ABSORPTION MEASUREMENTS WITH RIOMETER DATA SUMMARY FOR THE PERIOD MARCH THROUGH AUGUST 1963

by

M. A. SETTE

and

F. DE MENDONÇA

REPORT LAFE-9

DECEMBER 1963

The measurements reported herein were performed in cooperation with Stanford Research Institute and A. F. Cambridge Research Laboratories.

C

Comissão

N

Nacional

A

Atividades

E

Espaciais

São José dos Campos São Paulo - Brasil

CONTENTS

I - Introduction	1
II - Description of the equipment	1
III - Measurements technique	2
IV - Type of scaling and data reduction	2
V - Absorption effects associated with solar flares	2
VI - Magnetic bremsstrahlung from relativistic electrons	3
VII - "Quiet-day" curve errors and corrections	4
VIII - Conclusion	4
TABLES	
I - Solar flares versus absorption	3
II - XIII - Absorption and medians 6	3 - 17
•	
ILLUSTRATIONS	
1 - "Quiet-day" curve for SJC	18
2 - Monthly medians of absorption	19
3 - Disturbed record · · · · · · · · · · · · · · · · · · ·	20

RIOMETER MEASUREMENTS

DATA SUMMARY

I - INTRODUCTION

This summary is merely a catalogue of reduced riometer data obtained during the initial period of observations from March 16 through August 31, 1963 at São José dos Campos.

We will not attempt here to reach any conclusions. This will be done in a paper which will follow.

This summary will also show (Fig. 1) a "quiet-day" curve, for the SJC station which was obtained from the avaiable data of the period under consideration. The dotted part of the "quiet-day" curve indicates that section of the curve which will need future corrections for errors that became apparent while reduction of the riometer data was performed in terms of daily absorption.

For each month, the value of absorption is tabulated for the first minute of each hour to the nearest 0.05 db, and the total number of readings for the month as well as the median value are indicate in the same table. See for instance Tables II through XIII. Note that Fig. 2 also shows the monthly medians mentioned above.

A listing of the registered solar flares and related absorption effects during the period under consideration is shown in the Table I.

Figure 3 shows a disturbed record where the effect associated with a solar flare on the cosmic noise absorption is quite evident.

II - DESCRIPTION OF THE EQUIPMENT

RIOMETER: The riometer (Relative Ionospheric Opacity Meter) is a device for measuring ionospheric absorption using the cosmic noise method.

A high gain receiver is switched automatically between one antenna and a noise diode at a given switching frequency (340 pcs).

The antenna which in our station is an East-West four elements Yagi, points vertically and receives the cosmic noise. If there is a difference between the antenna power and the noise diode power, a square wave at the switching frequency appears at the detector of the receiver. The detector output is a DC voltage which has an amplitude that is proportional to the difference between the antenna and the diode signal. The voltage is used to adjust the current of a servo diode in order to reduce the above mentioned difference to zero. The diode noise power is proportional to the current which in turn is directly proportional to the antenna noise power. The diode current is recorded in a common pen recorder.

The riometer is calibrated daily by connecting a test noise diode in place of the antenna and passing different value of current through the diode. The values are marked for comparison with the readings of the riometer.

The frequency used of 30 Mc/s is low enough to be sensitive to the non-deviative absorption effects of the lower ionosphere and

yet it is sufficiently high so that a signal is detectable even under heavy ionospheric disturbances.

III - MEASUREMENTS TECHNIQUE

In the cosmic noise method already mentioned, the absorption is measured by comparing the signal actually received with the signal that would be received in the same system at the same sidereal time under conditions of zero absorption.

In order to measure the absorption it is necessary to establish the local "quiet-day" curve. This curve is obtained from the riometer recordings in the hours before the sunrise, when absorption is low. The values of current observed are transferred to the corresponding sidereal time. The highest realiable readings are considered points of the "quiet-day" curve, which is assumed as pointed before to represent values of zero absorption condition.

From the "quiet-day" curve the absorption in db at any time is given by the relation:

A (db) = $10 \log_{10} Pr/Pq$ where

Pr = power noise actually received at a given time;

Pq = power noise from the "quiet-day" curve for the corresponding sidereal time.

IV - TYPE OF SCALING AND DATA REDUCTION

In reducing the riometer data, scaling TYPE I (URSI-AGI Committee 1958) has been used.

The absorption during the first minute of each hour for every day throughout a given period of observation is recorded and then averaged. The results give a picture of the daily and seasonal variation of the absorption.

The data reduction was performed in the following maner:

The "quiet-day" curve, assumed to represent ZERO absorption, was plotted as well as curves of constant ratio (I_0/I) , in order to obtain a set of parametric curves for given values of absorption in (db).

The actual values of current for each hourare translated to the correct sidereal time and the value of absorption in db is obtained from the parametric curves mentioned above.

The following qualifying simbols have been used for values obtained indirectly from the record:

C failure of equipment

S interference

U value uncertain

I value interpolated

V - ABSORPTION EFFECTS ASSOCIATED WITH SOLAR FLARES

The Sun's ionizing radiation during solar flares is normally enhanced and reaches the lower level of the ionosphere increasing the absorption through the D-region producing the attenuation of the cosmic noise reaching the antenna. Sometimes prior to the observation of attenuation, and depending on the relative position of the Sun and antenna

beam, one observes an increase in the flux of energy reaching the antenna as a result of the Sun's HF radio emissions.

Some flare occurring during the local sunlight could be clearly related to absorption effect showed in the riometer records.

The information on solar flares, published on the Solar Geophysical Data - Part B - of the Central Radio Propagation Laboratory, was used to analyse the absorption effects on the riometer records. There is a good correlation between the increase in absorption and solar flares accompained by ionospheric effects S-SWF (sudden drop-out and slow recovery).

Table I lists sudden increase in absorption and related solar flares.

	Excess	Time	Flare	Period	l (UT)	Provisional
Date	absorp- tion db	UT	Type	Start	End	Ionospheric Effects
April, 15	1.35	11:28	2	11:21	12:25	S-SWF
15	2.5	16:21	2	16:07E	16:40	S-SWF
May, 23	0.92	12:10	1 +	12:30E	13:05£	S-SWF
23	0.92	15:53	1	15:49	15:53	S-SWF
24	[0	-	1	15:19	15:40	S-SWF
25 30	0 Interf.	-	1 —	16:23	16:36	S-SWF
August, 17 18	0.73 0.45	16:18 18:03	1 -	16:10E 18:00E	16:40 18:15D	S-SWF S-SWF

Table I

VI - MAGNETIC BREMSSTRAHLUNG FROM RELATIVISTIC ELECTRONS

We expected to make measurements on the excess signal component from the synchrotron radiation of high energy particles trapped in the earth's magnetic field after the July 9, 62 detonation over Johnston Island. This was not possible however, and one reason for that could be that this riometer was set in operation on March 16, 1963, that is, 8 months after the detonation. Since the decay of the bremsstrahlung radiation has a time constant of about 60 days, the excess radiation component was already reduced by that time to about 20% of its original value.

The possibility of extracting the excess signal component from the riometer records was upset by the fact that at the time that this riometer was put into operation, the portion of the sky of very high temperature, namely the galatic center, was on the antenna beam in the early hours of the morning when the absorption is normally low.

The excess signal, already reduced in its strenght, was not noticeable over this high level background signal. However there is still hope that using next years zero absorption levels, one might be able to go back in time and establish the above mentioned contribution.

The "quiet-day" curve for this station has been obtained from data of 6 months of operation during a period of relatively low absorption. However in this procedure it seems that some errors have been included in the "quiet-day" curve.

A portion of the curve which shows low values of current is the result of including values obtained from hours when the absorption was low but could not be disregarded or considered equal to ZERO. A first trial to correct this error has been made using recent data corresponding to local time between 3AM and 6AM, and during the local winter. This correction was done in order to get a first aproximation of the "quiet-day" curve. It was a correction which consisted of modified values of current that were to correspond to zero absorption in the new curve.

This riometer has been in operation regularly since March 16, 1963. Some equipment failure occurred for a week during the month of July and the receiver was off. After that the riometer has been recalibrated and reset and the adjustments of the receiver were not exactly as before.

The avaiable data used in deducing the "quiet-day" curve came from the receiver operating with 2 different set of parameters. The increase in the absorption level in the early morning after July can be related to the change in the receiver gain. Corrections on the level of the "quiet-day" curve will be possible with a few more months of observation.

VIII - CONCLUSION

Except for very strong interference produced by thunder storms, typical of the Summer period in this latitude, this station is placed in a very quiet location.

The riometer records are quite free from man made interferences.

Since for reasons mentioned above, there were some errors in the "quiet-day" curve, this first report presents the data as a provisional average of monthly absorption.

A few more months of consistent operation of the riometer will provide data for a detailed study of the seasonal variation of non-deviative absorption.

This station will continue its operation and will provide data on Ionospheric Absorption in a cooperative program for the International Quiet Sun Year (1964-1965).

Data will be sent to the World Data Center, as established in the Guide to International Data Exchange, CIG - IQSY Committee.

Acknowledgement:

The riometer in operation at this site was provide to us by the Air Force Cambridge Research Laboratories (Mr. S. Horowitz) through the Stanford Research Institute, Menlo Park, California (Dr. Rolf B. Dyce). Copies of our recordings are sent regularly to SRI. We do appreciate this operating for participating in their program of Global Riometer Measurements.

We want also to thank Miss Maria Lecticia P. de Azevedo for scaling most of the data. •

References:

- 1) Little, C.G., and Leimbach, H. "The Riometer A Device for the Continuous Measurements of Ionospheric Absorption" Proceedings of IRE, Feb. 1959, Vol. 47, pp 315-320.
- Procedings of IRE, Feb. 1959, Vol. 47, pp 315-320.
 2) Little, C.G., and Leimbach, H. "Some Measurements of High-latitude Ionospheric Absorption Using Extra-terrestrial Radio Waves" Procedings of IRE, Jan. 1958, Vol. 46, pp 334-348.
- 3) Mitra, A.P., and Shain, C.A. "The Measurements of the Ionospheric Absorption Using Observations of 18.3 Mc/s Cosmic Radio Noise" J. Almosph & Terrestrial Physics, Vol. IV, 1953, pp 203-218.
- 4) URSI-AGI Committee Letter in "Questionnaire on Ionospheric Absorption Measurements" A2, Apendix A, Sept. 15, 1958.
- 5) Lusignan, B.B. "Cosmic Noise Absorption Measurements at Stanford, California and Pullman (Washington)" J.G.R., Vol. 65, nb 12, Dec. 1960, pp 3896-3902.
- 65, nb 12, Dec. 1960, pp 3896-3902.

 6) "Riometer Measurement, Data Summary no 1, January to December 1958" Radioscience Laboratory, Stanford Electronics Laboratories, Stanford University, Nov. 1959.
- 7) Goldman, S.C., and Horowitz, S. "Global Riometer Measurements".

PR - CNPq Comissão Nacional de Atividades Espaciais São José dos Campos - SP - Brasil

MEAN VALUE OF ABSORPTION DURING THE FIRST MINUTE OF EACH HOUR

			T	ΑE	BL:	E		П									- 6	i -		
	23													050	540	905				
In a	22													800	250	070				
- 30 Mc/s - 30 Kc/s - 750 ohm - 3 - 4 sec	21													-0.70 0.08	S	7017				
30 Mc 30 Kc 750 ol 3 4 sec	20													035	0.95 5	'n				
Freq	19													050	120 0955	0.75				
th	18														0.56	9.F				
Freq Bandwidth Diode Load Resist Audio Threshold. Time Int	17														-030 9056	7.70				
Fr Ba Die Au	16														120	7.90				
	15														1.50					
- 23912'43''S - 45951'35''W - 22, 59S - 11, 79S - 623 m	14														1.50	1 1				
- 23912 - 45951 - 22.598 - 11.798	13														017	140				
:::::	12														ა	1.30				
	17				ļ Ļ										1357	100	ĺ			
	91	_													SF F	1.01				
Lat Long DIP Mag. Lat	60			L											1.00	0.85				
	80														580	080				
	0.0				L										290	290				
s sh k II	90							÷							0.36	035				
- SJ - March - 1963 - Mark II	95														-006	0			_	
	40					_									970	-020				
Station															0	-020				
Station Month Year Riometer .	02														090-	265				<u> </u>
Stati Mon Year Rion	10			_											- 0.20	030				
	00														-005	015				
v	Hour	-	2	က	#	သ	ග	4	6 0	6	101	11	12	13	14	15				

TIME - UT

TIME-UT

					4					7	ΓA	В	Æ	;		III			- 7		
233	·	С (г.		١	تــــــــــــــــــــــــــــــــــــــ	L±	2 020	020	v	0.08	020	040	7.00	ot o	0.15	020	Ò		**	0,00	
22		0 40	v	v	200	020	2 070	020	60	250	-050	900	360	970	420	920	ა		jo		
22		4.20	Y Y	v	0	0.75	2.40	1.55	çş	S	050	018	97.5	E .		1	7		44	0.40	
20	<u> </u>	0.75	7:-	U	090	1	75	130	N	\$3	v	275	v	10	ή-	_	1-		42	lo.	
19		138	las.	<u>ئ</u>	-	140 8	201 5	076	w	s	080	2.00	S	0	1	2.40	П		\$	4.20	
13		080			1350	100	1	H.A	Ŋ	G	\$ 510	29 2	4.85	2.25	140		1		15	3.55	
17		011			Ý.	150	7	1.3	S	4.50S	4.75	205	i	270	055	297	1		4+	4.60	
16		7 40		10		6		1.65	010	490	2.16	240	347	240	06.	135	٥	-	17	4.65	
15		115		C	. 0	┅	1		u	180	190	1	Γ.	2.85		150	ა		17	455	
14		120	950	10	v	10					200		_			LOOT	ა	-	157	4.50	
13		100	ï	10	١.	7~~	1	+	150	450	250	Г	150	230	1.15	327	J		47	4.25	
12	-	02.0	~~	1	6	-	130	_	-	287	25.	150	_	250	110	105	٥	-	37	4.30	
F4		100	T	7	_	5.5		13	1.40	145	750	1.50	1.00	Q	4.60	2000	ა		16	1.05	
2		1,60	-	1		_	·			2.00	1.00	195	0.85	ა	980	0.100	J	-	44	4.40	
60		0.90	1.	o	890	750	0.50		775	2.00	4.58°5.	163	770	ა	860	0180	ú	-	\$	960	7
88		0 76		ა	a53	 -			4.12	150	1.62 \$	163	950	ბ	55.0	2000	ò		44	08.0	
0.7		0.75	2020	3			260	02.0	86.0	4.75	100	1.25	290	ડ	0.55	200	9		46	270	-
80	-	0.50	030	-050-020	020	080	960		0.50	1.50	140 8	7.60 5	aco	ა	228	0.03	Ò		46	0.50	
<u>ග</u>		0.25	v	U	010		048	0.35	0.20	115	2003	1.25	0.58	ð	0.36	0	0		44	0.30	
04		0,0-	J	v	-0.50	_	930	250	070	97.6	020 \$ 100 S	507	0 %	٥	740	418	ა		44	6.30	
క్ర		010	J	U	-040	9,65	ა	0,40	0	0.50	030	275	870	3	0.50	0.30	ပ		43	0.30	
63		4	U	v	ហ	350	070	030 8	0	5/0	022	0.50	935	ပ	950	0	950		43	0.30	
ō		S	(1)	ທ	070	J	-0.10	0300	-905	S	250	050	0.30	o	040	o	020		12	0.05	
9		0.75	020	ζΩ	y,	ა	370	200	040	S	0.255	020	0	0.80	OSO I	1010	-010		74	0.85	
Hour	Day	16	17	18	19	20			- 1	- 1	22	26	27				31		Count	Median	

Month: March Year: 1963

PR - CNPq Comissão Nacional de Atividades Espaciais São José dos Campos - SP - Brasil

MEAN VALUE OF ABSORPTION DURING THE FIRST MINUTE OF EACH HOUR

			\mathbf{T}^{A}	B	LF	C]	Įν									_	8 -	_			
	23	-0.20	ı.		020-	-040	030		070	070-	0	0.20	070	185	0.50	140						١
		0	180 015 -050-050	~	0	-070-		i S	200	. 1	080	0.80	}	1.50	035	130				-	\vdash	إ
s/s hm 88	22		50.	0	- 1	3	0	0.50	70	3	o o	3		╌┤	_ ţ					-	-	-
30 Mc/s 30 Kc/s 750 ohm By pass 4 sec 2 sec	21	4,00 S 01.0 S	0.15	9	L0.3(70-	2	2	4	- 080 - 030	-010	\$ 0.05			0.15	2 440	 .	_		_	-	-
1 1 1 1	30	8	-	0.50 050	0.24	0	1	-0.40	030	020		1.40	\$5 \$5	8.10	0.35	1.10E			_		_	
i i i i i i i i i i i i i i i i i i i	19	1.86	195	0.83	065 0.24 -030	€ 0£0	290 1.35 6.20 S	1,10 -0.10 5-4.20 5-0.50	430	0.00	135	28.7	328	99.	145	2.95						į
d Res	18	977	4.60		460	2.25	2,603	2.60	136	980	2.60	2 8	1.70	150		2.80						
Freq	1.1	145		1.35	440	S.	ို	290	2	S		245	2.30	435	135	225		-			 	_
Freq Band Diode Audie Time	16				0	55 6.	1,55 230 280 2.90 2608	3.00 2	2.10	₹ Se	3.00	240 2	2 20 2	4.40	40		-			-	+	_
		2,40	1.35 1.40	2 4.3C	1.20 1.30	2 4.0	22	3,							_	┝					+	-
ω ጅ	15	å.60		4.00	4.2	c 2.30	23	2.80	250	4.90	270	1.80	250	व	Q.3	4.10		_	ŀ		-	_
1.35 H	14	347	105	400						470	2.40	4.60	180			080	_	L	L	_	1	_
23912'43'1S 45951'35'1W 22. 59S 11. 79S 623 m	13	1.45	260	120	430	4.70	1.50	4.70	297	4.50	130	4.45	1.60	077	280	å Z	L					_
1 1 1 1	12	4.00					1.25	051	1.40	105	440	440	140	190	Say	S						
Lat. Long DIP. Mag. Lat.	11	280		0. F	2.45	51.1	1.00					'	1.00	507	230	29.0					T	_
	10	0.40	090	035			0.35	-			050	1 :	080		35		1			T	t	
Lat	60	040 0	1 1										:		10	34.6	╁╼	+-	-	+	\dagger	_
Lat Lon, DIP Mag	-						0 0.32				i					ı	1	-	_	+	+	
	08	040	0.25	010	0.25	٥	0.10	0.28	-		0.32	├-	0.30		}	-	╁┈	-	-	+	+	
	20	270		0.10		070	0	0.32	0,32	0.25	0.30	0.30	0.23	0.05	9	922	-	-	-	-	+	٠.
 	90	020	0,25	o S	0.20	010	000	0,40	0.35	0.20	0.42	0.35	0.30	0.20	J	0.35						_
- SJ - April - 1963 - Mark II	90	0.15	623	020 0.30	0.25		Ι.		0.25	040	070	940	0.32	030	960	950						
	04	010	1	Γ	0.05	10.05 0.12	0.20			l l		Ι	97,0	•		1						
· · · · · · · · · · · · · · · · · · ·	03	o	803	0	020	1			1	•			1	1	ı	6			T	f	†	_
	20	10	1.00	+		0	۱.		0	٥	020			u	T		-	$\frac{1}{1}$	+	\dagger	\dagger	
Station Month Year Riometer		-	110	-020 -020	0			0 50			Т	1			1		1	-	-	+	+	
Sta Mo Yeg Ric	0	0	0 -020		0.05	+-	1			5	010	035	020	,	<u></u>		╁	 	\downarrow	+	+	_
	00	0	-020	0	0	010-	1010	050	050-	070	025	030	0.15	ુ જ	1900	020	-	\downarrow	1	-	\downarrow	

14 13 13 14

W & W P

> 80 GB

TIME-UT

									т	ΑI	₹T.	E		1	,					9	•
14 04	1	2	00.5	090	0	000	005	٥	870	920		1	036	ΙÍ		030	1	30	0.0	۱	_
.v2		700	_		7			a30	Ö		630	Š		0.40			-	3		_	_
0.4 €.3		7.06	070	065	8	0	-020	090	-005	010	0	0	020	045	٥	0.35		29	020		
(F)		2.40	0	0.20	0.50	050	010	020	030	-0.5	-040	010	0.35	000	J	090		50	0.40		Ì
88		175	550	990	005		Sago.	280	200	0	0.05	050	105	1.35	v	085		29	0.65		
© ∂ 7•4		00.0	0	5	220	1.05	0.25	400	055	0.56	\$05	165	2.455	3.90	150	4.46		30	1.06		
82		2.50	020	140	3577	1.45	2	. .	170 6	0,000	2.05	186 5		2206	1.45	446		30	156		
<u></u>		1.95	050	075	2	4.05	a50 c	4.60	1.65	1,06	1.65 6	746	200	2,00	200	1		29	155		
(a)		1.40		050 6	J	075 4	a50 a		7.65	135	1 60 1	2.20	2.00	160 1	£ 50.}	105 1		6	Ś	_	
feed	-	, ,					q				F						_	7	0		\dashv
អា		7.60	030	-020	v	0,50	0	780	1.50	980	130	200	465	1.45	57.45	1 1		29	09.F		
#4 ***		327	0.50	300	270	0,05	090	567	760	675	4.50	135	250	1,25	125	1.10		30			
13		1.75	200	260	040	0.30	070	7.15	<i>5</i> 97	465	037	4.00	100	1.00	4.05	410		30	4.20		
12		037	2505	0755	580	090	085	1.45	547	135	560	07.0	27.0	060	105	2500		28	277		
जन्म इन्द		087	070		57.0	075				0,50	000			060	995	07.0		30	2		
Ģ		4.30	700	0,75	000	2	065	060		090	050	0,75	0,0	260	007	3.05		30	590		
6		3€.}	290	920	0.45			080		-	070		·	_	}			30	045		
25		1.50	700	350	050	0.25	920 6	270	500	070	0.03	970		•				29	0 25		
2		1.25	020	\$ 50		0,50	oto	070	0	0	0.05	500	•		Γ^-			29	030		
9	eni 	€ 990	043 (025		010	000	340	670	0	oro	0	0.02	0.28	500	0.19	,	29	$\overline{}$		
ය ආ		2000	050	040	1	020	210	-0,05		88	<u> </u>	0.05	30.0		0.45			9			
5		0.35	050					o	020	850	0.13	015	ato		0.05 6			30	<u></u>		
64	da. Alego bi	020	040	035 0	Γ-		1	-005		0,45%	000		0	0.35 0	0.25 0	010		30	_		
80		0.50	0501 0	025 0	035 0	1		0	030 0	07 070	070		-020	0.35	0.89			0	57		
			-	ł	ţ		1 1					200		-	 3-		-	M	5 6	-	
		0,40	050	260		-005	1	-010	-0.05	i	0.80	ğ	0	028	020	0.15	_	30	-	_	<u> </u>
20		22.8	0.95	055	060	250	o.to	500	670	9	090	0	0	022	245	0		S.			
F. S.	Day	5	17	18	19	20	21	!	23	24	25	98	27	28	28	30	31	Count	Median		

Month: April Vear: 19 63

PR - CNPq Comissão Nacional de Atividades Espaciais São José dos Campos - SP - Brasil

MEAN VALUE OF ABSORPTION DURING THE FIRST MINUTE OF EACH HOUR

	_		Т	A.	ΒL	E		1	VI.						_	1	ο.				
	23	040	035	090	1	950	020	27.0		990	040	035	055	940	045	350	1				
	22		35.0	090				a37		090				5,20							
30 Mc/s 30 Kc/s 750 ohm By pass 4 sec 2 sec	22.	020 020	0,60	035		270 6		035 6	035. 035	125		090		1	•	69.60	1	,	÷		_
- 30 Mc - 30 Kc - 750 ol - By pa - 4 sec - 2 sec	02	0000	0 080	000	O	080	L _]	050 0	-	95 1	2 5 5 7	2 300	05 1	\$ 50		06530					
	©	0, 290				0.76	7	065 0		3	255 5	1 × 58	2531	587 507 558	1.25 \$ 205 5	1.50 0	_				
Bandwidth	2 2	0,65 0	100 1	1 05.7	_	635 O	ĺ	0 060			200	1 00	200 1253 105	200 4							
Freq Bandwidth Diode Load F Audio Thresh Time Int ACG Time	<u>-</u>	050	050 4	1.40		7 097						O.		2		7 517	_			_	_
Freq Bandy Diode Audic Time	91	_								ĺ		_		_					-	_	
		0.75	4.35	2,00		1.70	ı	r	1.45	200		00%	200 2.00	2,4	1.65	597 0		_			_
	15	1.40	1,45	2.00		165	I	200		1.75				20	200	2.00	<u> </u>	_		_	<u> </u>
743''S 135''W	14	0		200	4 00	1.50	150	130	2.00	1.50		145		2.00	1.40	200		ļ 			
23912'43''S 45951'35''W 22. 59S 111. 79S 623 m	13	140	110	£ 38 F	1.00	240	7.15	4.60	1.55	4.00	135	4.95	590	4.75	125	1.65					
1 1 1 1 1	12	140	OE0	070	057	700	ı	1.00	ı	060		200	1.00		ı						
	11	060	507	977		007	_			1	207			007		1					
Lat	10	060	105	1.00		0.75	í			440				907						 	_
Lat Long DIP. Mag. Lat	60	076	100	4.00		090	1		510	7.00		600.3		507	075		r				
ZZZZZ	80	080	080	050	010	080	_	550		040	520	ì		570	080	570	ı				
	0.4	020	040	040	090	0.36				_	055		020	090		035					
Ħ	90	o.to	035	050	040	020		080						540						-	
- SJ - May - 1963 - Mark	0.5	910	030	0,35	0.30	020	080	025	580	0%0			560	080	010	980					
	04	0	020	050	-	080	950	0,25		0.20				030	1	080	ı				
* * * * * * * * * * * * * * * * * * *	03	020	020		255				020	070		0.20									-
ter :	02	0	020	0,40	0.50	040	080	025		010	0,35	070	_	0.35		580					
Station	10	0	030	0,35	036	030	035	010		045		070	1 1	020	0.80	050					
OT be be bef	00	0	010	0.45 (0,20		0.45	0	020	020	040	040	0.30		0452	000					
	<u>4</u>	Н		٦	_	-	2	\vdash	-	7	7	_	Н	~	H	_2	<u>-</u> -		\vdash		<u> </u>

Month: May Year: 19 63

Comissão Nacional de Atividades Espaciais São José dos Campos - SP - Brasil PR - CNPq

MEAN VALUE OF ABSORPTION DURING THE FIRST MINUTE OF EACH HOUR

Lat - 23912'43''S Long - 45951'35''W

Long

Month - June

Station.......

Freq - 30 Mc/s
Bandwidth - 30 Kc/s
Diode Load Resist .. - 750 ohm

		۰,		*	23.4		ш.				٠.					_	Ξ.	1 4					
•	23		0,36	0.20	50.0	57.0	0.20	030	0.40	020	07.0	025	J	0.90	0.20	0.30	0.25						
	22		0.40	040	0	0.40	510	0.00	0.35	Q 30	920	370	J	0.55	9	07.0	020						
- 750 ohm - By pass - 2 sec - 4 sec	21		o. SO	0.75	070	0.25	030	035	\$	920	0.30	030	٥	080	0.30	4.25	0.45						
- 750 o - By pa - 2 sec - 4 sec	20		0.60	0,60	040	20.0	930	0.0	OSE	090	59.0	590	v	97	oto	425	abs				_		
ist d	61		290	040	0	aso	0.80	0.30	a.76	08.0	0.80	040	9	อ	0.30	8	120						
id Res	18		6,16	ş	245	0.45	050	500		azs	1.26	030	0.55	130	040	0.80	040						
Diode Load Resist Audio Threshold Time Int	17		020	0.20	470 5	0.50	ago	o.to	3.0	ა	4.15	200	0.00	275	010	0.60	ა						
Dioc Aud ACC	16		020	a 50	0.75	080	030	0,ds	080	0.45	6.95	0.45	950	0.0S	040	1	0,40						
	15		978	0.50	_	0.30	930		150		.	950	925	500-300-	0,00 000	040 -0.05	0.10				T		
	14		020	410	-	0.50	050	OSO.	135		050	asa	070	S 0	٥	ა	0,20		-				
22. 59S 11. 79S 623 m	13		0.50	1.40	080	050	0.20	0.50	1.60	020	aso	0.50	0.50	420	21.0	ა	0.50					Γ	1
	12		0.80	Z-05	0.50	0.20	0.20	-905	07.0	07.0	235	285	2.55	Н	_	0.00	986	_	-				1
	11		27.2	275	0.50	020	0	la.			0.20	0.80	28.0	0.20	7.70	0,40	0.55						1
#	2		050	0,75	01.0	020	0	90.0	070	_	0.40	030	030	070	590	ato	950			<u> </u>			1
DIP Mag. Lat. Alt	60		0.85	027	ol.o	340	0.35	80	935	0,00	040	0:30	0.60	55.0	300	0.85	0.75					Γ	1
A M D	80		0.85	20.5	990	215	020	030	360	8	0.45	0.55	0.65	51.0	4.20	940	00.b						
	0.7		0.7S	387	39,0	920	0.35	050	3	SSC	050	050	0,0	0.60	1.20	07.0	080					Γ	
Ħ	90		0.30	0.85	3	9.05	50.0-	0	0.40	0.0	0	020	340	39.0	96,0	0.50	azo						1
- 1963 - Mark	0.5		080	0.50	030	٥	0	57.0	31.0	\$10	070	0.45	0.35	935	050	0.25	0.55						
1 3	40		0.35	0.30	ot o	- 0.30	20.00	٥	٥	0	010	010	0.20	0,40	0.50	0.30	05'0						
Year	03		0.10	0.30	0.40		200	-0.4b	970	0.40	o to	0	0.20	0.30	0.50	010	0.40]
eter .	02		02.6	25.2	07.0	-020	020-	090	o.to	01.0	215	020	02.0	₹2.0	040	070	940						
Year	10		9.25	040	32.0	0	0,40	070-	٥	030	0,35	ovo	050	235	95.0	040	250						
	8		040	030	030	SOB	OZ/o		٥	35.0	040	0.35	030		050	2,0	asa						
	Hour	Day	1	87	တ	4	2	9	7	œ	යා	10	11	12	13	14	15						

TABLE

VIII

- 12 -

									T	ΑI	3L	E		IX	Ç.				_	13	. –
6.4 0.0		0.35	045	0,25	250	0 Z Q	024	020	040	020	030	030	0.35	0.25	0.33	8		29	0.25		
22		6.65	0.70	0.45	0,40	0.50	0.20	0.25	0:30	0.30	0.50	0.30	0.35	0.25	045	050		29	0.30		
23		08 0	0.50	0 40	O-25	29.0	و ک	0.30	0.20	0.30	0.75	0.60	0.00	es.o	0.75	0.00		29	040		
20		0.405	0.98	0.60	0.45	0.95	0.35	09.0	50	ac.0	0.75	0.60	\$9.0	ບ	0.55	0.95		28	0.00		
18		0.603	2.25	0 65	0.25	0.00	0 75	abor	080	1.80	1.101	1.15	1.20	0.50	4.00	1.05	-	28	0.75		
18		7.60	4.35	060	0.50	140	050	O	08.0	2.5	6.05	6.50	4.55	1.10	4.40	1.45		29	08.0		
17		1:85	4.10	0.70	0.65	L. 45	0 50	C	050	100	27.0	4.25	08.0	0.80	ບ	1.05		26	070		
16		1.50	0.70	0.00	0.25	1.00	ن د	ນ	0.60	0 40	040	0 45	0.50	0.30	4.00	08.0		28	0.60		
15		4.00	0.70	0.50	a 25	0.55	030	09.0	0.40	0.55	02.0	0	0.25	01.0	0.55	0.35		30	05.0		-
14		0.50	0.80	0.50	0.30	55.0	0.35	615	51.0	0	٥	٥	0.05	0.10	0:00	0.15		29	0000		
13		0.75	0.75	0.75	020	05.0	บ	0.20	02.0	0	0	0.50	0.20	0	020	0.20	,	28	05.0		
12		0.50	0.50	0.50	0.50	25 0	0 20	0.20	0.50	0	020	0.20	020	020	0.50	0.50		30	035	-	
11		0:30	0.50	0.50	0.50	0.45	0.50	0.20	0.40	0:0	0.05	50.0	0.05	0.05	0.30	090		30	0.35		
10		0.30	0.25	05.0	0.45	05.0	56.0	0.10	920	0	0	0	0.70	0.10	0.35	35.0		30	0 35		Н
60		0.35	0.30	0.45	0.40	0.35	0.30	9	0.20	010	07.0	٥	0	0.20	0.10	0.30		90	550		
8		0,70	0.80		59.0	0.70	0.50	0.35	0.45	0.35	01.0	0.35	010	040	0.55	0.45		30	0.46	-	
02		0.40	5/0		0.85	050	040	030	650	-	035	045	_			54.0		29	955		
90		0.60	0.80	095	08.0	0.55	0.55	0.50	0.50	0.50	0 35	0 45	0.30	250	050	590		30	0.50	_	
90	i	0.30	0.45	290	0.40	0,80	0.30	010	010	0.50	02:0	0.20	0.10	040	035	0.55		30	0.30		
70		030	0.45	065	0.00	550	040	0.10	0.10	.cr.0	310	070	0	0.10	0.10	0.20		30	0.20		
03		0.25	0.35	050	040	040	0.30	970	0	0.10	9	0.15	0.10	0.20	0.20	97.0		30	020		
03		0.25	0.35	0.30	0.30	0 40	\$ 20	0.15	0	0	0	0.10	510	970	0.30	010		30	0.20	┪	
10		025	0.40	0.43	0.20	0 60	020	ð	0	500	0	510	070	oio	010	02.0		30	0.20	┅	
8		040	┢		050	0.40	0.20	0.30	970		0.10	 	┿~	0.30	0.10	0.30		30	_	T	
Hour	Day	19	Т	18	19	20	21		23	24	25	26	27	28	29	30	S	Count	Median 0.30		

Month: June Year: 19 63

Comissão Nacional de Atividades Espaciais São José dos Campos - SP - Brasil PR - CNPq

MEAN VALUE OF ABSORPTION DURING THE FIRST MINUTE OF EACH HOUR

DIP..... 22, 59S

Month - July Station Station

Freq - 30 Nc/s Bandwidth..... - Su Ke/s

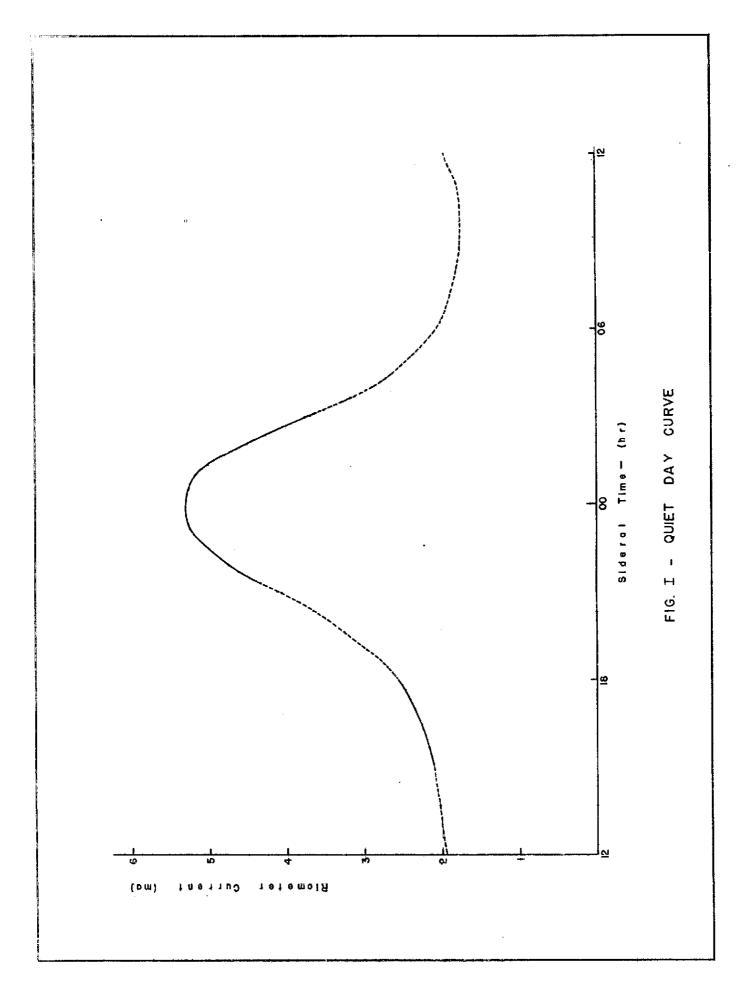
- 780 shm

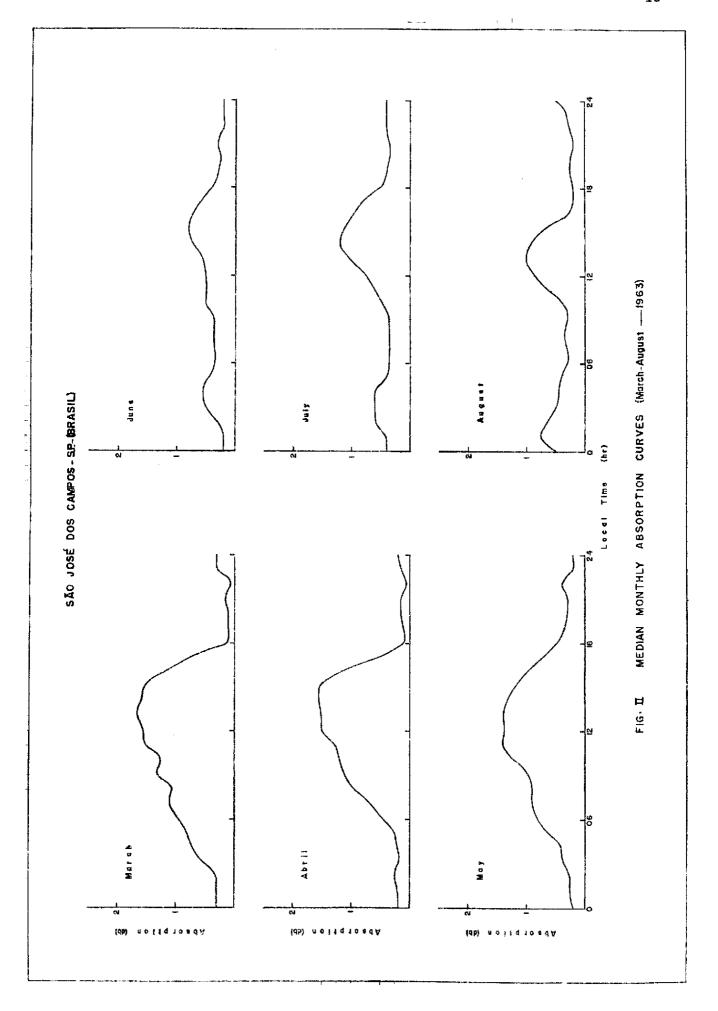
Diode Load Resirt

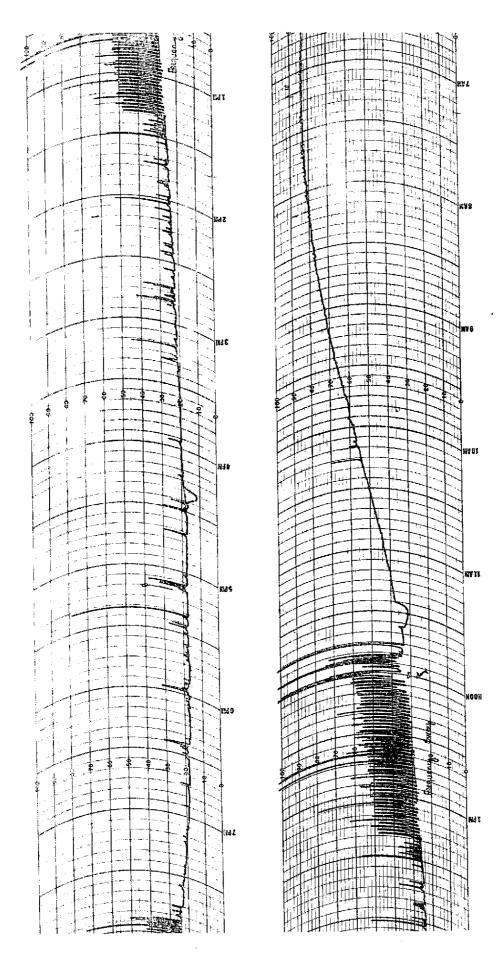
House terr				7	ľA.	BI.	Æ			X								14	-				
Homelet		83 63	27.0	510	030	2	8	925	350	070	930	8	Siz	S	935	8	035						
Houseter		22	0.20	0.20	20	59.0	08	535	Ş.	8	0.30	0.30	633	0+0	\$.0	0.95	S.S.						
Pear	8 0 0 8 0 0	60 60	92.6	ż	040	080	030	D.	0.50	080	03.0	035	288	06.0	1.05	4.30	04.0		-				
Pear	M C 4	28		0.50	020	0.65	0.50		893	23	O	2,5	69.	0.90	64.5	3	080					-	-
Pear		E .		ફુ	R.O	0,0	000	2,30	0.45	£:	0.85	990	233	8	SX.	395	35				-	1	
Normeter	shold	manusian 12		52	390	0.655	465	S	8	-+			1.65		\$	}				-	 		4
Normeter	Thre Int Time	THE PERSON				_		Ş.	}	-+	8	3	S)	1		2.35				-	-	\dagger	
Name terr	Audio Time ACG				\dashv							25	00.			00	25	· v.	 		+	+	_
Nometer							-+												-		1	+	-
Nometer 1953 Mag. Lat								-4								-			-		+	+	
Riometer	79S H	********		ļ	┝╾┤														-	-	-	+	4
Riometer	1 1				-							-	 -	-	-	_	_		-	-	+	+	-
Riometer	9 B 6				ļ					-	-		0		٥	├	├	<u> </u> 	 -	-	-	-	_
Riometer		11	250	0		<i>0</i> ু	6.75	0.50	0.50	CSO		⊢ -		 	<u> </u>	-	 —	L		-	-	-	
Riometer		9	580		4.00	560		0.50		<u>}</u>		oro	oro	Sos	20.0	<u>-</u>	}		<u> </u>	_	- - -	-	_
Riometer	. H	60	930	0	29.0	0,70	0.65	0.35	0.55	55.0	020	070	920	020	020	076	\$6.9						
Riometer Fark II Riometer Fark II 030 030 030 030 030 000 000 000 000 00	A M A	80	040	1	1	I . i	080	0.35	340	5	570	020			0			á.,			30000		
Riometer		07	79.0	0,00	7.35	100	360	980	275	57.0	090	050	040	035	045	S	060						
Riometer Mark 1953 Riometer Mark 1953 Riometer Mark 1953 030 030 030 030 030 030 030 030 030 0	ជ	ဒ္ဓဝ		+	+	29.0	0.75	080	0,0	57.0	245	3	340	0.55	390	080	X				,		
Riometer Riometer	Na rk	65	8	\$ 8	960	88	080	390	8	+	╙	38	4	-	250	STA	445						
Riometer Riometer Riometer 030 030 035 040 055 040 055 040 055 040 055 040 055 055		40	<u>}</u>		0,0	040	0.35	040	350	050	+		38.0	of o	SSS	250	108		-		1		
Riometer	* *	89		+			} -	050	3	-{	7	┾	+-	200	Sro	S	┼	┿		1	1	-	
00 000 000 000 000 000 000 000 000 000	, , ,	0.2		+	╁		├	-	}	ــــــــــــــــــــــــــــــــــــــ	╁	-				1	1_	ļ	-	1	+	-	
00 000 000 000 000 000 000 000 000 000	ear iomet	<u></u>		+	+	╁	-	 - -	-	 -		+		+	↓	ـــاـ	+-	-		+			
<u></u>	\$4 6 €		-				} -	+	 	┿		-	┿		╂		╁	╁╌		1		-	
		Hour		T	†-	T	T	3	-	3	8	+-	†-		┪~	-1	╁~	†	The second secon				

		-								Î	Α	BI	E			XI				***	1.	j
23		070	0 60	090	046	0 0	282	050	075	090	v	ت	Đ	U	0	210	070		49	0.35		
22		035	0.60	075	090	0.85	0.95	050	0.70	0.50	G	ย	g	d	0,40	01.0	0.20		61	0.40		
21		020	0.35	080	030	950	0.95	0,60	075	0.50	υ	Ö	G	Ġ.	O	Q 55Q	0.65		19	0,50		
20		040	080	07.5	00.1	1.15	1.25	080	0.50	0.80	ŭ	ບ	Ö	ບ	010	บ	10 S O		19	0.80		
18		0.65	0.80	130	ຍ	00.0	1.40	2.25	Ş	0.60	ຍ	ပ	Ç	ວ	0.20	0.25	050		87	0.46		
18		4.10	4.15	4.45	4.90	ນ	1.30	2.50	202.0	\$.00	ರ	Ę,	ນ	υ	09.0	6.65	0.70		57	977	-	
17		0.75	1.00	6.50	08.8	ຍ	4.70	2.65	1.25	25.3	ગ	ပ	ບ	ပ	0.40	1.10	710		b 1	1.30		
16		1.05	59.0	710	1.1.5	4.15	6.20	2.40	05.7	007	ນ	บ	ಲ	ນ	9.60	0.65	0.65		20	4.00		
15		0.85	0.40	0.95	9.70	a0.7	4.20	1.90	1.20	0.75	Ü	ย	٥	ပ	0.50	050	0.30		20	075		
14		0.35	4		96.0	0.70	4.00	057	0.75	050	อ	υ	Ų	ย	0.20	02.0	0.50		20	0,60		
13		0.45	0%	2.5	88	236	037	017	ያ	090	છ	છ	ย	υ	900	201.0	0.05		20	0.45		
12	ì	020	٥	0.15	0 65	0.45	08.0	0.80	0.56	25.0	υ	ū	g	υ	500	010	010		20	0.35		
(50) (10)		020	0	0	0.50	0.50	0.75	550	055	Š	Ų	υ	ပ	ย	U	٥	-020		20	035		
10		030	0.26	٥	0.50	050	080	520	080	0.50	ပ	ບ	υ	ย	O	٥	0		20	0.36		
60		0.35	0.30	025	050	0.50	070	040	065	035	υ	ซ	ŭ	υ	ย	810-	0.05		20	0.35		
90		300	025	330	20	090	050	090	550	650	ຍ	v	υ	U	ن	o to	0.05		20	0.35		
40		040	0.30	050	080	080	27.6	0,40	590	080	v	v	U	נד	ચ	010	070		20	090		
90		9.75	280	09.0	4.00	000	4.00	1.00	4.05	100	υ	U	บ	บ	v	0.20	0.18		30	000		
90		0.75	070	250	300	265	110	00.7	7.10	4.00	ı	ა	ŧ.	p	υ	045	0.50		20	0.60		
\$ 0		0.75	00.0	9.76	0.95	0.75	57 F	977	1.25	1.00	υ	v	Ð	ں	ย	010-	8		20	0.40		
80		oio	35.0	0.60	0.50	295	285	5,40	o	990	υ	v	U	ن	J	0 50-	080-		30	040		
20		040	3,65	0.70	26.0	526	4.00	280	u	U	v	ں	و	o o	Q	-050	0.40		20	0.40		
01	- 17	225	040	050	l		0.75	0.75	ပ	ن	ย	0	٥	9	6	Ŋ	ŀ	1	20	640		
00		030	035	П		1	990		040	o	9	Ų	ઇ	9	J	٥	Qa.		20	0.30		
Hour	Day	18	1.7	18	1.0	20	21	2.7	23	24	25	28	23	82	29	30	31		Count	Mediar		

Month: July Year: 19 63


PR - CNPq Comissão Nacional de Atividades Espaciais São José dos Campos - SP - Brasil


MEAN VALUE OF ABSORPTION DURING THE FIRST MINUTE OF EACH HOUR


				ГА	.B	Ll	E		2	XJ.I	Ī						-	1	6				
ļ	20 20	0.80	035		030		l _M	1	١٥			a	0.20	020	930	070	070						
	22	050	0.35	030	52.0	070	100		3 6	_	-1	╗			_	030	920			1	1	1	1
fc/s cc/s ohm ass	11	0	520	200	010	C)) }	200-00-00-		2	.020 040 030	- 1	Ö	4		900	o			†	\dagger	+	1
- 30 Mc/s - 30 Kc/s - 750 ohm - By pass - 3 sec - 4 sec	20	570	020	577	1 _	۶		3	020 -020	-020-030	2007	-025	00	015 c		020	-070		-	\dagger	+	\dagger	1
•	60	0 550	ï	Ŧ		1	007	1000	0.00	300	085		035	0,000	090	038 0	0		1	+	+	+	4
Freq		т		Ţ	+~~	_			0	080	070	0	035 0	£.70 0,	1		_		-	\dagger	+	+	1
dth . Load . Thres nt	82	5 035	"		1		2000	055 085	_7		1		i	1 1		8 070			-	+	+	+	\dashv
req . lode lode ludio Zime L	12	655			T	7	Т	- T	- 1	- 1	3.35		087		5 0.95	l .	035	•	+	+		1	-
FADAHA	16	9.66	1	1 25		1	010	040 055 020	0.60	1.15	082							Г	+	1	_	4	_
	13	8,40	047	_		~~	0/0	55.5	040	0.80	790	ı			140			-	+	_	_	_	_
43''S 35''W	14	0.80		250	3,40	3	000	9	020	0.58	050	040	070	890	000	090	2 590	L					
23912'43''S 45951'35''W 22. 59S 11. 79S 623 m	13	, y C		3 4			0.30 0	070		oro	OFO		245	030	035 060	03.5	25.0						
1 1 1 1 1	12	_				3	080	-030 900 010	205		500	520 500 5	0.70	-010 020 030 068	050	050	000						
	11	200				2 20 2 20	070	030	. 020 005	o	220	0000	510	070	-005 020	570		ł					
	10	Т	Τ.		Т	0,00	7000	0			-020 -020 -065 040	500	210 010	010			010	+-	1				
Lat Long DIP Mag. Lat Alt.	80	4		0 60		280	030 030 1010 680 030 1003	030	0.20 000	020	1	١,	_	_		900	040		1				
AMEDICA	80		7	_	_	0.20	040	040	350					2000				-					
	20	7	Т	- 1	.	-	055			T-	1	П	Т	Т	T		290						
뷺ᄇ	90	Т	1	T	٥.		035		080		1	1	1	2000	27.0	3	1	-					
- SJ - August - 1963 - Mark II	65	_		7	ç	965	080		540	040	1	3 5	200	2550									
	04	Ŧ	٥		Т	030	050			040 040	2 5			ı				200					
, 	80	1	-020	0	0	0.10	035	1	1	ł	1	Г	Ţ	200	Т	T	1	900					
	023	+	_		0	015	000		000	010 000		077	اه	3 6	_	7		3					
Station	0.1	1	0	0	095	0000	080			200		-	╅	_	I	- 1		070					
Mara	00	1	c yo	~~	050	020	-	٦	+-	T	1	7		070		3		040					T
	our	i i		T	7	4	2	8	I	20		-†-	7	_	2			٣			T	T	T

TIME - UT

Month: August Year: 19 63

3 - Riometer effects on 30 Mc/s at São José dos Campos - S.P. - Brasil, due to Solar Flare of:
a) April 15, at 11:25 UT
b) April 15, at 16:18 UT माडु.