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High-dimensional interior crisis in the Kuramoto-Sivashinsky equation
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An investigation of interior crisis of high dimensions in an extended spatiotemporal system exemplified by
the Kuramoto-Sivashinsky equation is reported. It is shown that unstable periodic orbits and their associated
invariant manifolds in the Poincateyperplane can effectively characterize the global bifurcation dynamics of
high-dimensional systems.
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The Kuramoto-SivashinskyKS) equation is a widely namical systems may provide a crucial link between low-
studied nonlinear reaction-diffusion equation that exhibits alimensional chaotic dynamical systems and spatiotemporal
wealth of nonlinear and turbulent states found in spatiallychaos(“intermediate” turbulencg[7]. It was shown that the
extended systems. It was first derived to describe the nonlirperiodic orbit theory{22] can determine the global averages
ear saturation of the collisional trapped-ion mode, a driftof the KS equation using the fundamental unstable limit
wave associated with the oscillation of plasma particlesycles[23]. We argue in this paper that unstable periodic
trapped in magnetic wells created by the inhomogeneou@rt{its and their associated invariant manifolds in the Poin-
magnetic field of a tokamakl]. This equation is also rel- care plane can be an effective tool for characterizing high-
evant for other nonlinear plasma phenomena such as tHémensional global bifurcations in the KS equation, as has
edge-localized-mode in tokamak®], glow-discharge struc- been shown in the deterministic dynamical systems of low
tures in near-electrode plasma regidd3, nonlinear cou- dimension[12,18,19.
pling of Langmuir and ion-acoustic wavpg$], and ionization The one-dimensional damped Kuramoto-Sivashinsky
waves in a neon glow dischard&], all of which can be €quation can be written 44,6,7,1q
modeled by the Ginzburg-Landau-type equation. It has been
proved that the KS equation is closely related to the Au=— 92u— vatu— d,u?, (1)
Ginzburg-Landau equation since under certain approxima-

R?dnes cl)tf ?ﬁgeg;rslzrfrgﬂgizae; cggﬂggﬁgéhﬁncgdmdﬁﬁxna:;np“Where u(x,t) is subject to periodic boundary conditions

plasma applications, the KS equation can model reactiont (X:1) =u(x+2m,1) andw s a ‘viscosity” damping param-

diffusion systems in chemical reactiof@], hydrodynamical eter. We ad_opt the spgctral mgthod .by expanding the solu-
instability in laminar flame front§8], Rayleigh-B@ard con- tions in a discrete spatial Fourier series
vection and flow of a viscous fluid down a vertical pld9é
nonlinear saturation of Rayleigh-Taylor instability in thin ” ,
films [10], and the dynamics of bright spots formed by self- U(X,t)=k2_m by(t)e'*. 2
focusing of a laser beafil]. -
Crises are global bifurcations that cause sudden changes o ) ) o
in chaotic attractors resulting from the collision of a chaoticA substitution of Eq(2) into Eg. (1) yields an infinite set of
attractor with an unstable periodic orlotPO) [12]. Interior ~ Ordinary differential equations for the complex Fourier coef-
and boundary crises have been experimentally observed infigientsby(t),
CO, laser[13], two ions in a Paul trapl4], a magnetoelastic
ribbon [15], a pendulunm16], and a leaky-faucdtl7]. Re- _ *
cent theoretical studies have indicated that crises can appear by (t)=(k?— vk*)b,(t)—ik 2 bn(Hb_m(t), (3
in plasmas[18—21]. Intermittency of Alfven waves in the m=-e
solar wind plasma can be induced by an interior cri&8].
Double boundary crises of Alfvewaves are seen in a com- where the dot denotes derivative with respectt.t&ince
plex plasma region in the presence of a large number ofi(x,t) is a real variable, it follows thdt = by . We restrict
coexisting attractorf19]. Other types of global bifurcations our investigation to the subspace of odd functios,t) =
that lead to crisis and torus breakdown in plasmas have beenau(—x,t) and assume thdi,(t) are purely imaginary by
identified theoreticallj20] and experimentally21]. settingb,(t) = —ia,(t)/2, wherea,(t) are real. Under these
Most previous analysis of crises are restricted to low-circumstances, Eq3) becomes
dimensional dynamical systems described by maps or ordi-

nary differential equation§12,18,19. In this paper, we re- K >
port interior crisis in an extended, spatiotemporal system ()= (k2= vkM au(t) + — a(t)a t 4
described by the KS equation. High-dimensional chaotic dy- (O =(K=rkadh+ 5 mzz—oo m(D3m(®). @)
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(b) 15 Ic ‘ ‘ ' FIG. 2. Three-dimensional projection,a,q,a,¢) Of the strong
1t ] strange attractor SSAlight line) defined in the 15-dimensional
l CHAOS Poincarehyperplane right after crisis at=0.029 920 20, superim-
0-5"‘—\'\\’\\‘ { 1 posed by the three-band weak strange attractor ¢k line at
}\‘ 0 | crisis (¥=0.029 920 21).
max o .
0.5} ] dow where we plot the Poincapmoints of the Fourier com-
ponentag as a function ofv. The corresponding behavior of
-1 ORDER ] the maximum Lyapunov exponent, calculated by the Wolf
-15t ] algorithm [24], is shown in Fig. (b). Evidently, the high-
‘ ‘ dimensional temporal dynamics of the KS equation preserves
0.029919 0.029921 0.029923 0.029925 the typical dynamical features of a low-dimensional dynami-
V cal system12,18,19. The dotted lines in Fig. (&) denote
the Poincargooints of the p-3 unstable periodic orbit which
(C) 0.7 ‘ ‘ ' emerges via a saddle-node bifurcationat 0.029 924 98,
0,65 | marked SN in Fig. @a). In this paper, we will analyze the
’ AN AW e e e e role played by this p-3 UPO in the onset of interior crisis at
0.6} 1 1,c=0.02992021, marked IC in Fig. 1.
g The interior crisis atv,c occurs when the p-3 UPO col-
0.55¢ 1 lides head on with the three-band weak strange attractor
evolved from the cascade of period-doubling bifurcations, as
0.51 seen in Fig. (a). The interior crisis leads to a sudden expan-
045! ] sion of the strange attractor, turning the weak strange attrac-
tor (WSA) into a strong strange attract@®SA), as seen in

] ‘ : Fig. 2. Figure 2 is a three-dimensional projection
0.029919 0.029921 0.029923 0.029925 (a;,a19,21) Of the strong strange attractdight line) de-

A% fined in the 15-dimensional Poincahyperplane right after
crisis (¥=0.02992020), superimposed by the three-band

FIG. 1. (a) Bifurcation diagram ofag as a function ofv. IC weak strange attractor (dark lin@ at crisis
denotes interior crisis and SN denotes saddle-node bifurcation. The 9 v

dotted lines represent the period-3 unstable periodic di)ivaria- =0.02992021). The interior crisis is characterized by an

tion of the maximum Lyapunov exponert,,, with v. (c) Variation abrupt jump _in the \_/alue_ of the maximum _Lyap!mov expo-
of the correlation lengti with ». nent, as indicated in Fig. (). At the crisis point ¢,c)

Amax=0.35, whereas after crisis at=0.029 920 06,

. ) =0.62. Thus, the interior crisis under consideration results in
wherea,=0, 1=(k,m)=<N, andN is the truncation order. 5 gyqdden increase in the temporal chaoticity of the
We solve numerically the high-dimensional dynamical sys«yramoto-Sivashinsky system.
tem given by Eq.(4) using a fourth-order variable step  The spatiotemporal pattern afx,t) after the interior cri-
Runge-Kutta integration routine. We choobk=16, since  sjs (,=0.02992006) is plotted in Fig. 3. Note that for the
numerical tests indicate that for the range of the control paghosen value of the damping parametemand the spatial
rameterv used in this paper the solution dynamics remainssystem size L=2, the dynamics of the Kuramoto-
essentially unaltered fd{>16. We adopt a Poincareap as  sjvashinsky equation is chaotic in time, but coherent in
the (N—1)-dimensional hyperplane defined by=0, with  gpace[23]. In fact, the spatial coherence remains basically

a;>0. unaltered throughout the whole rangerofised in Fig. 1a),
A bifurcation diagram can be obtained from the numericalas indicated by the correlation lengé25] in Fig. 1(c).
solutions of the 16-mode truncation of E¢) by varying the On the Poincarehyperplane, an unstable periodic orbit

control parameter. Figure 1a shows a period-8p-3) win-  turns into a saddle fixed point, with its associated invariant
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FIG. 3. The spatiotemporal pattern ofx,t) after crisis atv (b) —2.5t v =0.02992021
=0.029 920 06. The system dynamics is chaotic in time but coher-

ent in space.

stable and unstable manifol6]. At crisis v, only one of ads
the 16 stability eigenvalues for the p-3 UPO has an absolute _o59}
value greater than 1, implying that the invariant unstable
manifolds are one-dimensional. Of the remaining eigenval-
ues, one has an absolute value equal to unity and all the other -2.53

14 have absolute values less than 1, implying that the invari-
ant stable manifolds have dimension 14. We will focus on the
computation of the one-dimensional invariant unstable mani- as
folds since the computation of the invariant stable manifolds (C) ,

184 1835 -1.83 -1825 182

of such high dimension is beyond the current state-of-the-art —25tv=0.02992020

[27]. Figure 4 is a plot of the projection onto three axes
(ay,a109,a21¢) Of the invariant unstable manifolds of the p-3

saddle (denoted by three crosgesight after crisis ¢ —2.51¢
=0.02992020), computed from the You-Kostelich-Yorke g
(YKY') algorithm[28]. The invariant unstable manifolds con- _o50l
sist of infinitely many distinct, discrete Poincamints o
whose backward orbits converge to the sadak. ‘
We proceed next with the characterization of the high- ‘2-53F .‘.:.

dimensional crisis ak,c by showing in Fig. 5 the collision of
the weak strange attractor with the p-3 UPO in the reduced
two-dimensional Poincanglane @s versusag), in the vicin- as
ity of the upper fixed point in Fig. 4. The dark line denotes

the strange attractor, and the light line denotes the numerl&nt
cally computed invariant unstable manifolds of the saddle

184 1835 -1.83 -1825 182

FIG. 5. The plots of the strange attractdark line and invari-
unstable manifolddight lines) of the saddle befor¢a), at (b),
and after(c) crisis. The cross denotes one of the saddle points.

Figures %a)—5(c) display the dynamics before, at, and after
crisis, respectively. Note that the strange attractor always
“overlaps” the invariant unstable manifolds. Figurgbb
shows the “head-on” collision of the weak strange attractor
with the p-3 UPO at,c, which proves the occurrence of an
interior crisis[12,19,26. This collision leads to an abrupt
expansion of the strange attractor and a sudden increase in
the system chaoticity, as seen in Figc)5 A comparison of
Figs. 2 and 4 confirms that, after crisis, the strong strange
attractor and the invariant unstable manifolds “overlap” with
each other.

In conclusion, we have shown that high-dimensional inte-

FIG. 4. Three-dimensional projectioraf,a;y,a;¢) of the in-  rior crisis can be found in spatially extended systems exem-
variant unstable manifolds of the period-3 sad@eosses right  plified by the Kuramoto-Sivashinsky equation. Although we
after crisis atv=0.029 920 20. have adopted a 16-mode truncated system in our analysis, all

dis
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the calculations performed can be extended to an arbitrarfinement in tokamaks and the understanding of other com-
high number N<) of modes for an appropriate choice of plex systems.

v andL. The identification of the unstable periodic orbits and

their invariant manifolds is fundamental for monitoring and

controlling the instabilities, chaos, and turbulence in toka- This work is supported by CNPqg, FAPESP, and AFOSR.
mak experiment$29]. Further theoretical and experimental A.C.-L.C and E.L.R. wish to thank Professor A. W. Thomas
studies of high-dimensional dynamical systems, followingand Professor A. G. Williams of Adelaide University for their
the methodology developed in this paper, may improve conkind hospitality.
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