1. Publication N© 2. Version 3. Date 5. Distribution

INPE-3244-PRE/5390 August, 1984 [Internal [External
4. Origin Program [] Restricted
DCA/DEA 5SUBORD/MECB
6. Key words - selected by the author(s)
FAULT TOLERANCE ERROR DEIECTION
MULTIPROCESSING ON~BOARD COMPUTER

7. U.D.C.: 661.3.012:629.7.06-152

8. Title . INPE-3244-PRE/590 110. NO of pages: 07

A FAULT-TOLERANT MULTIPRCCESSING UNIT FOR

ON-BOARD SATELLITE SUPERVISION AND CONTROL 11. Last page: 06

12. Revised by

9, Authorship Alderico R. de Paula Jr.

Ricarde C.0. Mavtins <\-———~—i-

Eduardo W. Bergamini

13. Authorized by

. Nels;;fle Jesus Parada
\ Responsible author ,/g&&n;az::ZQZZEQ Dirvector General
7

14. Abstract/Notes

This work presents a standard for fault-tolerant 16-bit
multiprocessing systems to be utilized on board of satellites for their
supervision and control. The systems, definad by the proposed standard,
are characterized by their modularity, easy adaptation to different
gatellites and tolerance to single-point failures. The methodology for
the development of such a standard is also oulined. This is based onm
the organization of the fault detection, analysis/confinement and
recovery techniques according to the logical hierarchical layers of the
system. The proposed multiprocessing system is constituted by a set of
16-bit multiprocessing units interconnected by redundant busses . The
techniques for fault-tolerance in a tupieal multiprocessing unit are
presented stressing their structural interrelationship according to the
following system layers: hardware, operating system and applicative
processes.

15. Remarks

This paper will be presented in the "59 Congresso Brasileiro de Automd
tica - 10 Congresso Latinco-Ameriecano de Automatica”, Campina Grande,IB,
September 3-6, 1984

A FAULT-TOLERANT MULTIPROCESSING UNIT FOR ON-BOARD SATELLITE SUPERVISION AND
CONTROL

Alderico Radrigues de Paula Junior
Ricardo Corréa de Oliveira Martins

Conselho Nacionmal de Desenvolvimento Cientifico e Tecmoidgico — CNPg
Instituto de Pesquisas Espaciais - INPE

Departamento de Engenharia de Computacdo em Aplicagdes Espaciais - DCA
Caixa Postal 5315 - Sac José dos Campos ~ SP — Brasil

Abstract

This work presents a standard for fault-tolerant 16-bit multiprocessing
systems to be utilized on board of satellites for their supervision and
control. The systems, defined by the proposed standard, are characterized by
their modularity, easy adaptation to different satellites and tolerance to
single-point failures. The methodelogy for the development of such a
standard is also oulined. This is based on the organization of the fault
detection, analysis/confinement and recovery techniques according to the
logical hierarchical layers of the system. The proposed multiprocessing
system is constituted by a set of 16-bit multiprocessing units interconnected
by redundant busses. The techniques for fault-tolerance in a typical
multiprocessing unit are presented stressing their structural
interrelationship according tov the following system layers: hardware,
operating system and applicative processes.

Re summo

Este trabalho apresenta um padrac para sistemas de processamento distri
buide tolerante a falhas, constituido de unidades de processamento de 16-bits
interconectadas por barramentos seriais redundantes, a serem utilizados a
bordo de satelites para sua supervisio e controle. 0 sistema definido pelo
padric proposto & caracterizado por sua modularidade, facilidade de adapta
cdo em diferentes satélites e tolerantes a falhas simples. A metodologia utz
lizada para detecde, amilise/confinamento e recuperagdo de erros € organiza
da em niveis 1dgicos hierdrquices. As técnicas de tolerancia a falhas utili
zadas em uma unidade tipica de processamento sao apresentadas, enfatizanqg
-s& o interrelacionamento entre as técnicas de tratamento de falhas a nivel

de circuitos, sistema operacional e processos aplicativos.

1. INTRODUCTION

Computers have been used more and more
in satellites to replace analog circuits or
non-programmable digital circuits. The main
rveason for this trend is that computers are
flexible machines, in the sense that they
can easily be adapted to different applica
tions simply by changing the application PO
grams and some interfaces.

Due to the development of VLSI technology,
cowputer components are becoming more reli
able, smaller, faster and the power consump
tion per gate is decreasing. Althdugh the
failure rate per gate has been decreasing,
it is not expected that the failure rate
will be negligible in the near future. Since
computers have been used in critical parts
of the satellites, a failure in the computer
may disrupt the whole satellite., To aveid
the loss of the satellite, the on-board com
puters should be designed to tolerate some

class of faults.

One widely used general rule is that the
on-board computer system has to be design to
survive any single-point failure, without
affecting the behavior of the satellite. Due
to the difficulty of impossibility to repair
the on-board computer externally when in or
bit, the on-board computer should be able to
reconfigurate itself. Therefore, the com
puter should be design todetect faulty units
and to replace them by a spare automatically
or under control of a ground statiom, and
then restart the operation.

Another important characteristic of the
on-board computer is that hardware redundan
cy should be limited as much as possible due
to the limitations of power, space, and
weight of the satellite. Therefore, a care
ful analysis should be done to determine
which fault-tolerance techniques minimize

the hardware redundancy.

The main objective of this paper is to
present a standard for fault~tolerant on
-board multiprocessing systems. In Section 2
the methodology for the development of such
a standard is oulined.

2. METHODOLOGY QUTLINE

An elegant and precise appreach to han
dle malfunction in digital systems is to oF
ganize the error handling techniques, accord
ing to the logical hierarchical layers of
the system. An example of how a typiecal on
-board system can be organized in logical
hierarchical layers is presented in Figure
1.

In this organization the ground station
is the highest layer. It receives telemetry
from the on-board system, indicating the sys
tem status and sensor data, and sends tele
commands to the on-board telemwetry and tele
command unit, This unit deccdifies the tele
commands and actuates directly on the subsjg
tems, or passes the telecommand to the super
visor processing units. Similarly, the super
visor processing units can actuate directly
on the subsystems, or passes the information
to the master processing unit that controls
a specific subsystem. The master processing
units control the slave modules of the sub
systems. Each one of these hierarchical lay
ers may be subdivided again into other hier
archical layers as, for example, applicative
process, operating system and hardware lay
ers.

Faults may be generated at any layer as,
for example, bugsin the application programs
or failure of a gate in the hardware.

When it is "expensive' to detect some. class
of errors in the layer where it was generat
ed, the error may be left to be detected at
a higher layer. However, the undetected
class of errors of a specific layer must be
detected in a higher layer, to avoid the
failure of the whole system by an undetected
error. When an undetected error propagates
to higher layers, an increasing amount of
states and data structure may bée affected,
and consequently the’recovery procedures
become more complex and a longer time is re
guired to recover the affected data struc
tures. This is even more critical in ‘multl
processor systems, where the existence sev
eral concurrently executing processes can
multiply the ocurrences of errors, since
nonfailed components and processes can take
incorrect, decisions based on erroneous in
formation. -

When a layer does not have the capacity to

recover from a detected error, some error
contention mechanism must be implemented.
Consequently, the hardware should be orga

. nized in such a way that faulty modules can

be isolated from the system. In additiom, in
formation about the detected error must be
passed on to higher layers. Therefore, error
detection and recovery mechanisms for the
same class of errors may be implemented in
different layers. The distribution of error
handling techniques throughout the different
logical layers of a system denotes the exis
tence of trade—offs between fault tolerant
design objectives (such as reconfiguration
boundaries:and speed of recovery) and system
constraints {such as volume, power consump
tion, overall system reliability and avail
able technology). . -

e - ——————
i APPLICATIVE PROCESS
a
GROUND)
§ s Eion OPERATING SYSTEM
& v
E=]
HARDWARE
X nm—-—— UP/ DOWN LINK -—— = -
LPPLICATIVE PROCESS
TELENETRY
tar | - |rar a OPERATING SYSTEM
: TELECOMMAND
. - HARDWARE X
——————
APPLICATIVE PROCESS
e SUPERVISOR QFERATING SYSTEM
a UNIT
g .
g I I SYSTEM BUuS HARDWARE
2 - ” -————— —
E l | I_ e APPLICATIVE PROGESS
o r-——c——— —_—t ——r——————nJ Flniabaieiadied L3 - — —_ :
! ! ! MASTER PERATING SYSTEM
! MM [oMu ; 1 LI o i MODULES o Svs
| I]
: ¥ 3 ¥ § unmeus ! 1 4 T F UNIT BUS } HARDWARE
! L |) ; MELN ¥ 3 : | e
HE T T4 1 t + X i APPLICATIVE PROCESS
1 ! | .
| 1 1 . ! SLAVES
. ” L SN sM "
1] sm M 5 . | | uodues GPERATING SYSTEN
| ! I
| P, - ——— - . P ——— HARDWARE
e ee——— - UNIT W 1 UNIT #E N ——————

Fig. 1 - Organization of an on-board computer system at hierarchical layers.

For each error {or class of errors} in a giv
en logical layer of a particular processing
unit of the system, a coherent strategy for
the design of the corresponding error han
dling mechanisms must include the following
steps:

- bDefinition of the error detection mecha
nism at the same layer in which the error
is originated or at an upper layer, based
on the class of the task (critical, semi
critical or non-critical) executed by the
unit.

- Definition of the boundaries for error con
finement and isolation., Once these ara
defined, the reconfiguration/replacement
regions are defined, partitioning the unit
into "modules". Each module (be it hardware
or software) has a limited number (usually
only one} of tightly contrelled interfaces,
to maximize the effectiveness of the iscla
tion and recovery techniques. -

- Definition of the recovery techniques to
be used at the same layer in which the
error is detected or at an upper layer. In
the later case, mechanisms for reporting
the error to upper layers must be designed.

3. THE HARDWARE LAYER

The proposed multiprocessing system is
compased of a set of processing units inter
connected by a set of redundant busses (syg
tem busses). The processing units are orga
nized in two hyerarchical functiomal 1evels.
The high-level units supervise the whole on
~board system and controls the communication
with the ground statioms, while the low-lev
el units are dedicated to specific satellite

subsystems and perform data acguisition and
control.

3.1 = THE MULTIFROCESSING UNIT ARCHITECTURE

A typical multiprocessing unit is parti
tioned into modules as depicted in Fipure 2.
The modules are interconnected by redundant
busses (unit busses), each module having an
unigue address on the bus.

Each multiprocessing unit has a set of
identical CPU modules, each CPU module being
able to perform the functions of any ' other
CPU module,. In this way, redundancy and mul
tiprocessing capabilities can be implemented,
making it also possible to optimize the
number of spare CPU modules for redundancy,
since the function of any CPU module is de
termined only by the software it is running
at the moment.

The management electronic module con
trols the power switching of the modules on
the Unit bus. It receives power-on/off com
mands from the CPU module and keeps a record
of the previcusly failed modules and of the
presently powered-on modules, for recovery
and reconfiguration procedures. The unit, as
a whole, receives commands an transmits tele
metry to the on-board system master (be it
another computer or not) through the system
bus interface.

The 16-bit CPU module (Figure 3) is de

signed to be connected to the Unit Bus
through which all I/Q operations are done.
The CPU module is constituted by four sub

modules: Processor, Memory, Unit Bus Inter
face, and Exror Handling. These submodules
are interconnected by three parallel busses:

FAILURE
FLAG
cey . cPU PROM - Bus
MGDULE MODULE MOBULE MOOULE COMTRCLER
B B
| =2 FEn al 1 SE
h
1
A L r
UNIT BUS
]
MANAGEMINT
ELETRONIZS 1/0 1/0 /0
PLTTIr MODULE MODULE - MODULE
INTERPACE] e B 2]
‘ R A w#2 A w#*n A
&
SYSTEM BUS
a

Fig. 2 - Multiprocessing. Unit Organization.

Data Bus, Address Bus, and Centrol Bus.

EARROR EATA
HANDLING [*rmT MEMDRY
| I
ADRESS BUS
PROCESSOR T DATA BUS
: CONTROL BUS
i1
UNIT BUS
, INTERFACE
3 UNIT BUS

Fig. 3 - 16-bit CPU unit block diagram.

3.2 -~ ERROR HANDLING TECHNIQUES AT HARDWARE
LAYER -

The 16-bit multiprocessing unit and its
operating system were design to detect the
most probable classes of errors and to cor
rect some of them automatically. Since the
memory is the submodule most prone to be
affected by cosmic particles, it is the sub
module in which most of the error handling
mechanisms were implemented at the hardware
layer.

The RAM block is constituted by 22 4kx 1
CMOS RAM chips. The first 16 chips contain
the processor word that is formed by two
bytes, while the last & chips contain the
parity bits necessary for detection of dou
ble .errors and correction of single errors.
Based on this organization, each RAM chip
contributes to a single bit of the RAM word
(22 bits). Therefore, any failure internal
to a single RAM chip causes a single error
in the RAM word. In order to detect a dou
ble error and to correct a single error, the
modified Hamming code was used. The implemen
tation of the Hamming code was accomplished
by using an EDC chip.

During the RAM write cycle, the EDC chip
generates the 6-bit modified Hamming code
parity bits which are stored at the memory
into the same address as the processor word.
During the RAM read-cyclé, both the proces
sor word and the parity bits are read from
the memory and loaded into the EDC chip.
Using the processor word, received from the
memory, the EDC chip computes the new mod
ified Harming code parity bits and compares
them with the parity bits received from the
Wemory.

If a single error is detected, the EDC
corrects this error and sends the correct
word to the processor. At the same “time, the
addreass of the word that had an error and

., error syndrome bits gencrated by the EDC

chip are loaded into the RAM error register,
te be used by the error analysisfrecovery
process. Then, the interrupt request iline
is activated to inform to the operating sys
tem the occurrence of a single error at the
memory.

The memory bleck can be formed by RAM
chips or PROM chips, or it can remain free.
Each of these blocks can be protected against
a write access, by setting to zerc the cor
responding bit of the memory protection reg
ister. Before a process is taken to ruaning
state, the operating system defines the mem
ory blocks that the process is allowed ta
write by loading the memory write-protection
byte into the memory protection register. The
PROM blocks and the free blocks that are de
fined in the beginning of the operation must
be protected all the time.

During the memory write operation, the
memory block enable signal is compared with
the block protection bit. If they disagree,
the failure flag flip~flep is set, the pro
cessor is taken to the reset state and the
unit bus I/O reset line is activated.

The Error Handling Submodule has the
function to handle the error detected at the -
hardware layer correcting some of them and

informing the higher layer error handling
mechanism the occurrence of errars. This mod
ule comunicates with the operating aystem

layer of the processing unit by activating
an interrupt request line and with external mod
ules by raising the failure flag. This sub
module contains a watch-dog timer which is
designed te detect faults in the real time
clock, or faults in the processing module
hardcore (processor, or data and bus - inter
faces) that disturbs the CPU module in such
a way that it is not able to execute the Tou
tine that reset the watch-dog timer. The
watch-dog timer is discussed with more de
tail in the next section. -

4 — THE OPERATING SYSTEM AND AFPLICATIVE PRO
CESS, LAYERS

The first and foremost goal of the oper
ating system was to provide a highly modular
structure for a typical fault-tolerant mul

tiprocessing unit of the modular an~board

microcomputer system, This was translated

into the following requirements:

a) Error detection, analysis and recovery
by software should be configurable (mod
ular)depending on the mission. In the

best case, an external master unit would
be able to provide a great deal of the
error recovery/reconfiguration. Im the
worst case, the multiprocessing unit
would be expected to operate in a totally
autonomous manner (such as in the case of
a deep space probe).

b} The operating system should support any
possible hardware configuration of the
multiprocessing unit, ranging from a sin
gle CPU-module to a true multiprocesssing
unit with several CPU-modules, part of
them active simultaneously, and part of
them as spare modules (cold standby redun
dancy). -

c) The operating system should create and
maintain a (software) processing enviren

ment in which the CPU-module and the unit
bus interface characteristics are trans
parent at the applicative process layef:
i.e., processor and interface transpar
ency should be implemented at that layer.
Therefore, the applicative processes could
be programmed independently of the specif
ic CPu-medule in which they will run. The
set of applicative processes for a multi
processing unit, which may contain an (7
priori) unknown of active CPU-modules,
should be designed so that it cam be par
titioned appropriately among those proces
sors without extensive reprogramming,

d) A the operating system should suppert in
~flight reprograming of any applicative
process.

4.1 — THE OPERATING SYSTEM STRUCTURE

To satisfy the requirements above, the
operating system is composed of a set of
identical nuclei, one nucleus for each CPU
-module of the multiprocessing unit. In a
multiprocessing unit, all the CPU-modules are
also identical at the hardware layer (see
the previous section}.

The nucleus sSupports two primary ab
stractions, namely:

- Processes — which basically do the work,
performing to the processing
unit.

~ Messages - which allow interprocess com
mmication. These are also the
unique mechanisms for inter
process synchronization. Some
of the reasons for this deci
sion are the requirements "b™
and "e" specified in the pre
vous sectiom. -

The nucleus is composed of:

- a set of interrupt service routines, which
handle the interrupts generated at the
hardware layer;

~ a set of nucleus primitives for inter
process communication/synchronization, long
-term scheduling, error-handling and pro
cessing and switching;

- the nucleus data structure, a set of
queues, tables and specific variables that
are managed only by the interrupt service
routines and the nucleus primitives.

The handling of interrupts is an aspect
of any operating system design that tends to
destroy attempts to satisfy the requirements
for hardware transparency {processor and in
terface transparency), such as the require
ments presented above. The known solutions
are almost always compromises in which the
objectives may be violated, since the proces
ses which interact with interrupt service
routines often become bound to specific pro

cessors {CPU-modules in this report). To
overcome this limitation, processor and in
terface transparency are not only imple

mented by the nucleus, but by the nucleus

jointly with a set of "system processes"”
which interact directly with the interrupt
service routines. These processes are device
drivers that, jointly with the corresponding
interrupt service routines, convert the de
vice interrupts and register contents into
messages. Thus, any applicative process re
ceives data from the sensors ar commands From
the ground stations and sends telemetry and
actuator commands out only by receiving or
sending messages.

The nucleus supports two processing modes,
namely:

- the normal mode, in which all the applica
tive processes that do the usual tasks as
signed to the unit mus run;

— the privileged mode, in which only special
tasks are executed, suchaserror analysis/
recovery, reprogramming and long-term sched
uling. -

Mechanisms specifically for mode
switching are provided by the nucleus through
its primitives and interrupt service Tou

tines, as follows:

~ some interrupt service routines, when de
tecting an error, do a mode switching and
force the execution of a specific process
(which runs only in privileged mode) for
further analysis and/or recovery of the
error;

- an applicative process, running in normal
mode, can call a specific nucleus primi
tive for mode switching and execution of
another process, which implements the long
—term scheduling or error amalysis/recov
ery techniques. -

In the privileged mode, the interrupts
are tightly controlled and, in some cases,
part of them are masked most of the time,
Some processes, such as the system processes
cited above, can run in both processing modes.
However, all the applicative processes that
run only in the normal mode are not scheduled
for execution, while the system is in the
privileged mode. Therefore, they are kept
"frozen" at their current state jointly with
the corresponding nucleus data structure., In
this way, while the system is in the privi
leged mode, an error analysis/recovery pro
cess can reconstruct a system state believed
to be error free, and then can resume the
riormal system operation.

The nucleus supports two forms of process
gcheduling: the long-term and the short-term

scheduling. The long-term scheduling must
be carried out by a mission~-dependent process,
here called "scheduler", The scheduler im

plements the different mission phases by ac
tivating the applicative processes specific
to each phase of the mission.

The short-term scheduling is carried out
by the interrvupt service routines jointly
with the communication/synchronization primi
tives. This is a priority scheduling in
which the CPU-module is allocated to the

process in the ready state with the highest
priority.

The layered software structure outlined
above, implemented and.supported by the nu
cleus, is depicted in Figure 4. This layered
organization is alsc stressed by the error
handling mechanisms to be described in the
next section.

ANY OTHIR TASX
ERRCA ANALYS1S AND RECOVERY
ERRCR DETELTION

3 - APPLICATIVE PROCESSES
{MISSION DEPENDENT)

LONG-TERM SCHEDULING
1/0 DEVICE MAMAGEMENT
1/0 DRIVERS

2 - SYSTEN PROCESSES
{PARTIALLY M]5510N-DEPENDENT!}

ERROR DETEL. PROCESSING MODES
1 - NUCLELS SHORT-TERM SCHEDYLING
- INTERPROCESS COMMUNIC./SYNC.

INTERRUPT SERYICE ROUTINES

Fig. 4 - Operating System Layered Structure,.

4.2 - ERROR HANDLING MECHANISMS

A form of consistency and destination
checking, as proposed by Martins and De Pau
la (19B3), is provided by some of the nucleus
primitives and interrupt serviece, which im
plement and control the flow of messages
among active processes. Each processes has a
"buffering limit" as part of its control
block, which determines the maximum number
of message-buffers the process can have at
a time, This limit as defined at the process
design phase. Any attempt to exceed that
limit at run time is detected as an errvor
{process unexpected behavior) by the inter
process communication primitives or by the
time interrupt routines, that serve the real
time clock and unit-bus interrupts. -

These are: no built-in deadline mechan
isms in the nucleus synchronization and
communication primitives. However, as the
short-term scheduling implements a control

cycle equal to the real-time clock interval,

any process scheduled for execution (i.e.,
that reached the ready state)} ir a control
cycle must complete its tasks before the
arrival of the next real-time clock inter

rupt. The routine, that services this inter
rupt, executes a completion checking on all
thase processes. In this way, a global dead
line mechanism is always active, - checking
the execution of any "ready" process.

Autodiagnosis tests are embedded in at
least two "system processes', namely the
"Unit Bus Manager” and the "RAM-Analyzer".
Depending on the application, other autodiag

nosis processes can be added to the system
simply as applicative processes. The Unit
Bus Manager performs a loop check in every
I/0 operation with a unit bus device, for

)

autodiagnosis. The RAM Analyzer (triggered
by the RAM single-error interrupt service
routine) executes an diagnosis procedure

and exercises the memory modules for perma
nent failure isolation.

The system may continue the operation
after a permanent failure is detected in a
RAM chip, by masking the single error inter
rupt request line. The degraded operation is
possible until the occurrence of a double
error. When the EDC cixcuit detects a RAM
double error, it sets the failure flag £lip
~flop that takes the processor to the .reset
state until an external action is taken. To
avoid the occurrence of double-point error
in the RAM memory during the normal operat
ion, the whole memory must be exerciced
periodically.

Underlying all the error detection mech
anisms implemented at the nucleus or at any
process, there exists an exror reporting and
confinement mechanism provided by the nucle
us through seme of its routines. Error re
porting mechanisms are provided by the inter
rupt routines that serve error gemerated inm
terrupts (for errors detected at the hardware
layer), and by the nueleus primitive that.
switches operation modes for errors detected
at the applicative process layer. The appro
priate error analysis/recovery process can
then be executed in privileged mode. In this
processing mode, some selected interrupt rou
tines can be executed and selected system
processes ean be scheduled for execution,
exercising and checking continuously the CPU
«module and the nucleus. Such a simple scheme
provides the necessary modularity for the
implementation of configurable (depending on
the mission) ervor recovery techniques,

Resource Control is provided through the
nucleus routines that control the access to
the common message buffer pool; and through
the Unit Bus Manager, which controls the
access to the unit bus.

5 ~ CONCLUSION

The standards for on-board = supervision
and control described in this paper is being
utilized by SPAR Aerospace of Canada in the

development of a 16-bit faulg-tolerant on
-board microcomputer system./The fault-toler
ant methodology outlined in Section 2, ~ and

its structural organization of mechanisms
for fault-tolerance are also being utilized
at INPE, in the development of the so-called
INFE Standard for Om Board Supervision-(PISB)
which is also based on 16-bit processing
units. The latter system will be implemented
in the Brazilian satellites being developed
by INPE for the MECB mission. Both systems
are now at conclusion phase of their first
prototype.

6 - REFERENCES

Martins, R.C.0. & De Paula, A.R., (1983), "a
Fault-Tolerant 16-Bits Multiprocessing
Unit for On-Board Satellite Applica
tions", SPAR Technical Report. -

