7	5 74	-7	_	70	40 80	4/8		Ť	50.	90,	26	\dashv	-2	30 60
-		nedian	F _{ms} = median yabus of effective antenna noise in de obove	Hect	5	Hennet		8		Ę																										

RN-13 COOP AND A

### THEHOUR VALUES OF RADIO NOISE Station September Lat, 23,3°S Long, 45,8°W Month Januar Famelous Programmy Programmy	ary 19 66		20.0	Du De Vem Lem	6 2 20 45	6 2. 20* 45*	4 4 25 50*	4 15 7	2 4 40° 25°	2 3 20 45	8 2 1.5 x	4 2 1.0 25	, S.	06	ч 8 25 50	4 10 20 45	35 70	10.26	30, 60	135 235	10 6 35 70	B 6 50 90	8 8 35 70°	10 8 35 70	9 7 55 100	8 4 25 5.0	10 4 20 45	*
TH-HOUR VALUES OF RADIO NOISE Station São José Lat. 23.3°S Long. 45.8°W Frequency (Mc) Lat. 62 find lat. 1 - 11. Lat. 62 find lat. 1 - 12. Lat. 62 find		F		Vdm Ldm Fam	50	-1/-	3.5 6.5 24	¥0.	_	*55	50°	ð 12.5	_	20.X	*0		** 80*	5.18.5	54,00	75	*58	_	*o	*0	*0	o	45 24	*
TH-HOUR VALUES OF RADIO NOISE Station São José Lat. 23.3°S Long Frequency (Mc) Lat. 172	45.8°W		0.01	Fam Du	h 66	و	44 2	a	40 8	39.5	9 14	36 4	33			25 30 6	*.				8 95	01 84	48 \$	416 B	5 46 6	2.5 46 4	45 3	
TH-HOUR VALUES OF RADIO NOISE Frequency (Mc) 1.13	. 23.3°S Long		5.0	Du Dy Vem	6 8 4.5	7 25	9 7 2.5*	7 7 3.5	8 15 40	5 7 30	8 8 40*	7 9 25	2	*35	80	* SE OI OI	50	13.5	7.0*	€ -5 *	30 12 65	1 200	* 09 h	* or	*0/ 9	4 10 05	*51 8 9	
Th-HOUR VALUES OF RADIO NOISE Station St	•	(2.5	Dr Vam Lam	50 95	40* B.O.	45 75	4.5 8.5	4.0 7.5	30 60	5.0 9.5*	50 95	57	6.0	120	8 04 25*	12 20 50	13.0 225	6.5	<u>ت</u> ه د	10 93 160	14 85# 140#	6 65*	65 120	4.0*	40	404	<u>-</u>
TH-HOUR VALUES OF RADIO NOISE Solution Solut			-	Ldm Fam	0.5 67	99	8.0	9.5	99 20	£ 9	12.5 52	17 20	7.5	*0	70	38	42	50	. o.	9	कर्न 64	245 66	99	72	10 72	70	٥	_
TH-HOUR VALUES OF RADIO NO 10. 11. 11. 12. 14. 6.0 10.0 10.0 4 4 4 4 5.0 10.0 10.0 10.0 4 4 6.0 10.0 10.0 4 6.0 10.0 10.0 4 6.0 10.0 10.0 4 6.0 10.0 10.0 4 6.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0		Fre	. 545	Fam Du De	9 7 88	8	2 4 8	8 4 8	83 2 6	85 2 8	8 6 8	79 4 10	- B	7.9		h 8 61	18		79	88 19 5	89 18 8	01 41 88	91 12	8.8	6 4	7	75 8 6	
TH-HOUR VALUES OF R 100 02 Vam Lam Form Du Dz Vam Lam Form 101 Vam Lam Form Du Dz Vam Lam Form 102 Vam Lam Form Du Dz Vam Lam Form 103 02 02 Vam Lam Form 103 02 02 02 02 02 02 02 02 02 02 02 02 02	SION OID		. 246	20	4 50	4 7.5	9 5.0	8 7.0*	10 6.5	4 7.	7 55	و	ಿ		s	6 12.0	* U	8.9	50 9	10.	18 120	15 125	01	14	=	12	8 75*	
TH-HOUR WAN Lam Fam Fam Fam Fam Fam Fam Fam Fam Fam F	P. H			Vdm Ldm Fam	,	6.0 11.0 99	7.0 12.0 98	15.0 9.5 97	7.5 13.5			20 40* 79	3.5 7.5				1	9.0 16.0 45	9.5 16.5 95	100 175 98	105	105 185 104	2 140 215 99	176 lo3	* 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			
	R VALUE		E	Fam Du	0.0	11.0		5	70	1.5 116 7 11	11 801 88	7		*0°	501 105	7		1.22	55.4	5.0 122	9.0 130 17 21	75 131 12 12	205 127 16, 12	226 129 8 15	23.5 127 6 18	125 8 18	1 4 153 14 16	
	NTH-HOU		.051		6 5 5	00	α	7	ی	2	4. 4.	ļ				9 9	02				5	27	6	9	20	1	10 12 75	_

-6 -

 $F_{\alpha m}$ a median value of effective ornermon nose in do above ktb U_0 a ratio of upper decide for median in db U_2 a ratio of median to lower decide in db $V_{\alpha m}$ and an above mean power $V_{\alpha m}$ and above mean power $V_{\alpha m}$ and an object of overage vallege in db before mean power $V_{\alpha m}$ and an object of overage logarithm in db below mean power

99 61		0.0	D. Vam Lam	6 2.0 4.5	1	* 0.0 * 0.* * 0.*	6 15 35	₹ Q	5 2.0 L			* 0 1 5	12 25 50	* × 0 ÷ ×	* ° * 01	* 0 * 8	55 95	# 0 * 8	12 45 80	6 60 105	6 60 35	8 3060	6 4075	4 35 6.5		3 3060	
February		26	Ldm Fam Du	20	2.9	75 29 8	7 22 0	6.036 7			7.5 25 4	10.5 27 6	4 65 0	10 27 4	1 72 30	1.5 29 10	29	10 33 8	105 39 12	30 37 22	5 35 2	0 35 12		-	8 60 8	7.5 28 7	
Month		0.0	DE Vam Lo	4 3.565	6 154	7 27 7	02 5.8 9	30	4 2.0 4	-	6 4.04	* 0	8 5.090		* 00	13 90 14	2.0	6 65 11	4 0.00	4 8.0 13	5 55 95	4 3.060	4 2550	4 30 60	6 356.5	4 6.0 3	, , ,
45.89W		,	Ldm Fam Du	7 77 0	5 44 6	7.7	85 42 4	6.0.40 4	4.0 38 2	4,1	75 38 8	e m		94 9	8 34 10	5 37 11	5 38 17	14 2 42 14	0 44 12	130 48 12	6 65 0	9 88 0	18	4 65 6	===	8 97 2	7
23.395 Long.		0	Dy Vam Le	* ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °		8 07 7	10 4.5 8	\$0.0 30.0 80.0 80.0	40	* 0.7 * 0.7 * 0.8	10 4 0 2	45 90	08 07 6	7 601	* * * * * * * * * * * * * * * * * * *	7 120115	6 75 25	10 85 14	8 7.0 130	10 8.0 13	8 60 10	5 5090	0.6 0.5 8	3.565	2 5090	5 337	* .
Lat. 23.		5	-dm Fam Du	8 35 0.11		8.5 56 6	115 54 8	9 60 0.01	57	9.5 56 6	3 6 05	65 42 10	37	6. 65. 34. 65.	32	8.0 36 13	76" LE 1002	25 34 23	330 48 17	195 56 16	170 60 6	12.01.59 9	1 99 5 6	10 64 5	9.064 6	65 3	*
José	3	2.5		9	5.0	10 4.5	8 55	10 501	9 * 0	57 71	5 50	3.5	2.0*	₩.R)	6 1.0	4 45	 3 15	10 10	* 051 21	20 105	8 11	1 70	5 659	4 3.5	4 4.5	1 5.090	* /
Sao J	incy (Mc)	-	Lem Fam Du	105 6 5 8	65	8 59 50	14.5 E.3 12	9.5 63 8	120 6.0 13	5.0 55 8	6 77	9.0 37 4	-	13.0 37 2	55 37 16	32 30	160 46 27	49 28	0 115 59 18	155 63 20	155 66 15	100 61 12	6 89 01	05 69 10	05 67 10	8 59 64	*
Station _	Frequency	363,	u DZ Vdm Ldm	14 6.0 105	15	* 7	13 9.0 14.5	9[13 60	* (3)	11	¥ 5.0 ¥1	16 75	12 25	9 2.0	ដ	08 41	2 11	28	22 70	26 85	25 55	1565	16 6.0 105	20	18 83	*
SE			Ldm Fam Du	14.0	8 83 81	8 8 50	170 81 6	8 88 871	17.0 83 9	225 87 6	1. S S 1.	P 58 8/1		130 79 9	8 911	10.0 82 1	21.08 15	230 85 12	# 89 H	20.0	31 58 3518	185 86 15	120 88 13	135 87 14	17.0 89 12	2 18 81 60	
ADIO NOISE		246.	Du De Vem	10 13 8.0	7 21 60	10 12 75	15 100	* II I	8 13 9.5	16 6 13.0	* 6 70	* 2 6.0	10 6 6.0	10 8 80	8 20	* S S S	28 12 130210	22 16 145	2 12 120	18 11-5	6 81	19 19 105	* 8	70 70	12 100	1/6	
œ			De Vam Lam Fam D	120 36	- 36 30 120 96		170 92 8	88 37 00	7.8	185 72	6 * 12 6	1 54 84 00	20		72	10 79	18 09		105 105 103 1	14.5 102 19	90 45 46 18		12.0 96 18	7.5 22 97	12.5 96 12	9 6 16 96 16	K
MONTH-HOUR VALUES OF		811.		9 9 95		11 13 80	6 15 100	7 15 100	001 71 6	* 15 11 10:5		=	13	9	0.8	13 6.6	20 11 100	20 16 120	* 301 Li		14 14 90°	8 23 10	6	* 15 H	Ch-	33	
UR VA			D. Vdm Ldm Fam Du	10.8 (7.5)	16.0 123		91 6.P 0:11		113	103		. 50 ST SC	9.5 165 163 6	* 601 03 00)		7.0 12.0 103		* 0 * 118 2	12.3	12)	125	12.7	123	133	150 121	9.51 8.51 13.21	不能
TH-HO		190		301 11 8	134 12 22 4.0 16.0 1123	9 7 95	9 24 11.0	25		6 23		8 14 35	33	4 21 10.0		6 23 7.0		8 10 12.8	ő	16 10 9.0	94	4 01 Si		14 6 9.0	0~	و	ľ
MON	us	J) 11	HOH - U	00 J35	01 34	82	03 134	04 135 9	05 131	06 129	821 70	08 123	, LT 60	10 127 1		12 39	13 33	14 135	15 138 15	16 141	31 14 14	18 41	1 171 61	20 39	21 35 16	22 35 14	-

 $E_{\rm cm}$ = median volve of effective antenna notes in do above kith U_0 = rote of upper decile to median in db D_2 = rote of median to kever decile in db V_0 = median deviation of exercige voltage in db below mean power V_0 cm = median deviation of overage logarithm in db below mean power

RN-13

A-18-1800

on another the control of the contr

RN-13

== [<u>ā</u>	MONTH-HOUR VALUES	+	힉	<u>~</u>	\$	3	S	P	- 1	A A	ADIO		NOISE	SE		ळ	Station	Ιį	Sa	São Jose	36			_9 ¦	1.23	Lai,23.3°s		ong. 45.8 ⁰ ।	45	0 23		Month		APril	4	97	996	
(15		Ì	ļ		F					ř					Ī	İ		r. G	Frequency	ည်	3	(<u>S</u>	i		F	1			Ì	F					-				
1) 1!		150,	27				=		Ī			2	97				S	543	ļ	i		Q.	bn		-		C)		į,	-	į	01			-	ni I	0		1
нон	_	Tarn Ou	_	D2 Vdm Ldm Fam Du D2 Vdm Ldm Fan	Ę	E	ď	3	- We	투		۵	2	Dr Vam Lam		وّ	تم	3	Dr Van Lam		Form	2	2	, dâm	Ē.	_e		آ <u>خ</u> اح	Dr Vem Lam		Fam	٥	D. Vdm	- 5	Ldm Fam	٥	70	VomLdm	Ę
8	Ē	ο ₀	S	071 pg 170	110	- F/		Œ	80 160 98	9	80	ی	C	8 o 15 5		20	00	8	60	0	Ď.	9	9	9	120	63	-	14	, c	204 3	38 10	<u> </u>	2.5	9.0	2	2	7	20	20
<u></u> 5		13510		14 45 170 114 10	9	7		ين و	26 90 16 9	3		- σd	₫	PS 30108 21	la G		Œ	و و	6.5	11.5	79	او،	-52	v	00	53	- 51	19	8 07	80 3	38.6	4	3.0	0.0	ζ.	7	9	9	25
8		35 10	0	01 811 201 01	5 9	23	$\overline{}$	و	90 55 96	5		α	O	70	0	79	σq	ر ح	0.0	0 (1	ري دي	oC	12.6	6.5	120.5	53	- 00	9	- 2 2 3	0.1	38	4	25	50	۲	7	و	15	ou Ni
ខ		35 12 12 105 1ZO 1L2 12	9	90	011	12		g	10 80 50 95	20	3	60	9	80	0 9	79	g	9	5	35	3	ø	7	6.5	120	21-6	- g		09	503	38 B	- °	80	60	7	-2	-7	1.5	30
8		133 10	8		355	9 51 25 28	- i	Φ	4P 841 0P	9	큥	٩	oq	0.0	1031	7.7	9	9	40,	90	3	9	12.7	707	125	7	<u> </u>		50 90		व्य मृह	7	30	0,9	7	aq	J	9	25
90	(33	2	20	12 20 103 170 112 6	170	11.2	v	- 2	10 85 15.0 92	5.0	-	4	و	85	16.5	79	و	8	75	13.5	ç	2	24 60		0	- 23	9 14		50 90	6 6		20 6	20	4.5	121	ō	ق	.5	35
90		127 10	Ò	*45	* S	105 165 98 12		9	10 45 170 68	20		ور			170	83	-	26		*×0.			167	Ze	125		- S				38	00	30	0.9	₩ (γ)	9	Ų	20	5.
07		ر اوا		12 90 150 94	15.0	94		8	11.0 195	4 5		12		13.0	2.5	18	_			125						55			_	ાની			45	.00 5	23	12	8	204	*\ ₀
8		9		9.5	98 051 86	96		45	75 35	*/1		- 1		*08	13.0	- 5	<u>ن</u>	26	* 5:	*59	39		4	4¢ 2	75 4	47 1	0		3.5 6.5	5 28	 5	9	40		25	ω	9	25	50
80	127		0	6 10 80 40 94 14	- Pi	94	Į.		10.0 17.5 68	15.	_	41	<u>0</u>	\$5		18		į	50 lo \$		67	80	6	50.6	50	39 6		- 5		ΟĬ.	26	12 12	45	8.5	X	ō	و	08	° च
0	12.7	7	ifa		9.5 15.0 94	_	7	9	50	01 30	_	9	ū	7.0	0.0		-7	23	40€ 1	100	 88	ος	7	4.01.75		33	<u> </u>	9	¥ 6 6 5 4		32	9	*°5	*- .0.	25	s	9	* 07	75*
=	127	7 8	_ 00	8 9.0 150 98 14	*0°	38		00	120	* 5		2	7	120	\$60	17	7	وب	*0	*0	3.9	20	, v	25.5	*0.5	53	9	7 9	7.5 L3.0	*0	30 4	2		* 0 °	33	20	00	3.5	.02
2	-	127 8		14 9.0 145 96 14	14.5	95		- 5	* O.	* 9		9	0	*0	*150 Q	79	~		204	*0	돠		~7 69	10	8.5	-29	7	<i>γ</i> 0	5 100		36 10	0	5 4.5	90	7	80	وی	40	75
13		129 8		8 9.0 15.0 10.0 12	5.0	oq	2		14 86 145		7.7	2	=	12.0	- 1	77	8	9	10,	*6	28	12	7 01	40 3	35	~	~	10	10*	12.5	24 19	80	02	125	73	9	œ	30	.09
4	~	<u></u>		P So 19.0 102 14	0.1	102		2	85 150		_	8	=	*9	7,2	7	H		¥ 5	*57	38	96	-9	±2		- - - - - - -	~	۳ 0	35 65		32 15	9	5.0	₹ Q \$	33	25	Ø	30*	, Q
15		133 10	ည	20 70 120 152 20 14 120 190	40				*2	*o		22	~	*0	225	77	9	- 72	85.	10	42	97	5	50.9	÷ 0	37	d.	12	35.6.5	34		S S	6.5	120	25	2	ß	30	*0
9		131 18 10 70 130 102 26 12 75 135	Ó	7.0	30	20	26	2	*5		74	₹	22	8 2*	*2	17	3	2	135	10	-23	20	14	50 9	, 10	13	9	9	5.5 10.¢		38 15	01 81	30,	0	52	5	g	30	00
11			9	16 10 55 110 102 26 16 70 125	2	73	- 19	9	*01		16	22	- 2	*145	¥0	15	9	-3	*0 5	155*	78	7	9	6.5 11	011	53 14	9 म		40 80	24.0	의	전	20	80	27	29	8	0.1	7.5
<u>B</u>	13.1	ď	œ	8 65 120 110 14	130	9	7	- <u>7</u>	14 65 20 88	30		3	<u>c</u>	50.	10.0	19	60	9	*0	**	28	- T	8	75	1355	57	9	0.5	50 95	\$ 4°	0	٥	40	75	25	13	60	30	90
19	137	9		51 011 08 01	9	힐		60	3.5	150		a	00	59	130	79	ď	- 14	*0	* 0	99	4	7	1 09	13.05	59	9	13 5	50 90	42	2 8	00	30	60	55	2	æ	न्त्र	05
20		137 6 4	7	80 140 112 12	40	2		a	60 120 91	- 9	7	7	0	₹0	5.5	2	-	<u>'''</u>	¥0	10	9	90	- 5	50.9	05	65	ट्टा व		*0*	8.5 44	9	80	150	95	23	12	ق	20	90
ম	$\overline{}$	137 4	Ø	8 90 150 HH 10	0.51	1		4	70 130 96	*9		8	œ	¥22	40	83	7	9	*5	154	93	90	60	6.5	0 1	50	9	1- 1-	40,4	*10	428	7	30	0.9	23	2	4	30	0
22		13.7 6	0	10 90 150 112 12 6 20 125 96	150	- 2	2	ر او	돃	72	۱.	a	00	50 11.0	_	69	커	4	*2	*10	99	9	9	50	95	1 59	- 2	10 35		70 42	- Z	0	25	50	N	8	Q	25	20
23	135	5 B		6 Sc 140112	10 b	12	2	<u>:</u> ق	6 75 150 9	-03	96	8	٥	10	140	83	- 5	-2 20		10	19	0	8	6.0	io 61		12	10	45	85 40	0 8	 &	\neg	30 60	2	0	و	25	5.0
	Ē	Funn = medien value of effective enterna notes in alto above	DA 48	lise of	effect	P. B.	thecmo	no	Ë	9	¥ Et	₽																											

 $F_{\rm em}$ = median value of effective univarion noise in allo above ktb U_0 = rotio of upper decile to median in dib U_2 = rotio of univarion to lover decile in dib $V_{\rm em}$ = median deviation of overage voltage is dib below mean perser $V_{\rm em}$ = median deviation of overage logarithm in the below mean perser

RN-13 Designation of the Party of the

~	₫	E	丰	MONTH-HOUR VALUES	œ	₹	3	က	R	ož	¥	ADIO		NOISE	لِبا		Ş	Station	ı	į.	São José			_	ŧ	Lat. 23, 30S	8	Long		B. Wa	l≊l	Š	Month	~	May	_	996	اي
us	Ш																4	ğ	Frequency	1	S																	
Ų,	_	0.50	51				2			_		246				•	545			_	'4'	5			_	'n	q	Ī		ı	9	0		-		9	0	
Hou		Fam Du	2	D. Vern Len Forn Du	E.	Ę		7	<u>د</u>	Dz Vám Lám Fan	-	D na	D.z. Vam		Ldm Fom	O E		De Van	TE SE	m Fam	۵	ď	Vem	Ldm	£	₫	70	> =	Ĺdm	Fo	2	70	, eg /	Lam	Fam Du	70	Mp/	E E
8		122 15	6	115 180 104 12 10 9.0 150 15	1 08	- 	7	1	2	10		닐	4	20	27 22	9	9	7.0	0.81	0 57	1	۷	4.5	.80	ĝ	٥	2	Ģ	2.5	4	껔	- 00 - M	30 %	\$0 S	- 4	3	-9	53
ō	122	12		110 180 102 14	708	7	9	-	<u>:-</u>	8 95 115 74	4	7	9	100	72	7	-	70	OZIC	2	-5	9	3	.00	2	g	В	4	7.5	7	80	9	35.	65		7	10	9
8	12	123 19		8 110 120 104 14 10 90 155 76	zalis	1	7	6	-0	2		0	9	8018	155	72 8	8	-7	०५। ५	0 58	8	ی	50	.5	9	٠	6	50	90	7	9	<u>"</u>	306	60 2	7	-7	4	9
0	12	122 13		105 165 100 16	1 15	100	4	- 6	- 5	27 031 08 01		g	7	108	70	9	\dashv	9	60125		- 9	<u>برا</u>	5.5	100	2	_=	4	4.0 80	08	8	<u>e</u>	7	26.5	_	7 61	-3	7	30
8		rel 	-	22 13 7 100 125 14 18 100 25	7.5	<u>ر</u>	7	91	ials.	7				1.5	2017	73 8		3	, 0, 2,	58	10	9	6.5	5	47	٧	g	4.5	7.5	34	5	9	55	50.2	20 3	"	1.5	30
8		12.2.14	æ	100 160 102 11	109	7	H	2	1	7	14	-	11 51	9 01	18.5	78 4	a	2.5	*0110	15.0	- 9	4	5.0	o	7	*	ø		75	7	9	4	**	35.	20	'n	0	2.5
8		5			.5	-7	_	<u>ت</u> وا	* C	4 90 145 54		77 91		11.0	00	20	2			55	60	•	5.5	10.0	5	12	9	50	85	39	C	8	25.5	50.2	20.5		25	50
6		9	١	5	01 49 091	17	0	10 100 16.0	* 0	5.5		8	\ \frac{1}{2}	5.0 0		80 2	-7	\vdash	Н	42	2	, 7	4.5	, oc	52	*	9	2.5	100	1	90	ري. وي	50.0	9.6	22	er	20.	20105
8		3		6	5.00	¥	H	<u> </u>	• =	Ý.	<u> </u>	2	8	5.41 0.		78 4	7	7	4 S	40	- 6	¥r.	*0	10.	49		8	Q	* 0	78	7	7	*5	120.2	8	7	~	01/2
8	-	2	٥	7 20 07	0	-	-	96	9 4	140 54	┝┋	ء ا	<u> </u>	4 kg		78 2	_~	* 9	4 8	39	6	10	50	9.5	Ç	۲	9	80	100	83	œ	8	**	120	23.2	-9	2.0	20 40
<u> </u>	_	2	4	17 10 12 105 185 94 9	٠ ت	-			3	10 110 200 55	-:	9	5		6.5	80 2	oq	-7	2012	35	7	'n	5.0	9.6	ñ	00	g	*5	100	7	9	F	\$0 \$0	195.2	23 2	4	•0	• <u>•</u>
Ξ		9	9	77 10 10 100 146	6 9		11 5		- *	5 5	5		8	• •	so 72	7	7	7.4	140	38		~	7.0	100	<u> </u>	1	₫	*0	•	37	7	3	*0	120 2	4	9	3.0	60
12	_	2	2	10 110 195 94 11	959	7	3	8	- 5	8 85 150 54		ĸ	7	20 12	125 7	74 6	-7	10,	* 165	- G	ν,	ţť	3.5		ñ	2	160	* O	*0	52	2	9	2.5 k	5.0.2	23 4	œ	25	20
13		=	80	15 14 8 85 50 91 15	509	H	5	5 85	-2	35 25	-7	7	9	100	100	4	_	3	*0	*0	2	~	40.	7.2	m	2	q	*9	**	74	a	7	40F	10°	23.6	7	30	9
14		2	12	121 10 14 80 135 92 16	35	6		6	•=	8 80 155 5		14 5		5.5	io a	74 6	-	20	01 120	3.8	7 8	-	3.5	9	35	æ	ō	+9	•0	37	ď	9	*05	9.0	3	00	3.0	0.9
5		2	~	12 12 65 20 94 16	209	-7			0	8 30 60 58	- 6	3	8	85 16	isol 1	16 4	~	_	100	ç	2	v	* 0	6.0	9	م	q	150	• 0	न्न	9	┪	9000		23.4	-	25	50
9			4	14 9.0 155 94 12	55 9	14.		\vdash	di	B solve	-	٦	ڄ	ioo		7 82	3	-5	-	9	- 2	عر	* 9	::	7	_9	9	*0	*9	3		9	20.	*6	7.7.7	7	35	5.5
11	<u>-</u>		3	16 12 95 150 9B 12 12 20 115 67	5.09	60	2	2	7	4	7 114		9	90	150	, de		.55	* <u>9</u>	2	-	- 2	50	80	54	ᄅ	6	45	92.	57	6	2	5.5 B	80 2	23 4	7	30	09
8			<u> </u>	21 401 041 09 FI	109	4,0	2	4 6	5 11.	14 65 11.0 73	_	- 2	17 7	2013	130 7	78 4	-	30		1 2 3	9	9	9	0.1.0	36	9	=	* 9	• 0	3	6	- T	10	75 23	4	-	2.5	5.0
6		2	<u>a</u>	PT 1011 8 & 15 1 51 201 241 8 8 91 01 FC	1 5 3	50	2	3 6	1	0 7	4		19	70 13	Bolz	78	9	-	5 30	3	3	9	60	501	<u> </u>	٩	7	- 0	•0	43	9	चै	608	85 2	22 5	И	20	57.
ຂ		12 # 14	2	12 90 150 105 12	100	98	2		1	21 20 120 15	100	-	_ 	1150	7 011	79.5		Ġ	5090) 61	1	7	60	910		æ	=	35	10,	44	7	4	55.9	96	7	٧	2.5	30
N.		-	<u> </u>	124 13 13 146 164 134 12 85 146 78	76	3	E E	2 8	5 14	19	_	13	6 41	80,50		80 4	9		4.0 So	مااه	-=	90	9	0.1	ق		٥	*0	• 9	事	0	m	35	5	-1	9	.5°	Q
22			11 61	1051	156	7	┝┋	19	5	1		g	8	90 16.5	.5 80	9	9		4.0 8.5	5 60	걸	-	50	9.5	62	0	6	0	9	£.5	0	7	35 7	70 2	22 3	7	20	<u>2.0</u>
23		75	00	121 14 8 105 115 105 13 8 85 140 24	15/1	77	K	-8	**	-7	\dashv	3 2	8	80 110	8 0	긬	╡	9	+2	i Selozi	1	7	6.0	녈	65	4	5	* 0	10	型	7	<u> </u>	204	3	4	_=	1.5	40
ı	, Ē	1	, <u>;</u>	$f_{\rm GR}$ = modium value of effective enforms notes in the above		3	1	1	€ .s	\$	£	_																										

RN-13

≥	10NTH-HOUR	MONTH-HOUR VALUES OF	RADIO NOISE	Station	São José	Lat. 23, 30 S	Long. 45.8°W	W Month _	June	99 61
(TS				Frequency	(Mc)					
יג (ך "ג	051	(13	. 246	.545	25	5.0	- -	0	rų.	20.0
HOE	Fam , Du D. Vam Lam	Fam Du Oz Vdm Ldm	Fam Du De Vem Lem F	Fam Du De Van Lam Fam	om Du De Vem Lem	m Fam Du Og	y Vam Lam Fam	Du De Vam Lam	Fam Du	D.z. Vám Lám
8	24 6 7.5 13.5	24 8 60 110	20,4	5,000	\$2. \$2.	× 61.	50 190 46	40 73	24*	1.0 3.0
ō	14 12 90 160	95 5	* 6 0 130	* .	*32 *06	30 60 47	** 22	45.54		*00
8	14 8 9.5 120	œ	1205 051			6.5 47	50 95 46	*0.*		* 07 * 07 * 0
S	08 21 91	22 3 50 95	125 220	6.7 k	*0	# C 7 # C	42 42 42 42 42 42 42 42 42 42 42 42 42 4	20 40*	Ī	40 4.0 A.
04	16 B 95 165	071 0.8 8.0 170	80 175	5,5 5,5	60 60 25	* 5.	55 95 40*	* S		* 0 * 0 × 0 × 0 × 0 × 0 × 0
S	8	01 91	80 165	*O	40	° × ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	40 75 36	20, 40*		
90	12 8 7.5 13.5	18 6 9.0 15.0	100 7.5		061 59	4.0 4.0 */∨	*27	40 75		# 0.4 # O.
20	Φ	15 6	*01		25	, (o) (o)	*88			20 40
90	16 6 45 85	80 145		50	12	*65	38	*52 *04		* 0
8	9	7 8		-	42*	5 4	*,5			*09
10	20 10 85 15.0	22 4 170	* 9	12 55 105			70 25 43		27	
Ξ	12 12 75 35	45	30.4		ν* ν	e⊖* 33*	*O		28	
-2	19 4 70 12 8	9 8 60	60 10	60 125	40° 30° 60°		36,	_	28	404 40
Ē	20 0 70 150	9	80 145	5 75 35	* C	* 0	* 60 M	20 45	-	
4	18 6 60 10	13 8 55	110 19 4	=	\$ 000 mg	(G)*	*00 M	25.52	*62	
15	19, 6, 70, 120	16 7 55	70, 12,	4 (0 B.O. 2a.\$ 1	40%	45.	N N		26.	* S2*
9	00 00 10	12 11 85 150	100	3 18 4 0 40*	*07	*25	*57	* c. c.	,8°.	* C
-	13 17 70 125	61: 89 21 8	**E 09	6 5 95 50	*87	41	*517	30,60	25	*0*
20	10 14 70 115	25 07 11 SI	* 0 41	7 11 2.5 60	56 20 50	2 6	48*	25 50	† 20°	40, 75
2	15 15 60 110	15 9 55 115	10, 180	8 12 35 75*	57 25 60	7.83 ¥	30 65 48	#2* #5#	27	25 50
2	16 12 80 150	15 12 65 115	90 185	5 6 40 80	58 25	***	70, 130, 50,	30, 00	* 9 V	15 35
5,1	511 09 31 61	13 11 50 90	36 80	5 6 35 75	700	* 3	34 50 04	20° 45	25	30.60
2	12 17	18 18 45	*0	7 55 90	59		50 90 50	30 60	25.	20,4
N) (N)	15 11 80 140	22 15 70 115	80 165	6 8 60 25 61		7-3	35 65 49	40 75	24	25 5.0
u.	om = median volue of affec	tive antenna naise in								

 $f_{\text{cm}} \approx \text{median}$ volve of affective antenna noise in db above ktt $D_{\text{u}} \approx \text{ratio of upper decile to median in db}$ $D_g \approx \text{ratio of median to lower decile in db}$ $V_{\text{dm}} = \text{median deviotion of average voltage in db below mean onware L_{dm} are median deviation of average togetism in db below mean process.$

RN-13 B. January

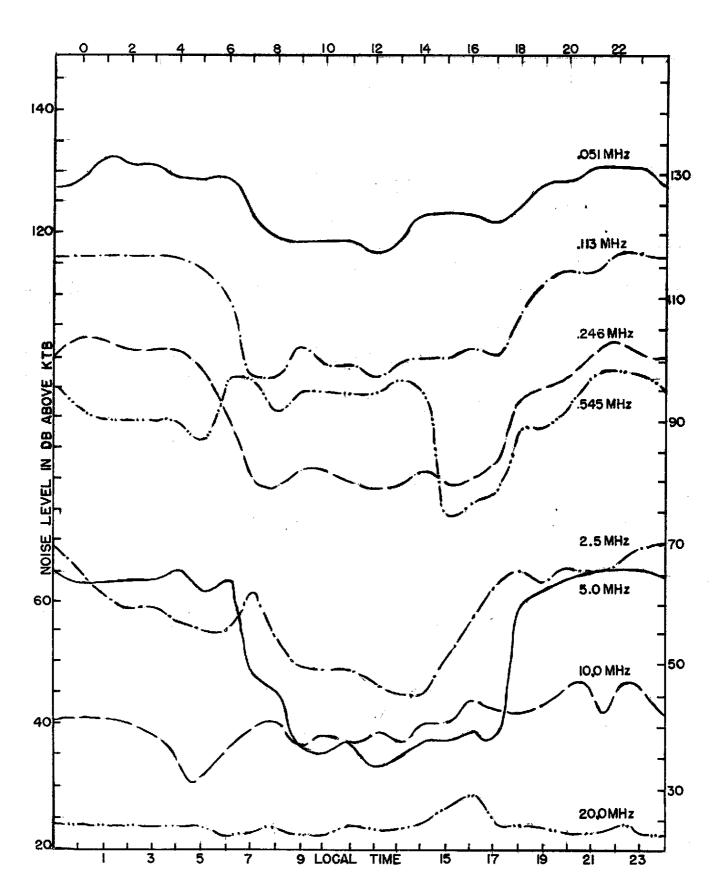


Fig. I - Monthly Median Volues For JULY 1965

.,

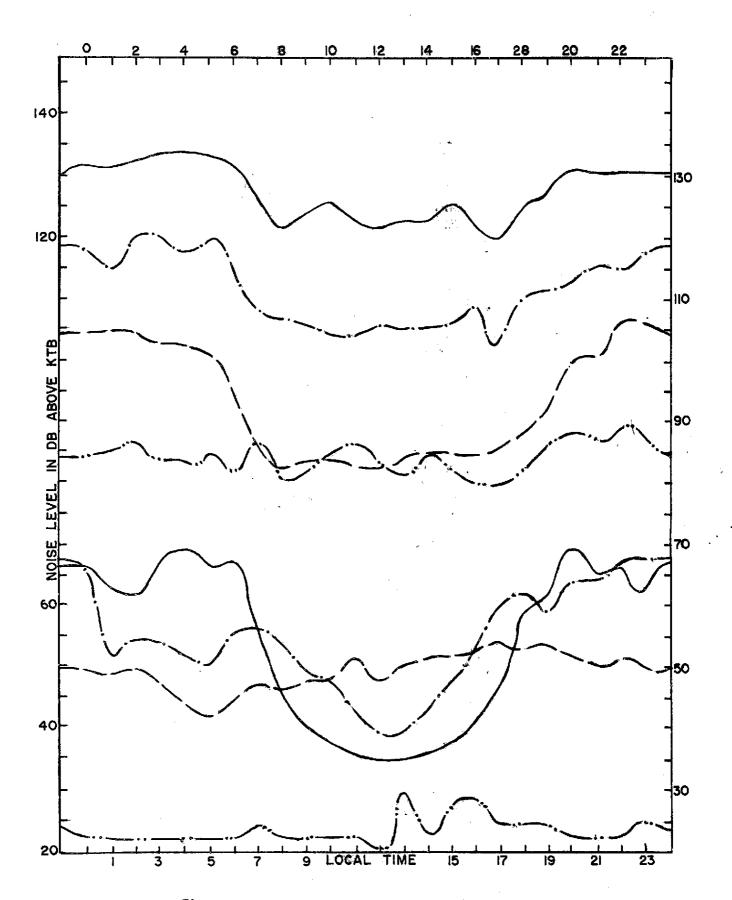


Fig. 2—Monthly Median Volues For AUGUST 1965

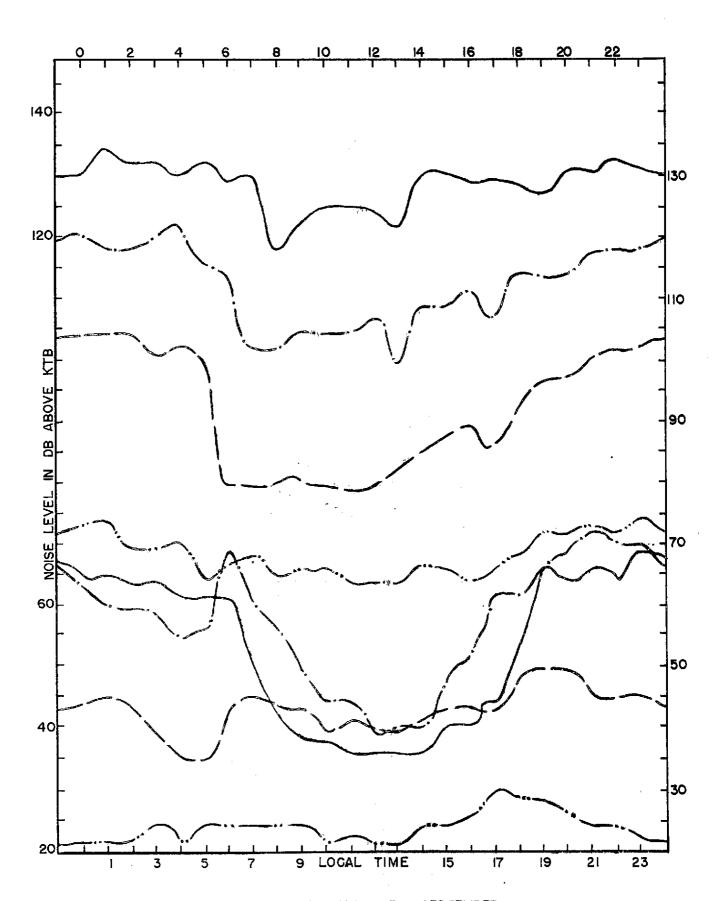


Fig.3-Montlhy Median Values For SEPTEMBER 1965

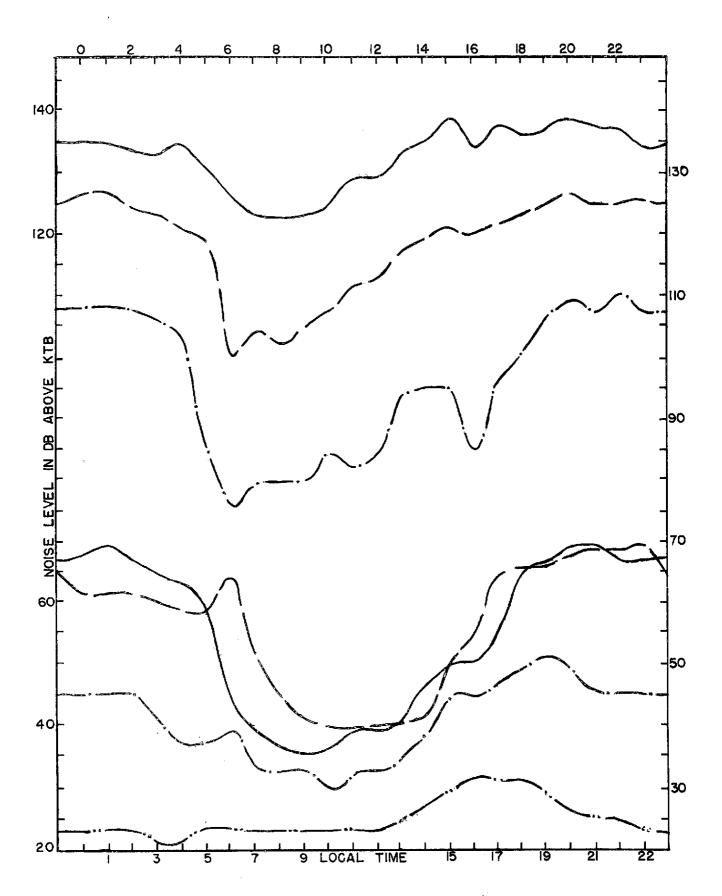


Fig. 4 — Monthly Median Values For OCTOBER 1965

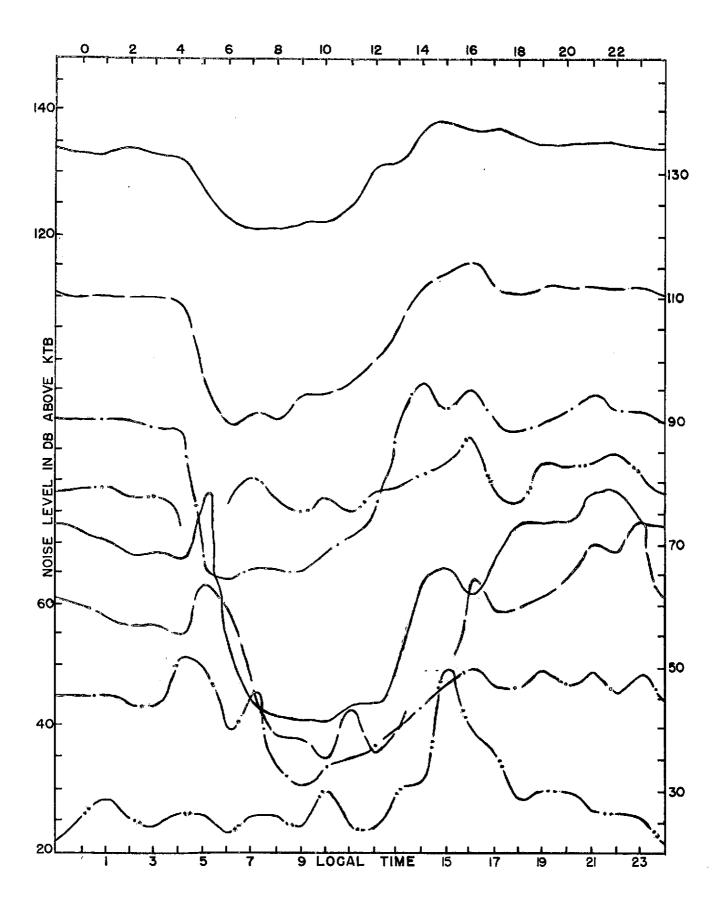


Fig. 5-Monthly Median Values For NOVEMBER 1965

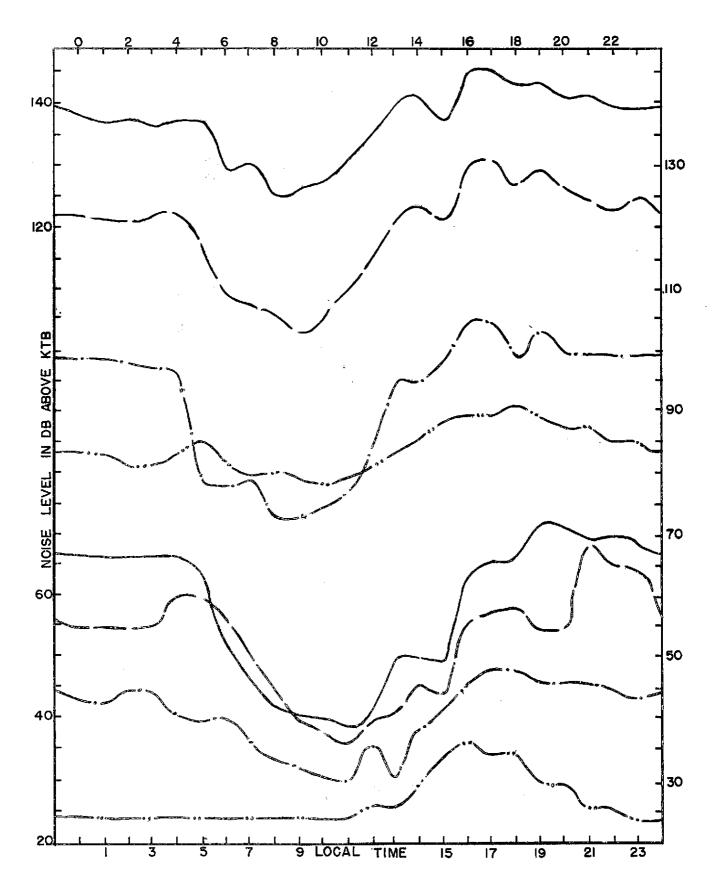


Fig. 6 - Monthly. Median Values For January 1966

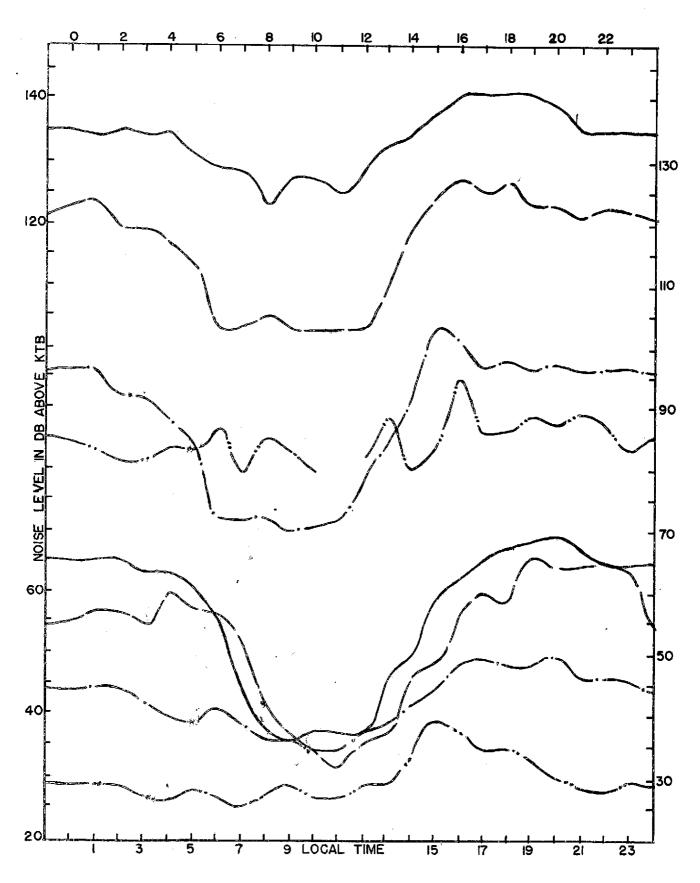


Fig.7—Monthly Medion Volues For FEBRUARY 1966

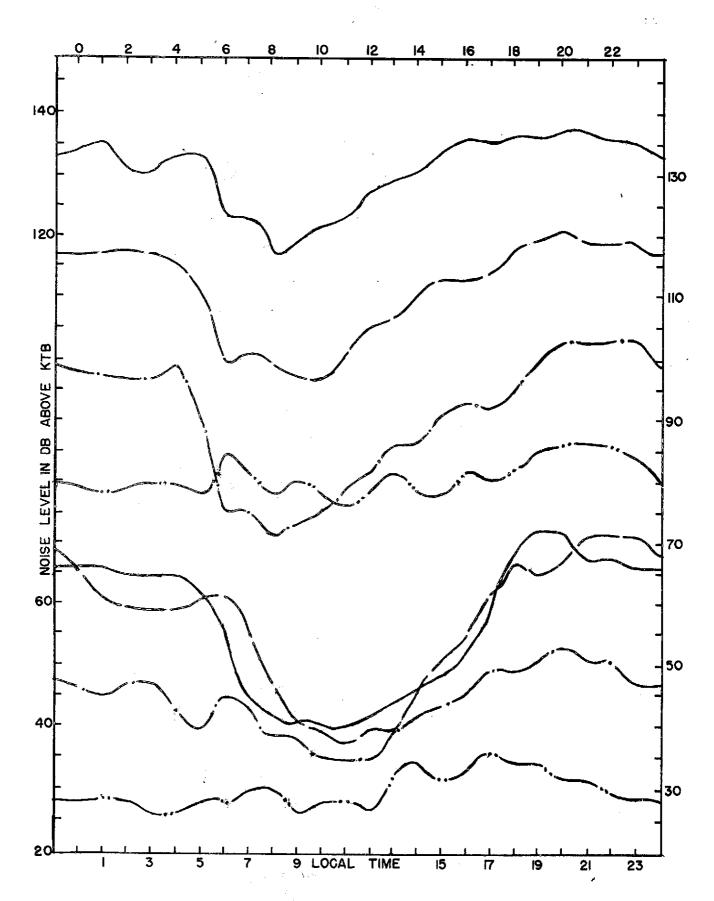


Fig. 8 — Monthly $\,$ Median $\,$ Values For $\,$ MARCH $\,$ 1966

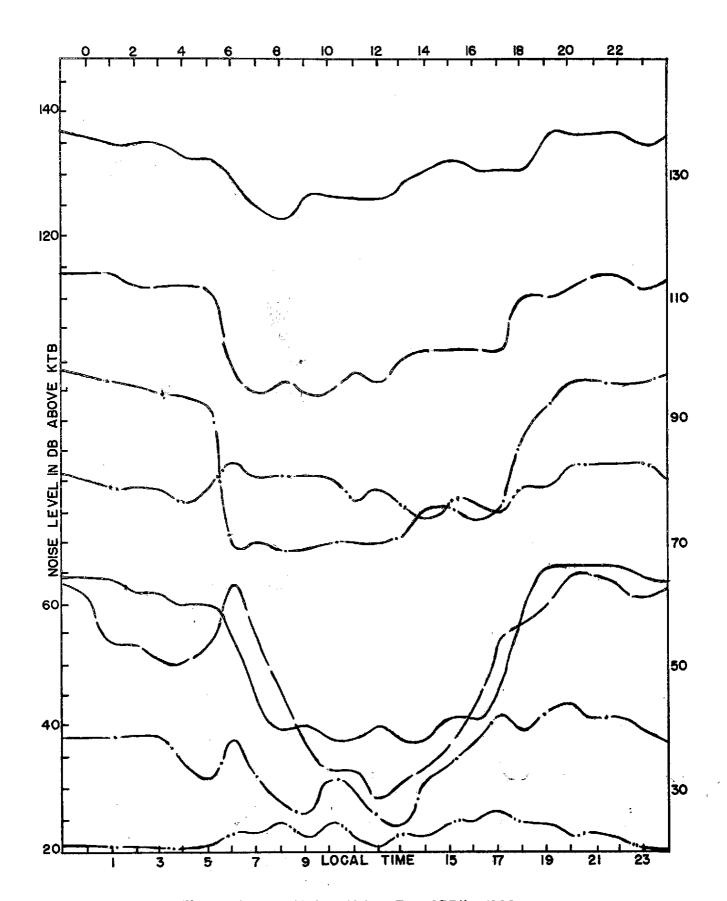


Fig. 9-Manthly Median Values For APRIL 1966

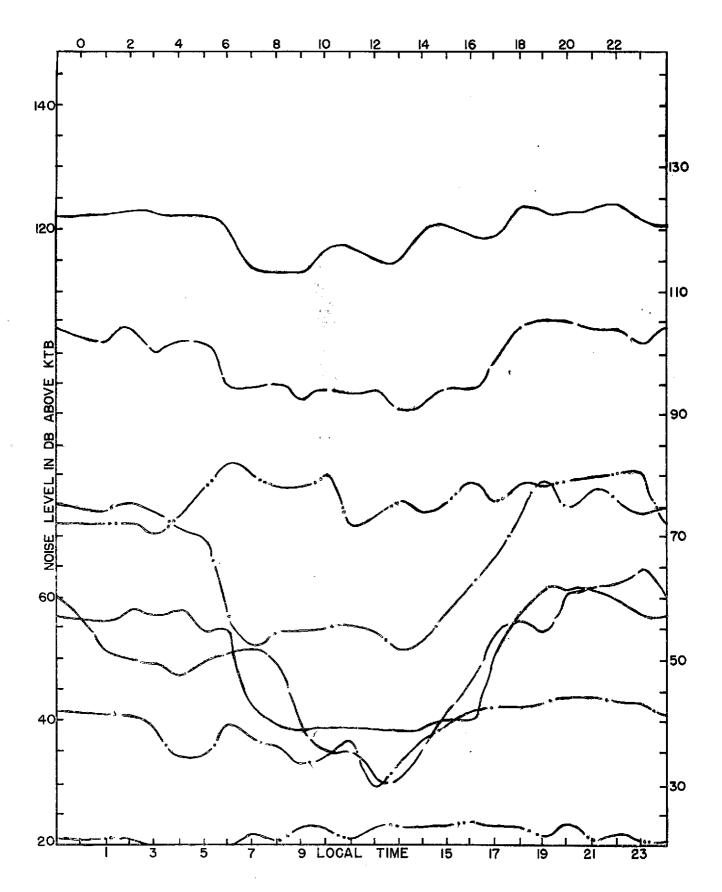


Fig. 10-Monthly Median Values For MAY 1966

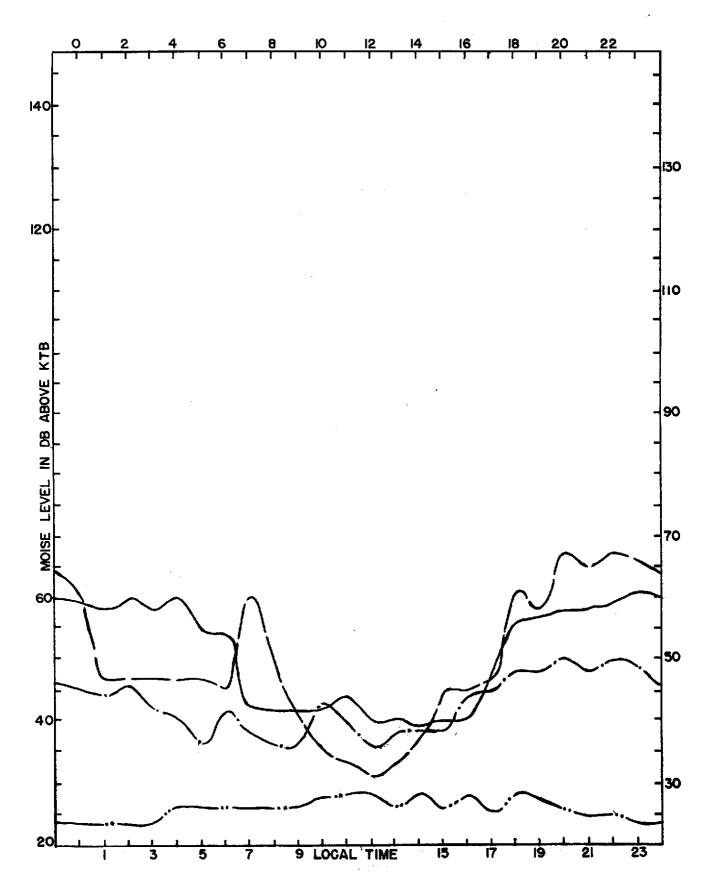


Fig. 11 -- Monthly Median Values For JUNE 1966