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CHAPTER 17

WAVES IN WARM PLASMAS

1. INTRODUCTION

In the previous chapter we have analyzed the wave
propagation problem in a cold plasma. Now we want to extend the theory
developed in the previous chapter to include the pressure-gradient-
term in the momentum equation. We shall consider the cases of wave
propagation in a warm electron gas (in which ion motion is ignored)and
in.a fully ionized warm plasma (considering _only one ion species), in .
the absence as well as in the presence of an externally applied

magnetic field.

2. WAVES IN A FULLY IONIZED ISOTROPIC WARM PLASMA

2.1 - Derivation of the equations for the electron and ion velocities

We consider now a fully ionized warm plasma having only
one ion species, with no externally applied magnetic field (§0 = 0).
To analyse the problem of wave propagation in thfs case we start by
writing down the equations of conservation of mass and of momentum

for the electrons and the ions,



BI'ICI
" + v -(na gu) =0 (2.1}
Dgu 1
m, o q, (E+u xB) - —;r~'213a -movig (U ) (2.2)
Q

where for the electrons « = e, 8 = i, and for the ions o« = i, B = e.
These equations are complemented by the following adiabatic energy
equation. for each species (e = e, 1),

Y

P, Ny = constant (2.3)

where y = 1 + 2/N is the adiabatic constant and N denotes the
number of degrees of freedom. Applying the v operator to (2.3}. and
using the ideal gas law P, = Ny kB Ta, we can rewrite (2.3} in the

form .~
gpa =y kB Ta gna (2.4)

.We restrict: our attention to smali-amplitude

waves in order to linearize the equations, and assume that

n, {rs t) =n_ + n& exp (iker - iwt) |né| < n (2.5)

u (r, t) =u_ exp (iker - iot) u << |w/k| (2.6)

E(r, t} = E exp (iker - iwt) (2.7)



B (r, t) = Bexp (iker - iut) (2.8)

Using these expressions in (2.1), and neglecting second order terms, we

find

2 - -2 (2.9)

Similarly, we obtain for (2.2), after the substitution of P, from

(2.4) and linearizing,

(u - u,) (2.10)

/2, . :
where VSQ-(kaTa/ma) is the adiabatic sound speed for the

particles of type a.

Substituting (2.9) into (2.10), and multiplying by iw,

we obtain the following equation involving the variables u,u and E,

The relationship between the electric field, and the
electron and ion velocities, can be obtained from Maxwell curl
equations. with harmonic variations of E and B, according to (2.7) and

k-]

(2.8),



kxE =uB (2.12)

ikxB=n J-—2F (2.13)

J=n ) q u = n,e (u; -u). (2.14)
o

Combining (2.12}, (2.13) and (2.14) we find

1'en0
E, = e (Ugg = Yy (2.15)
0
ien (u . -u..)

we (1-k2c2/w?)

where the subscripts 2 and t indicate components longitudinal and
transverse, respectively, with respect to the direction of the wave

propagation vector k (see Fig. 1 of Chapter 16).

Substituting (2.15) and (2.16) into (2.11), and writing
this equation for each type of particles (electrons and ions), we have
the following set of coupled equations for the Zongitudinal components

of the electron and ion velocities,



2 _ 2 _ k2 y2 ; A2 = i -
Uag (w e k Vse + iw vei) U, (wpe 1w vei) 0 (2.17)
Uag (mg,i - w vie) UL, (w? - wéi - k2 Vgi + jw vie) =0 (2.18)
and. for the transverse components,
02 _ w?
pe : pe : -
u Euz - + fw v .] + U, [ - g v J] =0
(2.19}
[J.]2. m2 .
P . 2 pi . _
u [ - iw v, ] + U. [tu - + dw v, }— 0
~gt (1 - k2c2/42) ie ~it (1 - k2¢2/42) 1e
(2.20)

Note that the effect of the pressure gradient term
appears only on the Tongitudinal component of the motion and,
consequently, the transverse modes of propagation are the same ones

as in the cold plasma model, but with the motion of the ions included.

2.2 - Longitudinal waves

In what follows, in order to simplify the algebra, we

shall neglect collisions (“ei = Vi, = 0). In order to have longitudinal



waves # 0 Uiy # 0), the determinant of the coefficients. in the

(Ueg
system of £qs. (2.17) and (2.18) must vanish, Thiscondition gives

(02 - w2 -k2 Vge) (w? - m?-]' - k2 Vgi) -

2 =0 (2.21)

2 2.
“pe “pi

Multiplying the terms within parenthesis, this equation can be recast

into the form

-
& (V?S"e Vgi) + k2 Lmz V2, ¢ o2

2 _ .2 qy2 2
pe 'si pi Voo ~ 0" (V5e ¢+ Vsi)}

- w2.) =0 (2.22)

Note that. in the special case of the cold plasma model, in which the
pressure gradient terms are ignored (i. e., Vse = Vsi = 0), (2.22)
gives w? = “Ee + “51’ which corresponds to the longitudinal plasma
oscillations when the motion of both the electrons and the ions are
taken into account. Eq. {2.22) has two roots for k2,so that.

there are two longitudinal modes of propagation. One of these is termed
the longitudinal electron plasma wave and the other is the
Tongitudinal Zon plasma wave. These plasma modes are electrostatic

in character, and contain all the charge accumuiation and no magnetic

field, whereas the transverse .electro magnetic mode contains the entire

magnetic field and has no charge accumulation.



Although it is not difficult to obtain the two exact
solutions for k2 from (2.22), it is more convenient to analyze it for
some special cases which emphasize the role played by the inclusion of

ion motion and the pressure gradient terms.

For this purpose, let us first rewrite (2.22) for the

case when ion motion is not taken into account, which becomes

- k2-V§e @2 + w?l (w? - mse) =0 (2.23)
or

w? = wse + k2 Vée (2.24)
Now, Vée =y kB1E /n%, and . since for a plane wave the compression is

one-dimensional. we have y = 3, so that
2 _ .2 2.
o = w2+ (3 kg T, /m) k (2.25)

This equation is known as the Bohm-Gross dispersion relation for the
longitudinal electron plasma wave. This relation shows a reflection
point (k = 0) for w = Ye* For very high frequencies (w >> wpe)' the

phase. velocity is w/k = Vse’ which represents an electron acoustic wave.

Next, let us include the motion of the ions but under
the assumption that its temperature is such that Vsi = 0. Then, (2.22)

Simplifies to



2 y2 2 o 2 2 2 o 42 - 42 -
k Vse (mpi w?} + w® (w Woe wpi) 0 (2.26}

At very high frequencies {u >> mpe)‘ we still have w/k = Vse’ but now

(2.26) shows a reflection point (k = 0) at w = (wse + msi)lfz.

Finally, let us analyze (2.22) in the limits of high

and low frequencies. From the definitions of Ype and Vsi’ we have

) w2, V2 (2.27)

Therefore, (2.22) can be rewritten as

- T. .
4 y2 2 2 2 2 1 _ .2 2 2
k Vse Vsi-+ k L(npi Vse (1+ - ) - w (Vse + Vsi)] +

+ w2 (0 - w? - mzi) =0 (2.28)

For high frequencies, such that w? >> wsi (1-+Ti/Te),

(2.28) becomes’

4 yz 2 . 2 .2 2 2 2 2 _ .2 . 2 -
kv V2, V2 - k2 w2 (V2 4 V2L) 4 w2 (0? -l - wdi) = 0 (2.29)

deri 2.2 2 2 2 ;
Further, considering Vse ws >> Vsi (mpe + wpi)’ or equivalently
w? >> wéi(T%/Te) (1+m/m.), a condition which also satisfies



2 2 2 y2 2 2
w® >> wpg (1-FT1/Te), we can add the term k Vsi (wpe + wpi) to the
left-hand side of (2.29) and rearrange this equation in the following

approximate form

(k2 V§1 - w?) (k2 V2 - w? ¢ wse +w2.)z 0 (2.30)

From this equation we see that, for high frequencies
[ w2 >> wéi (1-+Ti/Te)] . the dispersion relation for the longitudinal

ion plasima wave 1S

w2 = k2 Vgi (2.31)

while, for the electron plasma wave, the dispersion relation is

w? = w2 + ws_i + k2 Vge (2.32)

Next, for low frequemcies, such that w? << wsi (1 +T1./Te),

(2.28) becomes

N g2 y2 2 y2 2 iv_ 22 .
R R L (2.33)
e

Multiplying this equation by -m2/(m§e k"), assuming k # O, it can be

rewritten as

2
()4 - (-22)2 y2 °pi (1+ i ) - V2 y2 w? =0 (2.34)
K K se 2 T se st o )

pe e “pe
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since we are considering low frequencies, w? << m%i (1-+T1/Te), and as
long as {w/k) is not much larger than Vsi’ the last term. in the left
hand side of (2.34). can be neglected as compared to the second one.

Therefore, (2.34) gives, for low frequencies,

2
W oy _ y2 mpi T]
(2 =z, L0 e 1 (2.35)
k mpe Te

Using the relation (2.27), this equation can be rewritten in the form

w? = k2 V2 (2.36)

sp
where
2 _ -
Vsp =y kB (Te + Ti)/m1 (2.37)

which is known as the plasma sound speed. It can be verified that the

other root of (2.33) gives an evanescent wave. at very low frequencies.

A plot of phase velocity versus frequency for the
longitudinal waves is shown in Fig. 1. The longitudinal waves. with
phase velocities equal to VSe or Vsi at high frequencies. represent,
respectively, acoustic oscillations due to the electrons and due to
the jons. The low frequency wave travelling at the plasma sound speed,
V__, represents an acoustic oscillation of both the electrons and the

Sp
ions. This low frequency wave is known as the Zon-acoustic wave.
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TRANSVERSE }
. /ELECTROMAGNETIC *
WAVE F

| |  LONGITUDINAL
| o -, ELECTRON PLASMA
' o - WAVE
se - — - — o e e ] — . — ,_“‘,, . '

LONGITUDINAL
ION PLASMA

Fig. 1 - Phase velocity. as a function of frequency for waves
in a fully jonized. isotropic (@O = 0) warm plasma.
(The curves for the longitudinal waves also hold for
propagation in the direction of @0, when §0 #0).

2.3 - Transverse wave

For the existence of a transverse mode of propagation
(Eet # 0; Uit # 0) the determinant of the coefficients 1in the system
of Eqs. (2.19) and (2.20) must vanish. Neglecting collisions

(“ei = Vig = 0), we find
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w2 6. Wl w2,

(02 - —P& _y (g2 P PE_P1 - (2.38)
1-k2¢272 1-k2¢2 /02 (1-k2c2/w?)?

which simplifies to
k2 ¢2 = 42 - (m§e+ wfn.) (2.39)

This equation is similar to the dispersion relation (16.4.12) for the
propagation of transverse waves in a cold isotropic plasma, except that
the reflection point is now (wée +w§1)1/2 as a consequence of the
inciusion of ion motion. A plot of phase velocity as a function of
frequency for the dispersion relation (2.39) is also shown in Fig. 1. A

dispersion plot in terins of w as a function of k is displayed in Fig. 2

for the three modes of propagation.

In summary there are three modes of wave propagation
in a warm fully jonized isotropic p]asmé {as compared to only one mode
in the case of a cold isotropic plasma). They are the transverse
electromagnétic-mode(also present in the case of a cold plasma), the
longitudinal electron plasma mode and the longitudinal ion plasma

mode.
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Fig. 2 - Dispersion relation for the three modes of wave propagation in

a warm isotropic fully ionized plasma.

3. BASIC EQUATIONS FOR WAVES IN A WARM MAGNETOPLASMA

The basic equations for the study of wave propagation
inra warm fully ionized magnetoplasma are (2.1), (2.2) and (2.3).
Proceeding in the same manner as in the previous section, but now
considering an externally applied uniform magnetostatic field, @0, we

obtain, in place of (2.11),
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2 .
(E +u_ x EO) + VsOt k (k .

[ =
P
]
-
£
<

kx (kxE) + 2 E=- " (u;-u) (3.2)

If we choose a Cartesian coordinate system, such that
the z-axis is along @0 and k is in the x-z plane (Fig. 3), we have .

-

4B,

Fig. 3 - Cartesian coordinate system chosen with §0
along the z-axis and k in the x-z plane.
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k=K, +k =ksinoe §+kcos oz (3.4)

and consequently. (3.1) and (3.2) become, respectively, [ see

Eqs. (16.5.10) and (16.5.5)]

2 -u -vY - V2 ke N .
B (uOty X=u . ¥) VSa k¥(sin @ U, T coso udz) §

. - - . + a
«(sin o X +€0s 0 Z) + 1w Vue (Hu - Hg) = jw . E (3.5}
. ¢
and
1'en0
a-E-- (45 - ) (3.6)
meo

where the components of the dyad a, which represents the operator

[ (c2/w?) k x.{kx...}+ (...) ], can be arranged in matrix form as

f 2.2 2.2
1 - k<c cos? o 0 k¢ sin @ cos © ]
Ll)z LlJ2
2.2
a = 0 . K 0 (3.7)

2.2 2.2
k¥ sih 0 ¢cos © 0 1 - k“c sin? o
i3] m2 J
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With this matrix definition of "2, the dot product in Eq. (3.6) can
be thought of as a matrix product between a and the vector column
E. Taking the inverse of the matrix associated with a (assuming a
non-vanishing determinant of its elements) and multiplying(3.6) by

(a )~1, we obtain

since (a)-l'» a =1, where 1 is the unit dyad.

Eq. (3.8) can be used to replace E in Eq. (3.5). For
the electrons we take « = e and B = i in Eq. (3.5), whereas for the
ions a = i and B = e. we‘obfain, therefore, a system of six equations
with the six unknownsyaj(with Jj=X,¥,2,and o = e, i). The
requirement that the determinant of its coefficients be equal to zero

gives the dispersion relation.

4. WAVES IN A WARM ELECTRON GAS IN A MAGNETIC FIELD

In view of the complexity of the algebra involved, we

shall initially consider the simple case of a gas of electrons



-17 -

inmersed in an externally applied magnetic field, neglecting for the

moment the macroscopic motion of the ions (ui = 0).

4.1 - Derivation of the dispersion relation

From Eq. (3.5) we obtain for the electrons (taking

u; = 0)
W, V2 k2
. ce > =y _ _se : : =
Uy +i ) (uey X-Uq, ¥) ___;E___ {sin 6 u,, +cos euez)(51n oX+
2
i v W
+C0S 0 2Z) + i T P (a)1l -y (4.1)
- w © w? = ~€ '

Using the notation introduced in Eqs. (16.5.14), (16.5.15) and
(16.5.16), Eq. (4.1) can be rewritten in the form

2 k2 v2_ k?
Uu, + (- Vse ¢ .sinZou_ _ +iYu - 58
ex e

~8 w2 Y w2

sin @cos ou,,) X -
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V2 k2 vz, k2
. - se . _ 2 3 -
-iYu, ¥+ (- ———sinecosou,, - ——— cos ou,,) z
w w
= X (E)-l . !e (42)
Defining a dyad b through the matrix
f y2 k2 V2 k2
(U-—25_ sin2 g) iy - =€ sin o cos 0
UJZ LUZ
b= -y u 0
y2 k2 V2 k2
S¢ sinecoso 0 (u- 3% c0s2 ©
w? w? J
(4.3)
equation (4.2) becomes
[b-x(a)!']-u, =0 (4.4)

This equation is of the form ceu, =0, withczb-X(a)”t. A

~ = -~

nontrivial solution exists only if the determinant of the matrix c

-~

vanishes. Therefore, in order to have nontrivial solutions (ge £0)

we must have

det [b-X(a)yl]=0 (4.5)
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This condition gives the dispersion relation for wave propagation in a

warm electron gas immersed in a magnetic field.
In order to simplify matters, in the two following
subsections we examine the dispersion relation (4.5) for the special

cases of propagation parallel and perpendicular to the magnetic field.

4.2 - Wave propagation along the magnetic field

For the case of propagation along the magnetic field

(k [|§0) we have k = k Z and o = 0%, so that (3.7) and (4.3) simplify

to

(1 - k2c2/u?) 0 0‘

a = 0 (1 - k2¢2/uw?) 0 (4.6)
\ 0 0 ]
(Y iy 0 )

b = |-iy U 0 | (4.7)

- y2 272
0 0 (U - V2, K2/0?)
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Therefore, the determinant (4.5) becomes

U - X iy 0
1 = k2¢2/w? '
- iy U - X 0 =0
1 - k2¢2/,2
V2 k2
0 0 U- 25
02
(4.8)
which gives the following dispersion relations for transverse waves
(Ugy # 05 g, #0),
v- —X =Y (4.9)
1 -k2c2/w?
and for a longitudinal wave (uez £0),
V2 k2
U - Sez -X =0 (4.10)
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Note that in this case thez component of Eq. (4.4) is uncoupled from the
x and y components, so that the longitudinal mode is independent

of the transverse modes.

Eq. (4.9) yields the following expressions

corresponding, respectively, to the "plus" and "minus" signs,

2,2

k%c? . X (4.11)
w? Uu-%¥

2pr2 .

LS D S (4.12)
w? U+Y

These dispersion relations correspond, respectively, to the right and
left circularly polarized waves (RCP and LCP) obtained in section 6,
of Chapter 16 { see Eqs. (16.6.6) and (16.6.8) |, for transverse waves

in a cold plasma.

For the longitudinal wave, substituting U =1 + ive/m

and X = mse Jw? in (4.10), the dispersion relation becomes



- 22 -

2 . s _ 2 2 g2 :
w? + v, W wpe+k .Vse (4?13)

Hence, as compared to the cold plasma model, instead of the
“longitudinal oscillation at “pe (present in the cold plasma) there is.
in this case an additional mode of propagation, known as the electron
plasma wave. Neglecting collisions (ve = 0), (4.13) becomes the same
dispersion relation as obtained in section 2 [ Eq. (2.24) ] for waves
in an isotropic warm plasma. Hence, for propagation along the magnetic
field, the Tongitudinal electron plasma wave is not affected by the

presence of the magnetic field.

In summary, there are tnree modés of propagation in a
warm electron gas for k parallel to the magnetic field: the transverse
RCP and LCP waves, and the Tongitudinal electron plasma wave. The
addition of the pressure gradient term, in the equation of motion for
the electrons, has no effect on the transverse waves. A plot of phase
velocity versus frequency for these three modes is displayed in

Fig. 4. The corresponding w(k) dispersion plot is shown in Fig. 5.
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Fig. 4

- Phase velocity, as a function of frequency. for waves
propagating in the direction of B in a warm electron
gas.
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Fig. 5 - Dispersion plot for waves propagating parallel to §0. in

a warm electron gas.
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4.3 - Wave propagation normal to the magnetic field

For the case of propagation across the magnetic field
k| §0) we have k = k X and © = 90%, so that (3.7) and (4.3)

simplify to

(1 0 0
a=| 0 (1 - k2c2/w?) 0 (4.11)
0 0 (1-Kk2c2/u?)
(U - V2, k2/w?) iy 0
b = -1y U 0 (4.15)
0 0 U

From these expressions it is clear that the z component

of (4.4) is uncoupled from the x - and y components. Thus, in order
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to have a ¢ransverse wave oscillating along the z-axis (ueZ # 0), we
must have from the z-component of (4.4),
U - X - 0 (4.16)
(1-k2c?/uw?)
or
20,2
S R (4.17)
w? u

which is the familiar dispersion relation for the transverse ordinary
wave {the electric field of the wave oscillates in the same direction

as B ) found in section 7, of Chapter 16 | see Eq. (16.7.4) ].

From (4.4), (4.14) and (4.15) it is clear that the

equations for u

and U, are coupled. Therefore, in order to have

ex y

nontrivial solutions (Zongitudinal wave for Uox # 0 and iransverse

wave for Uy # 0) we must require the determinant formed with the

coefficients of the x and y components of (4.4) to vanish, that

is,
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_V2 o K2h,2 - i
U Vse k= 7w X 1Y

0 (4.18)

iy U - X/(1- k2c2/w?)

This determinant gives, neglecting collisions (ve =0; U=1},

2

w
2 02 k2 - 2 2 - pe -l pl =0 4.19
(07 = VEE - o) (7 - —— PSP (4.19)

Expanding this expression, and rearranging, we get

b2 y2 Yy - k2 [y2 2 . .2 _ = 2 _ 2 _
k* (c Vse) k I_Vse (w “’pe) + ¢2 (w? mée w%e)] +{w wée)

—w? w2 =0 (4.20)

This dispersion relation is quadratic in k?, so that there will be two
values of k? as a function of w, that is, two modes of propagation.

Since. generally. we have Vse << ¢, the first term within brackets. in
the left-hand side of (4.20). can be neglected as compared to the other.

With this approximation, (4.20) becomes.
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Although it is not difficult to obtain the exact
solution of this equation, it is more instructive to analyze it for
some special limiting cases. First, let us obtain the approximate
solution of (4.21) in the region where w? >> k2 Vge’ that is, when the
term k“c? V;e is much smaller than any of the others. For k2 positive
this condition implies in phase velocities much larger than Vse and,
for this reason, it will be referred to as the high éhase veloeity

Timit. With this condition, (4.21) reduces to

- kzcg (mz - wz - wz

oe Ce) + (w2 - wze)z -w? w2 =0 (4.22)

or
(w2 + wo__ + w2 ) (02 - ww_ - w?)
k2¢2 = ce pe ce pe i (w2 >> k2 Vge)
Cl wée " uge)

This equation is exactly the same dispersion relation found in
section 7,0f Chapter 16 [ Eq. (16.7.7) ], for the transverse
extraordinary wave in a cold plasma, except that now the condition

w? >> k2 Vge must be satisfied for {(4.23) to be applicable.

Next, Tet us obtain the approximate solution of (4.21)
in the region where w? << k2¢?, For k2 positive this condition
implies in phase velocities much smaller than the velocity of 1ight
and, for this reason, it will be referred to as the low phase velocity

Timit. Thus, for w? << k2c2, {4.21) reduces to
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BA242 Y - L2062 (02 _ 2 _ 20y

k* (¢ Vse) kc? (w “he wce) 0 (4.24)
or

2 - .2 2 2 y2 . 2 2-2

w® = whe tug, t k JSE ; (0 << k“c?) (4.25)

When §0 =0 (i.e = 0) this equation becomes identical to the

"1 Yce
dispersion relation for the longitudinal electron plasma wave
[ see Eq. (2.24) 7). It is a valid solution for (4.21) only under the

condition w? << k2¢2,

Fig. 6 displays the phase velocity. as a function of
frequency for the transverse ordinary mode | Eq. (4.17) ] and for
the two modes described by Eq. (4.20). Note that, of these last two
modes, one is a purely transverse extraordinary wave, while the other
is partially transverse (electromagnetic extraordinary wave in the
high phase velocity 1imit} and partially longitudinal (electron
plasma. . wave in the low phase velocity limit). In this Tast mode, the
transition from a basically transverse electromagnetic wave to a
basically longitudinal electron- plasma wave occurs in the frequency
region where the phase velocity lies between ¢ and Vse' The

corresponding w(k) dispersion plot is shown in Fig. 7,

4.4 - Wave propagation in an arbitrary direction

For propagation in an arbitrary direction with

respect to the magnetic field, the dispersion relation is obtained
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from Eq. (4.5} with the dyads a and b as given by Egs. (3.7) and
(4.3). For an arbitrary angle between 0% and 90°, we expect the
phase velocity versus frequency curves to Tie between those of

Figs. 4 and 6. Therefore, instead of getting 1nvo]ved in thecumbersome

algebra behind (4.5), we present only the dispersion curves of

Von B
:
|
2¢} I
j
[]
c ________
: l . ELECTRON
[ | '// PLASHMA
Veelb — — — —— . L _ |— —
oy
| | |
I
| | |
| | |
o Wo Wpe Wgp

Fig. 6 - Phase velocity as a function of frequency for waves
propagating perpendicular to @0 in a warm electron
gas.
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—

@ sl

ELECTRON
PLASMA

{

Fig. 7 - Dispersion plot for waves propagating perpendicular
to §0 in a warm electron gas.

Fig. 8, in which the shaded area illustrates how the transition

0

occurs from @ = 09 to @ = 90°, It can be easily verified that the only

resonance which exists for an arbitrary angle. is at the frequency
o= w.q COS O. The reflection points. for any angle of propagation
occur at the frequencies uwgy, Ype- and wps,.



- 372 -

»
r
e O
0

<
)
>
>

\\\1\\\&\\\\\ Rt «— O

\<§§§§§§§fﬁ§§“ﬁ$~wﬂv¢ﬁ
\

ELECTRON

% : PLASMA

Vel _ I

N’ N

. o3 Wee C‘)o! wpe @02 7))

-3
0

b — —— ——
i

Fig. 8 - Phase velocity versus frequency for wave
propagation in a warm electron gas immersed 1in a
magnetic field.

5. WAVES IN A FULLY IONIZED WARM MAGNETOPLASMA

We consider now the propagation of plane waves in a
fully ionized warm plasma having only one ion species, immersed in an

externally applied. uniform magnetostatic field.



5.1 - Derivation of the dispersion relation
The equation of motion, for the electrons is, from
(3.5),
2 ; % - 7y -
weu,F 1mwce (uey X uex Z)
- Vze k? (sin o u, *+cosou ) (sino X +cos 02z) +
Fiw v (U -u;) = - fw—— (5.1)
gi ‘= ~i m =
e
and. for the ions,
2 - g - Sy -
of Uy = dowgg (U5, X -ug 9
- V2 k2 (< ; " 3
VS1 k {sin o U, +Coso uiz) (sin ® x + cos 0 z) +
. _ s e
v vs, (_l{_I - ge) = iw - E (5.2)
i
Eqs. (5.1) and (5.2), involving the variables Ugs Uj and E, are

complemented by {3.6),

whe

a B = ————(u, - u;)

re the dyad a is defined according to (3.7).

(5.3)



compact form,

and

Egs.

where the dyads b, and b; are

vz k2
(1-—25_ 5in2 o)
mz
Ee s =i Y,
¥Z k2
L sin 6 cos o
( w?
( V2, k2
(1-——sin2 o)
W
by = 1Yy
V2, k2
S1 $in 0 cos O
L mz
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appropriately defined by

1Y

-1y

vz
_ 'sé

2
_ Vsi

k2

§2
5iN B cos O

$in @ cos O

(5.1) and (5.2) can be written, respectively, in

(5.5)
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where Y, = mCe/w and Yi = w.;/w. Multiplying Egs. (5.4) and (5.5),

respectively, by the inverse matrices corresponding to Ee and Ei’ we

get
u = -3 —= (b )" leE - i Ve (b}l « (u, - u,) (5.8)
= € (b.)"1«E + i Vie (b.)1 « (u_ - u.) (5.9)
<Y wm =1 ~ w =i ~e  ~] )

Combining (5.10) and (5.3} to eliminate the variable (ue - us),

results in the following equation involving only the electric field

vector
. w?
Te i e i) |2 -
U.l2- _I
i -
- :1 (bs) 1 J'E =0 (5.11)

or
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-—

<f [ i Uii (bg)™t + i “le (Ei)_lw s =X, (b )t -

-

- X (gi)'l}. E = 0 (5.12)
- .2 7.2 _ 2 4.2
where Xe = wpe/m and Xi = wpi/w .

As before, the dispersion relation is obtained by

setting the determinant of the 3 x 3 matrix in (5.12}) equal to zero,

that is,
“ei 1e 1
-1 -1 . - -
det{[l+1 " (Be) + i (:1) :} a Xq (Ee)
- X () P =0 (5.13)
If collisions are neglected (vei = Vi = 0), (5.13) simplifies to
det [g - K (Ee)‘1 ~ Xi (Ei)'l}z 0 {5.14)

In the following subsections, in order to simplify the algebra
involved, we shall neglect collisions and analyze the problem using

Eq. (5.14).



- 37 -

5.2 - MWave propagation along the magnetic field

For 6 = 0%k ||§0)'wé have from (3.7), (5.6) and (5.7),

reépective1y,

nw

uno

g

((1 - k2¢c2/w2)

-1y

(1 -k2c2/w?)

iy

-1y

The inverse of the matrices (5.16) and

(1- Vge k2/w?)

(1-V2, k2/u?)

(5.17) are, respectively,

(5.15)

(5.16)

(5.17)



(1-v2)

-y

(1-¥2)
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]

(1-V2, K2/u2)

1

(1-V2, k2/u?)

J

(5.18)

(5.19)

Substituting the matrices (5.15), (5.18) and (5.19), into (5.12), and

setting Vaj =V

1e

. =0, we obtain
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A A, 0 ) (€, ]
- A, Aq 0 £, | =0 (5.20)
0 0 A E
\ ) | "z |
where
2 2 X X
R R . (5.20a)
w? (1-¥%) (1-¥2)
iX, Y. iX_ Y
Ay = - — ; + - f 7 (5.20b)
(1-v5)  (1-Y3)
X, | X
Ay =1 - ! - € (5.20¢c)

- 27,.2 -2 k24,2
(1-V2, K2/u?) (1-v2, k2/u?)

It is clear from this matrix equation that the
longitudinal component of the electric field (Ez) is uncoupled from the
transverse components (Ex and Ey). Therefore, for longitudinal waves to
exist (EZ # 0), the coefficient of EZ in (5.20) must be equal to
zero, which gives the following dispersion relation for longitudinal
waves,

X. X

1 - 2‘ — - - ez — = 0 (5.21)
(1 - V2.k2/u?) (1 - V2 k2/w?)
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This dispersion relation can be rearranged in the following form

ke (y2  y2 2 | 42 y2 2 y2 - ,2(y2 2 3| ¢
k* (Vio Vsi) + k | Yhe Vsi +Ampi Voo — (Vse + Vsi)J +

- w2.)=0 (5.22)

which is identical to Eq. (2.22}. Therefore, since it is a quadratic
equation in k2, there are in general two longitudinal modes of
propagation. Note that these two longitudinal modes, propagating
along Eo’ are not affected by the magnetic field strength. This
dispersion relation has already been analyzed in section 2, where it
was shown that the two longitudinal modes are the electron plasma

wave and the Zon plasma wave.

The dispersion relation for transverse waves (EX £ 0;

Ey # 0) are seen, from (5.20), to be ‘given by

[] k2c2 X Xe }2 ( Xi Y Xe Ye]z__o
2 _y2 _y2 o (1 -2 -y2
p 0-¥2)  (1-¥2) 1-¥2)  (1-¥2)

(5.23)

Using the notation
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Fig. 9 - Phase velocity as a function of frequency for plane waves.
travelling along the magnetic field in a warm fully
ionized magnetoplasma.
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S=1- i (5.24)

.- X t: ) Xe Ye (5..25)
-¥2). _y2
(1 Yi) (1 Ye)
and letting
R=S+0D (5.26)
L=S-D (5.27)

then (5.23) becomes

(

k2¢2 k2c2
- R)

w? w?

- =0 (5.28)

There are, therefore, two transverse modes that propagate along the

magnetic field with dispersion relations given by

2p2
(X =) =R (5.29)
w R
and
202
( kg ) =L (5.30)
w2 |

From the x-component of (5.20) we have
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y (5.31)

so that, using (5.29), we obtain

E
Yy - (5.32)

(—L
Ex R

whereas, using (5.30),

E
(—L) = - | (5.33)
E L
X
Therefore, the dispersion relation (k2c2/w2) = R corresponds to a right-

hand cireularly polarized wave, and (kzcz/mz)L =L toa left-hand

circularly polarized wave.

The phase velocity. as &. function of .frequency. .
for phogagation-a}ong,gd is shown in Fig. 9. The refléection
points at wy; and wy, are not exactly the 'same ones given by
equations (16.6.13) and (16.6.14), but are slightly different as a
result of the inclusion of ion motion. Also, because jon motion has
been taken into account, besides the resonance at w ; w for the RCP

ce

wave, there is also a resonance at w = Wej for the LCP wave.
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In the very lTow-frequency 1limit, the phase velocities of

the RCP and LCP waves tend to V (1-+Vﬁ/c2)1/2, instead of going to

Y
zero as in the case of the cold plasma model. This result can be seen

as follows. For very low frequency waves such that

0 << Wes (5.34)

we obtain, using (5.24) and (5.25),

R=L=1+—P (0 <<u;) (5.35)

Therefore, using the definitions of Wpe> ¥ and Weg the dispersion

ci
relation for the RCP and LCP waves becomes

(5.36)

The average mass deasi:tyy is ¢ = o (m, +m;) = n, mi,and since

e i
€, =T/(u0 ¢?),(5.36) can be rewritten as
2
2.2 ccu_ p
S R E (5.37)
w2 B2

or
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202 2
K S (5.38)
w VA

where V, = (Bg/u0 0)1/2 is the Alfvén velocity, defined in {15.1.4).
Thus, from (5.38}, in the very Tow-frequency limit the phase velocity
of both transverse waves is given by

Y

v, o= = ' (5.39)
P (e uggezyi/e

Note that, for plasmas in which Vﬁ << ¢? (weak B0 field or high
density), {5.39) reduces to Vph = VA’ This very low-frequency limit

corresponds to the Alfven wave discussed in Chapter 15.

5.3 - Wave propagation normal to the magnetic field

Considering now k | B, we set o = 90%n Eqs. (3.7), -
(5.6) and (5.7), to-.obtain,

a = |0 (1 - k2¢2/42) 0 (5.40)

0 0 (1 - k2c2/u?) |
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(1 - V2 K2/?) i Yy 0 )

be - -iY, 1 0 (5.41)
| 0 0 1
({1 - v2.k2/u?) -y, 0 )

by = iy, 1 0 (5.42)
\ 0 0 1]

Taking the inverse of the matrices in (5.41) and (5.42), we obtain for

(5.12) (negiecting collisions),

11 10y 0 | [ &
i D (S; - K2c2/u?) 0 E, | =0 (5.43)
0 0 (P-k2c2/uw2) | | Ez )
where

_ k2y2 2 _L2y?2 2
< . X; (1 - K22, /u?) ) Xy (1-Kk2V2 /u?) 1
I ]_yz-kzvz/z '] Yz_kZVZ/Z ( )
( i si/v”) (1-Yg se/v”)
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X. X

SII =1- 2 : 2y2 7,2 o 2 - 2y2 7.2 (5.45)
(1-Y2 - k2v2./02) (1 -Y2Z- K3V2 [u?)
X. Y. X Y
0, = L - € € (5.46)
(1-Y2 - k2V2.7u2)  (1-Y2 - k2V2,/u?)
P=1-X.-X

From (5.43) it it clear that EZ is uncoupled from the
electric field components Ex and Ey so that the ordinary mode (the
transverse mode which has EZ # 0 and is not affected by the presence

of the magnetostatic field) has the dispersion relation

K2c2/,2 - p (5.48)
or

k2¢2 = o2 (mse + wsi) (5.49)

which is the same expression obtained in (2.39).

The modes involving the field components EX and Ey
(Tongitudinal for Ex # 0. and transverse for Ey # 0) are seen, from

(5.43), to be coupled, and have the following dispersion relation

Sp (Sq - k2c2/u?) -_D% =0 (5.50)
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Substituting the expressions for SI’ SII and DI into (5.50), results
in a cubic equation in k2, showing thatin general there are three
modes of propagation. A detailed analysis of this dispersion relation
shows that these three modes of propagation are the partially
transverse extraordinary wave, the longitudinal eleetron plasma

wave and the longitudinal Zon plasmd - wave.

Fig. 10 shows the phase velocity as a function of
frequency for the four modes of propagation in a direction normal to
the magnetic field. The basic points to be noted in this plot are:
(1) the presence of the reflection points at (wée + m%i)i/z, w1 and
wooy (2) the transition from a basically longitudinal (electron
p]asma,)lwave to a basically transverse electromagnetic
(extraordinary) wave, in the frequency region where the phase
velocity lies between Vse and c¢; and (3) in the very low-frequency
1imit the phase velocity of the 1on—acoustib wave tends to
Cog+v2) /(s V2/c2)]1/2

5.4 - Wave propagation in an arbitrary direction

For arbitrary directions of propagation the dispersion
relation is given by (5.14). Since a detailed analysis of this
dispersion relation is a rather hon-instructive and

tedious affair, we shall content ourselves by merely
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Fig. 10 - Phase velocity- as a function of frequency for waves
propagating .in a direction normal to the magnetic field in a
warm. fully ionized wmagnetoplasma.

presenting the plot of phase velocity versus frequency in Fig. 11, in

which the shaded areas give an indication of how the curves evolve.

0 0

frome =0 to o =090".
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- Fig. 11 - Phase velocity as a function of frequency for wave
propagation in a warm fully ionized. magnetoplasma.

6. SUMMARY

The modes for wave propagation in a warm fully jonized

plasma. can be summarized as follows:
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Transverse electromagnetic wave
Longitudinal electron plasma wave

Longitudinal ion- plasma wave

k||

Lo
o

Transverse right-hand circularly polarized wave
Transverse left-hand circularly polarized wave
Longitudinal electron-plasma wave

Longitudinal ion-plasma wave

v~
—
==

o

Transverse Ordinary wave

Partially transverse extraordinary wave

Longitudinal electron plasma. wave

Longitudinal ion-plasma wave

For the case of a warm electron gas, in which the motion

of the ions is ignored, the longitudinal ion plasma mode is absent.

For the case of a cold plasma, both the ion plasma and the electron-

p1asma modes are absent. Note that for kd By the electron plasma

mode and the extraordinary mode are coupled.
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PROBLEMS

Show that one of the roots of the dispersion relation (2.33),

at very low frequencies, corresponds to an evanescent wave.

Make a plot analogous to Fig. 8. for wave propagation in a
warm electron gas immersed in a magnetic field, but in terms

of w as a function of the real part of k.

Show that the reflection points wgy; and wy,, for the LCP and
RCP waves propagating along 50; in a fully ionized warm

plasma (see Fig. 9) are given, respectively, by

1 ‘l B
Wor © ) U= {uge = o) + [ {ugg +w

2 2 q1/2
cil” ¥ 4mpe IR

_.l_ - B y2 1/2
w' = x { (w wci) + | {w  +tw . )2+ 4w§e ] /2y

ce ce C1

Compare these expressions with Eqs. (16.6.13) and (16.6.14).



17.4

17.5

17.6

17.7
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Starting from Egs. (5.12), (5.40), (5.41) and (5.42) provide

all the necessary steps to obtain Eq. (5.43).

Obtain a cubic equation in k?, from Eq. (5.50), and analyse the
dispersionreTations for these three modes of wave propagation

across B0 in a fully ionized warm plasma.

Make plots analogous to Figs. 9, 10 and 11-for wave propagation
in a fully ionized warm plasma, but in terms of w as function

of the real part of k.

Show that the resonances in a warm fully ionized magnetoplasma,
neglecting collisions, occur at the frequencies w = Weg COS 8

and w = . COS 4.
w mCl 3]
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