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CHAPTER 20

PARTICLE INTERACTIONS IN PLASMAS

1, INTRODUCTION

The fundamental properties of a plasma depend upon the
interactions of the plasma particles with the force fields existing
inside it. These fields may be externally applied, or they can be
internal fields associated with the nature and motion of the particles
themselves. These mutual particle interactions are called collisions.
In this chapter the words collision and interaction are used
synonymously. The notion of a collision as a physical contact between
bodies Toses its utility in the microscopic world. In the atomic
level a collision between particles must be regarded as an interaction
between the fields of force associated with each of the interacting

particles.

Collisional phenomena can be broadly divided into two
categories: elastic and inelastic. In elastic collisions there is
conservation of mass, momentum and energy in such a way that there
are no changes in the internal states of the particles involved, and
there is neither creation nor annihilation of particles. In <nelgstic
collisions. the internal states of some or all of the particles
involved are changed, and particles may be created, as well as

destroyed. In inelastic collisions a charged particle may recombine



with another to form a neutral particle; it can attach itself with a
neutral particle to form a heavier charged particle; the energy state
of an electron in an atom may be raised and electrons can be removed

from their atoms resulting in Zonization.

In plasmas there is an important distinction to be
made between interactions involving electrically charged particles
and interactions involving charged and neutral particles. Electrically
charged particles interact with one another according to Coulomb's
law. This Coulomb interaction, in view of its 1/r2? dependence, is a
long-range interaction, so that the field of one particle interacts
simultaneously with a large number of other particles. Therefore, it
involves multiple interactions. In contrast, the fields associated
with neutral particles are significantly strong only within the
electronic shelis of the particles. Thus, they are short-range fields
and a neutral particle only occasionally interacts with another
particle, and very rarely it interacts simultaneously with more than
one particle. Therefore, these short-range fields result primarily

in binary interactions.

The multiple particle Coulomb interaction, however, can
be thought of as a number of simultaneous binary interactions. In
fact, one way of dealing with multiple interactions is to consider that

a series of consecutive small-angle binary interactions describes the



situation. The multiple interactions, which result from the Coulomb
force, are of essential importance in understanding the behavior of
plasmas and underlines the validity of describing a plasma as the
fourth state of matter. Nevertheless, binary collisions adequately
describe plasma phenomena in the case of weakly iomized plasmas. In
fact, we wuse the term weakly ionized plasma to mean a plasma in
which multiple particle interactions can be ignored. In these plasmas
the electrons tend to dominate the situation, since they respond
quickly to the influence of electric and magnetic fields, in view of

their low inertia.

In this chapter we deal with the collision processes
that are of importance in plasmas, from the point of view of classical
dynamics. The results are valid to a good approximation, even though
the internal structure of the particles is ignored. More important,
however, the procedures to be developed are useful whether the

mechanics is classical or quantum.

2. BINARY COLLISIONS

Consider an elastic collision between two particles of
mass m and my, having velocities v and v, before collision, and v'
and vi after collision. This binary interaction is illustrated in
Fig. 1, as seen from the laboratory system. In what follows, the

variables indicated with a prime are after - collision variables.



Fig. 1 - Binary interaction of two particles of mass m
and my, with velocities v and v;, respectively,
as viewed from the laboratory system.

It is convenient to adopt a coordinate system in which
the particle having mass m is at rest, and the particle having mass m,
approaches with the relative velocity

g=vy -y (2.1)

After collision, the relative velocity is

s
1]
1
-
]
te

(2.2)

The geometry of the interaction is shown in Fig. 2. The <mpact
parameter, defined as the minimum distance of approach if there were

no interaction, is denoted by b, the scattering angle by x, and the



orientation of the orbital plane (or collision plane), with respect to
some given direction in a plane normal to the orbital plane, is

denoted by e.

] I !

g=v, -~V
my g=Vv,~v
-~ % —
U~ el m,

Fig. 2 - Geometry of a collision between a particle of mass m and
velocity v, and a particle of mass m; and velocity v, viewed
from a coordinate system in which the first particle is at
rest.

The velocity of the center of mass of the colliding

particles, before collision, is defined by

m! + my !1 (2 3)
m + m;

%o

and, after collision, by

i
my' o+ my vy

Cl = o (2.4)
m + my




We can express the initial velocities in terms of Co

and g. From Egs. (2.3) and (2.1), which define c, and g, respectively,

0
we find

V=2, - (u/m) g (2.5)
vi=c,+ (u/m) g (2.6)
where yu denotes the reduced mass, defined by
m my
B — (2.7)
m + ml

Similarly, from (2.4) and (2.2) we obtain, for the final velocities,

vi=cl - (w/m) g (2.8)

Pz
bt =
n

Cy + (u/my) g' (2.9)

From the law of conservation of momentum for the

collision event, we have

my + mp vy =mv' + m v (2.10)

or, using Eqs. (2.3) and (2.4),



{m+my) ¢ (m+my) c) (2.11)

Thus,
c.=c¢' (2.12)

that is, the velocity of the center of mass is the same before and

after the interaction event.

From the law of conservation of energy for elastic

collisions, we have

~ |-

(mv2 + m,y vi) = “%?‘ -m (v')2 +my (v))? } (2.13)

and using Eqs. (2.5}, (2.6), (2.8) and (2.9) we find, by direct

calculation,
1 2 2y _ | 2 1 2
— (mvZ + my Vi) = —— (m +my) c2 + — g (2.14)
2 2 °
1— EY 2 |2_] 1y2 ] Y2
—E* m(v')s +m (vy)?| = “E—'(m + M) (CO) +'—E— v (g") (2.15)

Now, since c_ = Cé’ we conclude that

0

g=g (2.16)



Thus, the magnitude, but not the direction of the relative velocity
is conserved in a binary elastic collision. Egs. (2.14) and (2.15)
show that the total instantaneous kinetic energy of the two-particle
system is equivalent to that associated with the motion of the center
of mass plus the motion of one particle relative to the other, but
using the reduced mass.

The angle between g and g' is cailed the scattering
angle, or deflection angle, and is denoted by x. To relate the relative
velocity vectors g and g', we can choose, for instance, a Cartesian

coordinate system with the z-axis along g, as shown in Fig. 3.

Ay
1
L |3,
/l:’l ,”E
FA | ]
Iy " r’e :
7
ot XN
Z « A :

Fig. 3 - Relationship between the relative velocities g
and g', in a Cartesian coordinate system for
which g = g z. The angle ¢ defines the relative
orientation Sf the plane containing the

particle trajectory.



Thus, we have

9, =9, =0 (2.17)
g, =9=4g (2.18)
g, = 9 sin (x} cos (¢) (2.19)
g, = 9 sin (x} sin (e} (2.20)
g9, = g cos (x) (2.21)

where ¢ defines the relative orientation of the eollision plane.
Therefore, knowing the initial velocites and the scattering angle x
we can determine the after-collision velocities. The opposite is also
true, that is, if we know the final velocities and the scattering

angle we can find the initial velocities.

It is of interest to consider the <nverse collision
(see Fig. 1, of Chapter 7}, in which a particle with initial velocity
v' collides with another particle having initial velocity vi, the
velocities after collision being v and vy, respectively. For the
inverse collision the scattering angle x is the same as that for the
direct collision, since the impact parameter b, the interparticle

force law and the relative speed g. are all the same.

The scattering angle is the only quantity appearing
in the analysis presented in this section that depends on the details
of the collision process. For interparticle force laws which depend

only on the distance between the interacting particles, y depends
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on the following quantities:
{a) Interparticle force law;

(b} Magnitude of the relative velocity. g;:

(c) The value of the impact parameter, b.

Therefore, in order to determine x, we must analyse the classical

dynamics of binary collisions.

3. DYNAMICS OF BINARY COLLISIONS

The dynamics of a binary collision is governed by the
interparticle force law. For each impact parameter, b, there will be
associated a given scattering angle, yx, the relation being dependent
on the interparticle force law. This information is contained in the

differential cross section, which is defined in section 5.

Consider the collision of two particles of masses m and
mys Viewed from a system of reference in which the first particle is
at rest. Let r be the position vector of the particle of mass m; with
respect to that of mass m (Fig. 4). The force of interaction
between the two particles is assumed to be a central force, which acts

along the straight line joining the two particles, that is,

F(r)=F(r)r (3.1}

This force is related to the potential energy, ¢ (r), of the
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interaction by the condition

F(r)

It
1
=1
=
——
5
Mt

= - _9¢ Ar r (3.2)

PATH r(e)

Fig. 4 - Path r (@) of the particle of mass m;, relative to the
particle of mass m.

For a central force the torque N =r x F(r) vanishes, because

F (r) is parallel to r. Since the torque is the time rate of change

of the angular momentum, L ,

dL
N (3.3)
" dt
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we conclude that the angular momentum is a constant of the motion.
Furthermore, since L = r x p, we see that r is always normal to the
constant direction of L in space, and the motion lies therefore in

a plane.

Using polar coordinates (r, 8) and noting that the unit
vectors r and § depend on o (Fig. 5), we have for the

instantaneous relative velocity,

dr dr dr
—— = ——F +r —
dt dt ~ dt
dr dr de
=E—_—r ¢ p =" (3.4)
dt ~ de dt

Since it can be shown that df/de = 0, we obtain

é(o
6) (9)

O

Fig. 5 - Polar coordinates (r, o), showing that the
directions of the unit vectors r and 8 depend
on o.
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r+r——:=s (3.5)

t=5
n
-
13}
+
-
@ »
1D}

(3.6)

The trajectory of the particie 1in the equivalent one
body problem can be easily found by using the laws of conservation of
energy and angular momentum. The kinetic energy of the relative motion

is given by

(r2 + 2 62) (3.7)

I=3 »
175 »
1
=

K=y
2

where p is the reduced mass, defined by m my/(m + my). From the law of
conservation of energy we can equate the kinetic plus potential
energy, at any point, to the initial kinetic energy (—%— ug?), since

the initial potential energy is zero. Thus, we have

—l—-u (;2 + r2 52) + ¢ (r) = —l-ugz (3.8)
2 2

The angular momentum vrelative to the origin 1is given by

L = rx(ur) = ur2s (7 x5 (3.9)
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Setting the angular momentum, at any point, equal to its initial value,
AAAAA bug (r x 8), we get

r2 g = by (3.10)

From Egs. (3.8) and (3.1) we can easily obtain a

differential equation for the orbit r (e). First, we write

dr _ _dr de (3.11)

dt de dt

and use Egs. (3.70) and (3.8) to eliminate do/dt and dr/dt. The

resulting differential equation for the trajectory is found to be

2 4 2
Ayt - b2 2 (1) g (3.12)

_ Rearranging (3.12) yields the following result

2 =1/2
,,,,, do =+ b [1 b2 2 (r) 372 (3.13)
r2 r2 ug?

The choice of sign must be made on physical grounds. The coordinates

of the position of the particle, when it is at the distance of closest
approach, are denoted by " and O (Fig. 4). This position is

called the vertex of the trajectory, and the line connecting the origin
to the vertex is called the apse Iine. Thus, O specifies the

orientation of the apse line. The plus sign in Eq. (3.13) must be
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used when 8 is greater than B since for 6 > b, we see that r
increases with e. On the other hand, for ¢ < 0, we see that r
decreases as 8 increases, so that the minus sign in Eq. (3.13) must
be used when & is less than O This also shows that the trajectory is

symmetrical about the apse line.

The distance of closest approach, rg» can be obtained

from £q. (3.12) by noting that dr/de = 0 when r = ' Thus, we have

2¢ (r.)
2
1 - t’z - L (3.14)
2
Pm ug
or
24 (r) "Y/?
m
r = b[l '“‘“"2_:] (3.15)
ug
To compute the scattering angle, x. we first note, from
Fig. 4, that
x =1 - 29m (3.16)

In order to determine 8, Wwe integrate Eq. (3.13) from 8, to some

other angle e, obtaining

r
6 -8 = * b F __b% 29 (r') ]-1/2 dr' (3.17)
- r'2 ug?
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where the plus sign is te be used when 8 > m and the minus sign when
6 < 6 . When r > « we have a(_) + 0, while e(+) > Zem, so that Eq.

(3.17) gives, for the orientation of the apse line,

6 = B l—l . b2 2 (‘")]_1/2 dr (3.18)
" r - r2 ug?

The scattering angle is therefore given by

To compute x from this equation we must know the impact parameter b,
the magnitude of the initial relative velocity g, and the interparticle

potential energy ¢ (r).

4. EVALUATION OF x FOR SOME SPECIAL CASES

In this section we present two examples of the use of
Eq. (3.19) to determine the scattering angle in terms of the impact
parameter b, and the initial relative velocity g. First, we consider
the collision between two perfectly elastic hard spheres and afterwards

the case of the Coulomb interaction.
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4.1 - Two perfectly elastic hard spheres

Consider the collision between two perfectly elastic
hard spheres of radii R, and R, ( Fig. 6). The potential energy of

interaction is given by

0 for r>R; +R,

¢ (r) = (4.1)
= for r < Rl + R2

For b > Ry + R, there 'is no interaction and we must have ro = bs
whereas for b < Ry + R, the particles collide and we have
ro = Ry + Ry. In either case, however, since the spheres are

impenetrable, we have r 3 R; + R,, s0 that Eg. (3.1%) becomes

Fig. 6 - Collision between two perfectly elastic impenetrable spheres.



K= -2 J b_ (7. bz)-l/zdr‘ (4.2)

To solve this integral it is convenient to define a new variable by

¥y = b/r and write Eq. (4.2) in the form

b/rm /2
B X = m-2 J (1 -y2) " dy (4.3)
o]

which gives
x = mn-2 sin”1 (b/rp) (4.4)

Therefore, we find that

7 -2 sin"! [b/(Ry + Ry)| for b <Ry +R,y

X = (4.5)
0 for bRy +R,

4.2 - Coulomb interaction potential

Let us consider now the important case of the Coulomb

potential field, whose potential energy of interaction is given by

9901
6 (r) = — (4.6)
4-111-:0 r
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where g and g; denote the electric charge of the particles of mass m

and my, respectively. Substituting (4.6) into (3.19), gives

* 2 -1/2
2 9q;
b_ g . BT ) dr (4.7)

r2 r? ugz4ﬂeor

The distance of closest approach, Y’ is obtained from Eqs. (3.15) and

(4.6), and is found to be

r = (4.8)

where, for convenience, we have introduced the notation

q 9
b, = —mM8M8M— (4.9)
4we0 ug2

Making the change of variable y = 1/r and inserting the value for bo’

given by {4.9), into (4.7), gives for the deflection angle

1/r
m -1/2
x(b,g) =n-2b J (1 -2b0y-b2y2) dy {4.10)

0

The integral appearing here is of the standard form
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(u+w+yﬁﬂ_”2dx=—L— sM'l{(szx_BL] (4.11)

V- gZ - dav) 1/2

where, in our case, o

1, 8=-2b,, and v = -b%. Applying the limits
of integration, with o as given by (4.8), yields for the deflection

angle

b

= 2 sin”] 9 .

x (b, g) = 2 sin [ PRIV } (4.12)
o

This equation for y (b, g) can be written in the alternative form

tan (%) = —b°— (4.13)
2 b
Note that for x = n/2 we have b = bo’ that is, b0 is the value of
the impact parameter for a 90° deflection angle. If the
sign of the two charged particles are the same, then bg and
x will both the positive. On the other hand, if the sign of the two
charged particles are opposite, then b0 and x will be negative. The
two situations are illustrated in Fig. 7, for a deflection angle of
90°. It is also noted, from Eq. (4.13), that x =« for b =10, %
decreases as b increases, and y = 0 only in the Timit of b + .
Therefore, scattering occurs for all (finite) values of the impact

parameter b, s0 that there is no cut-off value for b.
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a>0
I

Q<0

L §
Fig. 7 - Scattering in a Coulomb potential field for a deflection
angle,y, of 90°,

5. CROSS SECTIONS

So far we have considered specifically only the
interaction between two particles. Cross sections are usually defined
in terms of a beam of identical particles fincident on a center of
force (target particle}. Therefore, let us imagine a steady beam of
identical particles of mass m;, uniformly spread out in space,
incident with velocity g = v; - v upon the center of force provided
by the particle of mass m, in its rest frame of reference. For
simplicity, the incident beam of particles is assumed to be monoenergetic,
so that all the particles in the beam have the same initial relative
velocity, g, with respect to the scattering particle. Since the
particles in the incident beam are supposed to be identical, the

interaction potential is the same for all the particles in the beam.
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The particles incident with an impact parameter b are
scattered through some deflection angle x, whereas the particles
incident with an impact parameter b + db will be scattered through
the deflection angle x + dy (Fig. 8). The number of particles
scattered per second, between the angles yx and x + dx, depends on
the incident particle currentdensity (particle flux), I, that is, on
the number of particles in the incident beam crossing a unit area

normal to the beam per unit time.

5.1 - Differential scattering cross section

Let dN/dt denote the number of particles scattered per
unit time into the differential element of solid angle do, oriented
at (x, ), as shown in Fig. 8. The differential elastic scattering
eross section, oy, ) {(also referred to, in the literature, as the
angular distribution function), i1s defined as the number of particies
scattered per unit time, per unit incident flux and per unit solid
angle oriented at (x, ). Thus, according to this definition we have

N o (x, €) T d (5.1)
dt
The number of particles incident per unit time, with impact parameter
between b and b + db, and with the orbital plane oriented between e
and ¢ + de, is T bdb de. These same particles are scattered per unit
time into the differential element of solid angle do contained between

x and x+dy and between ¢ and ¢ + de. Thus, we have

Nt bdb de (5.2)

dt
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AREA=r2 dQ=r2 sin X dX de

\ o .
\ !
N\
N T T T T T TINer sinX de
\
daX o /€
h de b
N
Ny D .
ST \
-
z m “ c
X
X
AREA =b db dE
Yadb
{ de
il 4 b
% F— } d -
- {
Z
QORBITAL PLANE
X~-Y PLANE

Fig. 8 - Scattering in a central field of force.
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Comparing Eqs. (5.1) and {5.2) we see that, according to the
definition of the differential scattering cross section, o (y%, €),

we have

o (x> €) d2 = b db de (5.3)

Since d@ = sin x dy de, this equation can also be written as

o {xs €) sin y dx =b db (5.4)

Solving for the differential scattering cross section, we obtain

o (x ) = —2 |- (5.5)

sin x dy

The absolute value of db/dy is used here, because y normally decreases
when b increases, and the differential scattering cross section

o (x, ) is inherently a positive quantity, since it is associated
with the number of particles being scattered. The quantity db/dy can
be obtained from Eg. (3.19), which gives y (b, g) once the potential

energy function, ¢ (r), is known,

The differential cross section has the dimensions of
area and may be interpreted in a geometrical way such that the
number of particles scattered into the solid angle element d per
second 1is equal to the number of particles crossing an area equal to

o (x» €) d2 {or b db de) in the incident beam. per second.
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The form of o (x, ) depends on the interparticle force
law and, if this force law is known, ¢ (x, ¢} can be calculated.
However, a quantum mechanical calculation must be employed for this
purpose, since the quantum wave packets of the colliding particles
necessarily overlap and the problem is no longer a classical one. For
a collection of atoms or molecules to be regarded classically, with
each particle having a rather well-defined position and momentum, it
is necessary that the particles be localized wave packets whose
extensions are small compared to the average interparticle distance.
For a classical treatment the average de Broglie wavelength of each
particle must, therefore, be much smaller than the average

interparticle separation.

The differential cross section is also a directly
measurable quantity and can be obtained experimentally. For our
purposes, we will consider the differential cross section, o (x, &),
which contains the nature of the collisional interaction, as a known

quantity.

5.2 - Total scattering cross section

The total scattering cross sectionm, Tps is defined as
the number of particles scattered per unit timeand per unit incident
flux, in all directions from the scattering center. It is obtained by

integrating o (x, ) do over the entire solid angle,
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2n L
0 = JG (x, €) do = J de [ o (%, ) sin X dx (5.6)
5 0 0

Both o (x, e) and o, depend on the magnitude of the relative particle
velocity, 9.

In the special case when the interaction potential is
itsotropic, that is, when the differential scattering cross section is
independent of e, we can immediately perform the integral over ¢ in

(5.6}, to get

0
op = EHJ o {x) sin x dy (5.7)

This is the case, for example, of the Coulomb interaction potential.

5.3 - Momentum transfer cross section

A cross section can be defined for varicus processes of
interaction. It will be seen later that the transfer of momentum,
during a collision, is the basic microscopic event in the transport
phenomena of diffusion and mobility. Hence, it is appropriate to define
a cross section for the rate of transfer of momentum, Op> 85 the total
momentum transferred per unit time to the scattering center, per unit

incident momentum flux (momentum per normal unit area, per unit time),



- 27 -

. {momentum transferred per second)
(incident momentum flux)

The momentum of a particle in the beam, before interaction, is .g,
where u is the reduced mass and g is the initial relative velocity.
The incident momentum flux is therefore Tug. After interaction, the
momentum of a particle in the beam, in the direction of incidence, and
which is scattered at an angle y, is ug cosy. Therefore, the momentum
transferred by this particle to the scattering center is ug (1 -cos y).
The total momentum transferred per second to the scattering center,

by all the particles scattered in all directions in space, is given by
I ug l (1-cosy) o (x, ) do (5.9)
Q

Recall that o (x, €) can be considered as an angular distribution
function. Since the total incident momentum flux is T ng, we obtain

for the momentwn transfer cross section,

Q
It

. (1-cosx) o {x, ) do (5.10)
Q

For the special case of an <sotropic interaction
potential, and noting that d 9 = sin x dx de, we can perform the

integral over e, in Eq. (5.10), obtaining
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6 = 2u (1 - cos x) o (x) siny dy (5.11)

Since ¢ (x) is an angular distribution function, it can be used as a
. weight function to calculate the mean value of any function F (yx) of
the scattering angle. The contribution to the total value of F (x),
resulting from the particles scattered into do, is F {x) o (x) da.
Since the total number of particles scattered is J o (x) da, it

follows that the mean value of F (y), averaged over all values of yx, is

given by
[F 00 o (0 a0
< F (X) > = f (5'12)
J g {x) da
_ Q
which may be written as
- m™
<F (x) » = - J F(x) o {x)sinyx dy (5.13)
[0
t 0

According to this definition of mean values we see that

Eq. (5.11) can be written in the form

op = O < 1-cos ¢ > (5.14)
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Thus, the cross section for momentum transfer is a  weighted

cross section in which scattering angles of zero degrees do not count
at all, scatterings of 90° count as one, and scatterings of 180°
count as two. This weighting is proportional to the amount of
momentum transferred from the incident beam to the scattering

center.

6. CROSS SECTIONS FOR THE HARD SPHERE MODEL

6.1 - Differential scattering cross section

To calculate o(x, ), as given in Eq. (5.5}, we first

obtain from (4.5), for b < R; + Ry,

b = (Ry + Ry} cos (x/2) (6.1)

and

l - L (R, +Ry) sin (x/2) (6.2)
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Substituting these last two expressions into (5.5), yields for the

differential scattering cross section

o = (Ry + R,)2/4 (6.3)

6.2 - Total scattering cross section

Integrating (6.3) over the whole solid angle, we obtain

T (Ry + Ry)?

2n —————— sin y dx = 1 (R, + R,)? (6.4)
4

Two special simple cases may be mentioned here. For the collision
between an electron and a molecule of radius R, we have ¢ = R2/4 and
Op =T RZ. For molecules colliding with themselves, their diameter

being D, we have o = D2/4 and op =T D2,

Note that in this case there is a cut-off value for
the impact parameter b, beyond which collisions do not occur. It is the
existence of this cut-off value for b that leads to a finite value
for the total scattering cross section Oy - This conclusion is made

clear in the next section.

6.3 - Momentum transfer cross section

From Eqs. (6.3) and (5.11) we obtain
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TRy +Ry)2
o = 2w ———— (1 -cos ¥) sinXx dx (6.5)
4
o}

w (Rl + Rz)z T "
= ( sin x dy - cos x siny dx)

0
Performing the integrals, yields

o, = m (Ry + Rp)2 (6.6)

The average value of momentum loss per particle is

found, from Eq. (5.13), to be given by

™
<ug (1-cosy)> = 2n J ug (1 -cosy) o (x) siny dy (6.7)
o
t

0
Using Eq. {5.11), we get

< ug (1-cosx) > = ug o /o, (6.3)

Thus, from Eqs. (6.4), (6.7) and (6.8) we deduce that the average

value of momentum loss, per particle, for the hard sphere model, is

<ug (1-cosx) > = ug (6.9)
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For collisions between electrons and neutral particles,
for example, in a weakly ionized plasma, the mass of the electron can
be neglected as compared to the mass of the neutral particle, so that
the reduced mass becomes equal to the electron mass. From Eq.
(6.9) it is seen, in the first approximation, that the entire momentum
of an electron is lost in a collision with a neutral particle. Assuming
that the motion of the heavy particles can be ignored, and if v is the
collision frequency, that is, the number of collisions between
electrons and neutral particles per second, then the rate of loss of
momentum of an average electron is v m, U, where u denotes the electron
velocity. However, in general an electron does not lose its entire
momentum on a collision with a neutral particle, and also the
perfectly elastic hard sphere model is not a very good representation
for the interaction of an electron with a neutral particle.
Consequently, rate of loss of momentum is written as, v_ m_ U,

en e ~
where Van is an effective collision frequency Tor momentum transfer
between electrons and neutral particles. This term is used in the
Langevin equation, introduced in Chapter 10, to represent the time

rate of transfer of momentum due to collisions.
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7. CROSS SECTIONS FOR THE COULOMB POTENTIAL FIELD

7.1 - Differential scattering cross section

Differentiating Eq. (4.13) we find

’EE - b (7.1)
dy 2b0 cos2 (x/2)

Thus, the differential scaterring cross section, given in Egq. (5.5),

becomes

) I —. (7.2)
2bD sin (yx) cos? (x/2)

Using (4.13) this egquation can be rearranged as

b2
0 (7.3)

a(x) = ——
4 sint(x/2)}

This equation is known as the Rutherford scattering formula. Since

2 sin2 (x/2) ={1 - cos x), it can also be written as
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b2
o (x) = 0 (7.4)

(1 - cos )2

The Rutherford scattering formula shows that the differential scattering
cross section is equal to b§/4 for the deflection angle y = w,

increases monotonically as x is decreased, and tends to infinity as x

tends to zero.

7.2 - Total scattering cross section

Since the differential scattering cross section increases
rapidly to infinity as x goes to zero, it turns out that the total
scattering cross section oy becomes infinite. From Eqs. (5.7) and

(7.4), we obtain

m m
. sin X
g, = 2n o siny dy = 27 b2
t J (X) X X m 0 [ (.I - cos X)z

*min min

dx (7.5)

where Xmin = 0. The Tower 1imit has been written implicitly for
reasons that will become apparent in what follows. Evaluating the

integral in (7.5), yields

1
o, = mh? -1 (7.6)
b [sw (yi/2)
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which clearly gives gp = for = 0. The particles with very small

Xmin

deflection angles contribute to make o infinite.

7.3 - Momentum transfer cross section

The substitution of (7.4) into (5.11) gives the

following expression for the momentum transfer cross section

o = 2r | (1-cosy) o (x)siny dx = 2nb2 | —210X 4y
0
(1 -cos x)
min Y s
min

where, again, y = 0. Evaluating the integral we find that

min

O = dn bZ n

— ] (7.8)
_sin (Xmin/z)
Setting Xpin = 0 we also find that g = @ Thus, the Coulomb potential
gives infinite values for both 9t and one the particles with very

small deflections angles being responsible for this infinite result.

8. EFFECT OF SCREENING OF THE COULOMB POTENTIAL

The infinite results for gy and O obtained in the
previous section, may be interpreted as due to the absence of a cut-off

value for the impact parameter b. Note that small values of ¥
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correspond to large values of b, and that for Xoin = 0 we must have,
from Eq. (4.13), b.ay = = In order to obtain finite and meaningful
values for oy and O? it is necessary to modify the basis of the
treatment of interactions between individual charged particles and

introduce, on some plausible grounds, a cut-off value b = bC for the

impact parameter.

From Egs. (5.3) and (5.6) we have for the total

scattering cross section {considering ¢ independent of &)

where a cut-off value b = bC has been introduced for the impact

parameter. With this cut-off, o, for the Coulomb potential 1is found

t
to be

Op =T bé (8.2)
The introduction of a cut-off value for b corresponds to the assumption
that, for the charged particles incident with b greater than bC there
will be no interaction, whereas for the charged particles incident with

b Tess than bC there will be a Coulomb type interaction with the

target particle.

The deflections that yield scattering angles between

/2 and w, and which are associated with values of b between 0 and bo’
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are usually called large-angle deflections, or close encounters. If

only the Targe-angle deflections are taken into account, we obtain

9%, large - ﬂbg {(v/2 < x <) (8.3)

with b, as given by (4.9).

If the charged particle is located inside a plasma we
know that it will be surrounded by a shielding cloud of particles of
opposite sign. The scale length for an effective shielding of the
charged particle under consideration is the Debye length

defined by

= (—2—) (8.4)

The sphere of radius Aps surrounding the charged particle under
consideration, is called the Debye sphere. We have seen (Chapter 11)
that the charged particles lying within the Debye sphere

shield the Coulonib potential due to the charged

particle under consideration, reducing significantly its effect
on the particles lying outside its Debye sphere. Taking this screening

effect into account, we find that the interaction potential energy

is of the form
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¢ (r) = —— exp ( -r/lD) (8.5)

Thus, when r << Ap the Debye potential, as given by (8.5), is very

nearly equal to the Coulomb potential, whereas when r >> 2  the Debye

D
potential is nearly equal to zero. The analysis required for
calculating Og » using the Debye potential, is excessively complicated
and it must be done numerically. However, an alternative simple
approach can be used that leads to results in very good agreement with
those evaluated numerically using the Debye potential. It consists in
assuming that the interaction potential is exactly equal to the Coulomb
potential for r < g and is equal to zero for r > Ap» S illustrated in
Fig. 9. Therefore, it is convenient and more legitimate to introduce
the cut-off in the impact parameter at bC =X and not at bc = bo' In

general we have

Ay >> by {8.6)

It is usual to denominate the deflections corresponding
to b0 < b« Ay leading to x < #/2, as small-angle deflections. The
contribution to the total scattering cross section from the small-

angle deflections is deduced to be given by

A
D
t,small = 27 bdb =7 (2§ - b3) (x < /2) (8.7)

b
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-

Fig. 9 - The approximation used to obtain oy = wAﬁ consists in assuming
that for r < Ap the shielding effect is completely omitted
and the particles interact according to the Coulomb potential,
whereas for r > Ap the shielding of the target particle is
assumed to be complete and there is no interaction.
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Therefore, it follows from Eqs. (8.3) and (8.7) that

¢, small

= ( D )2 -1 = (—)2 (8.8)
%t, Targe 0 0

since Ag >> bo‘ This result shows that the large number of particles
interacting mildly with the target particle,and therefore producing
only small-angle deflections, are much more important than the small
number of particles interacting strongly with the target particle and
producing large-angle deflections. Therefore, if the impact parameter
is cut-off at bc =Ap we obtain, from (8.1), the following value for

the total scattering cross section
- 2
= Aj (8.9)

For the momentum transfer cross section, introducing

the cut-off at bC = Aps we obtain from Egq. (7.8)

O = 2'nb§ an _] + (J\D/bo)2 } (8.10)

since from Eq. (4.12), letting x = x. for b = b.» we have

Cc
sin (x/2) = |1+ (b /b ) ]'1/2 (8.11)

Using the notation
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A= ap/b, (8.12)
and noting that in general A >> 1, Eq. (8.10) becomes
o, = A4m b§ n A (8.13)

It can be shown that for Oy 28 for the case of Tps the large number
of particles producing small-angle deflections are much more important

than the small number of particles producing large-angle deflections.

The function an A varies very slowly over a large range
of variation of the parameters on which A depends. For most laboratory
plasmas &n A lies between 10 and 20. In order to calculate A it is
usual to make some approximations. For this purpose consider the
interaction between an electron gas (charge q =-e) and a singly
charged ion gas (g;=e; Z=1). Let Ny denote the number density of both
electrons and ions in the gas, which we assume to constitute a plasma,
and let the temperature of the electrons and ions be equal to T.

If we further assume that the electron and ion velocities have a
Maxwellian equilibrium distribution function with no drift velocity,

then we find, by direct calculation,

< gz > = 1 J J.Fe f-il (!1 _!)2 d3vy d3vl =.-I_ er ( 3kT + V2) d3v
n
0

ng my
vV V3 v

= 3KT/n (8.14)
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where k is Boltzmann‘s constant and y is the reduced mass.

Replacing g2, in Eg. (4.9), by its average value, we find (for

e)

0

—
1]
I

Q0
1]

2 2
b, = € = e (8.15)
47rsou<g2> 121r50 kT

Substituting this result into the expression (8.12), with Ap as given

by (8.4), gives

12we kT
o

- .o - 3 -
A= " Ap = 1270 A3 9 Ny (8.16)

where ND is the number of electrons in a Debye sphere. Table 1 presents
values for gn A, for various values of the electron number density, Ny

and the electron temperature, T.
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PROBLEMS

For a differential scattering cross section with an angular

dependence given by

where . is a constant, calculate the total cross section and

the momentum transfer cross section.

Consider a collision between two particles of mass m and m;, in
which the particle of mass m; is initially at rest. Denote the
scattering angle in the center of mass coordinate system by x,
and in the Zaboratory coordinate system (as seen by an observer

at rest) by X -

(a) Show that

sin ¥

tan XL =
cos ¥ + m/mq
(b} Show that the relationship between the differential

scattering cross section in the laboratory system, cL(xL), and

in the center of mass coordinate system, o(x), is given by
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1+ 2(m/my) cosx+ (m/mg)? ]3/2

C1+ (m/m) cosx ]

UL(XL) = o(x)

Note that when m; = » we have X, = X and cL(xL) =g ()

{c) Verify that when m = m; we obtain X, = x/2 and

GL(XL) = 4 cos (X/z) o(x)-

Consider two particles whose interaction is governed by the

following retangular-well potential,

¢(r) =0 for r > a
o(r) = -¢ for r <a

(a) Calculate the differential scattering crosssection o(x),

and show that itis given by (for b < a)

p2 a2 [pcos {x/2) - 1] [p - cos (x/2)]

4 cos (x/2) [1 - 2p cos(x/2) + p? 12

o(x) =

where
p=(1+ 2¢D/u92)1/2

(b) Show that the total scattering cross section is given by
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Consider a general inverse-power interpaticie force of the form

K
F(r) = ——

where K is a constant and p is a positive integer number.

(a) Determine expressions for the scattering angle yx, the
differential scattering cross section o{y, e), the total
scattering cross section Oy and the momentum transfer cross
section Oyt

(b) Calculate x, o(x, e),0, and o for the case of Maxwell

molecules, for which p = 5.

From the expression for O obtained in part (a) of Problem
20.4, verify that for p = 2 the momentum transfer cross

section is given by

L]z A1(2) L

a =2’|T[ gq

m
u

where A;(2) is given by (with ¢ =1 and p = 2)

N R )
Ag(p) = J (1 - cos™ x) v, dvo

0

. [kgg}l/(p—l)
0 LK
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Consequently, the velocity-dependent collision frequency,
defined by

ve(9) =no. g

m

varies as g-3. This inverse dependence on g accounts for the
electron runaway effect. (In the presence of a sufficiently
large electric field E, some electrons will gain enough energy
between collisions so as to decrease their cross section and
collision frequency, which in turn allow them to pick up more
energy from the field and decrease their cross section and
collision frequency even further. If E 1is large enough, the
collision frequency will fall so fast that these electrons

will form an accelerated beam of runaway electrons).

Show that for the case of Coulomb interactions (p = 2) we

have

Ap(2) =

]
N
=
[fm]
| —
N
o
[m 3,8 ]
o
=0
=
4
=
N
g

. ) -
en (1 +A2) - A |

2y = [ 292 1% oy 2
M2y < [ 42" 2n2 | ]

2
K

where b = QQ1/(41T301192)s Ag(p) is as defined in Problem

20.5, and A = AD/bO. For A »>> 1 verify that
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2 12
A1(2)={“—9—} 2b2 ana = 22n A
K
2132
Ay (2} = [ Hﬂ—-J 2b§ (2 anpA=1) =2 (2znA-1)
K

Note that, since K = qql/(41reo) for Coulomb interactions, we

have (ug?/K)2 bg =1.
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