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CHAOS VOLUME 13, NUMBER 1 MARCH 2003

Conditions for efficient chaos-based communication

Murilo S. Baptista
Instituto de Fsica, Universidade de"®aPaulo, Caixa Postal 66318, 05315-9700SRaulo, S.P., Brazil

Elbert E. Macau
INPE, Instituto Nacional de Pesquisas Espaciais, Caixa Postal 515,
12227-010 Sa Josedos Campos, S.P., Brazil

Celso Grebogi
Instituto de Fsica, Universidade de"®aPaulo, Caixa Postal 66318, 05315-9700SRaulo, S.P., Brazil

(Received 22 May 2002; accepted 16 August 2002; published 21 February 2003

We find the conditions for a chaotic system to transmit a general source of information efficiently.
Transmission of information with very low probability of error is possible if the topological entropy

of the transmitted wave signal is greater than or equal to the Shannon entropy of the source message
minus the conditional entropy coming from the limitations of the chafsth as equivocation by

the noise. This condition may not be always satisfied both due to dynamical constraints and due to
the nonoptimal use of the dynamical partition. In both cases, we describe strategies to overcome
these limitations. ©2003 American Institute of Physic§DOI: 10.1063/1.1513061

In communication, one requires the source of informa- is highly efficient In other words, the source message is
tion to be efficiently transmitted. In other words, the in-  transmitted carrying the maximum amount of information
formation should be transmitted quickly and with very and with a high level of robustness in the presence of noise.
low distortion. While in traditional communication The fundamental argument that has been emphasized
schemes, the upper bounds for high efficiency is imposed about using a chaotic-based communication system is high
by the channel properties, in communication with chaos efficiency at low cost. In fact, a nonlinear chaotic oscillator
this upper bound is dependent on the properties of the that generates a waveform for transmission can be easily and
dynamical system being used. In this paper, we classify a efficiently built, while the electronics that is necessary for
dynamical system according to its ability to encode a gen- encoding the information in the chaotic signal remains as a
eral source of information that can be transmitted and low-power and inexpensive microelectronic circuit. In addi-
recovered by the receiver with very low distortion. So, in  tion, chaos-based communication can perform efficiently the
general terms, we argue that transmission of information ~ main tasks that are expected from a digital communication
with very low probability of error can be accomplished if ~ system nowadays, as we have shown in Ref. 1. In fact, be-
the dynamical rate at which the information is generated  sides transmitting information through a communication
by the chaotic system(i.e., the topological entropy of the channel, a digital communication system must also handle
systen) is greater than or equal to the rate at which the the following two fundamental functiongi) source encod-
source message is being generatdie., the Shannon en- ing, which compacts, compresses, and encrypts the source
tropy of the source messageminus the conditional en- message, andi) channel encodingwhich guarantees that
tropy associated with channel limitations. the encoded message is robust against the presence of noise

in the channel. Traditionally, those two functions have to be

done independently and each one encodes one bit stream into
I. INTRODUCTION another. On the other hand, in a communication system

based on chaos those functions can be performed in a single

We consider a communication system to be efficient if itshot by the subsystem that executes the modulation of the

transmitsquickly a source message with very low probabil- signal for transmission over the communication channel.
ity of error. In communication, the source message is usuallfrhus, we can have a communication system that inherits the
encoded into another message, which is modulated in somsost important advantages of the analog and digital commu-
sort of wave signal, and then transmitted through the physinication system and, at the same time, is much more simple
cal medium. In a recent papewe showed that the encoding and efficient. This integrated and high efficient scenario is
and the modulation processes in a chaos-based communiggessible because of the intrinsic properties of a chaotic sig-
tion system can be integrated in a single dynamical encodingal, which can be advantageously exploited to carry encoded
process. In another words, given a source message, we caressages efficiently. This efficient scenario can also be un-
find an encoded trajectory which already obeys the coneerstood in terms of the flexibility that chaotic signals have,
straints of the channel and it is, therefore, the wavesignal tallowing one to operate the usual communication functions
be transmitted. Thus, the encoding trajectory represents iato the chaotic wavesignal, instead of operating on the bit
chaotic wave signal which is then transmitted over a channektream. So, in chaos-based communication, one can perform
It was also shown in Ref. 2 that chaos-based communicatioall the functions at the physical level while digital commu-
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nication might need to perform the various functions in thell. INFORMATION OF A DYNAMICAL SYSTEM
software level, which might expend too much time. The flex- _ _ L ) _
ibility of the chaos-based communication system is advanta- Dynanj|cally,_|n communlcanon _W'th chaos, we con3|d_er
geously used to create a fast cryptographic chaos-basécpe engodmg trajectories to be derived from a dlscr_ete—tlme
systen® In addition to all these characteristics, we conjec- V”i‘m'ca' procestsgi(;kl):f(%(i), \évhose st;’;t(tet slface tlr ajectory
ture that the understanding of chaos-based communicatio{r%(i}ifo’ represented by e -1, Where eaclx; 1akes values on
. . . . the intervalJ=[0,1], and each point is obtained from the

can help us in the understanding of biological complex com-_~ .
munication processes. previous one. Le_ﬂz={r0,r1,...,r_,<_} be theK+ 1—symbols
In this paper, we present a general condition that must bgach corresponding to one partition elemaqtof the inter-

Paper, P 9 val J, with k=0,1,..,K. By associating symbols to the tra-

obeyed by a _partlcular dynamical syste_m S0 that it can be?ectoryx through the state space partition, we create the tra-
used for efficient chaos-based communication. Our main r

. L . . . jectory symbolic sequencez. Let g, be the probability
sult is _that the transmission of mformaﬂop with very I(_)w associated to the symboj. The probability of having the
probability of error can be accomplished if the dynam'caltrajectoryx within the partitione, is p(wy)
rate at yvhich the infor.mation is generated by the chaotic * |, chaotic-based communication, the source message is
system(i.e., the topological entropy of the systgfa greater  oncoded in the trajectories. An encoding trajectory is associ-
than or equal to the rate at which the source message is beingeq with a symbolic sequence containing the same informa-
generatedi.e., the Shannon entropy of the source messag&;on, as the source message. So, while the symbolic sequence
minus the conditional entropy due to the channel limitationsepresents the source messaghich can serve as a refer-
(such as equivocation caused by the noise in the chanitel  ence with which one has knowledge about how the source
demonstrate this statement, we establish the connection bgressage is being encodethe encoding trajectory is the one
tween thetheory of infqrmatioﬁ“" that is used to measure that will be transmitted over the channel. Thus, to ensure
the amount of mfori‘g\atlon. of the source, and theory of efficient encoding of the source message, we need to under-
dynamical systenfs*°that is used to measure the amount of stand how to measure the amount of information contained
information of the encoding trajectories. We treat chaosin the source and, hence, in the symbolic sequence. If no
based communication as two separate probleffs:We  external manipulation is applied to the systéni.e., if there
specify the conditions under which a dynamical system hag no control upon the trajectory; , the amount of informa-
the potential to create trajectories that encodes the sourd®mn generated by the dynamical system is measured by
message(ii) We specify conditions under which the encod- K
ing chaotic trajectory, even in the presence of bounded or Z(w)= li 1

S S - = lim — In

unbounded noise in the transmission channel, has the ability (@) kK kZO plw)
to carry the information of the source. ) N

We classify the dynamical system on whether the topoNote that the above formula is partition dependent. The

logical entropy is greater, equal, or smaller than the Shannofff@ximum capacity of information generated by a dynamical

entropy. For the case in which it is equal we call the dynami-SyStem, without external manipulation, is given by the

cal system as abptimal encoderbecause of its ability to K0Imogorov—Sinai entropyHs) (Refs. 6, 7 (also known
handle the information of the source just rightly. When the@S Metric entropydefined to be

topological entropy is greater than the Shannon entropy, the Hys=SugZ(w)], )
dynamical system has information to spare—a situation that ®

is necessary when handling noise and dropouts. When the . . .
here sup is the supreme over all possible partitions. In prac-

topological entropy is less than the Shannon entropy of th - )
polog Py Py ice, we calculateHis by the probabilitiesQ. (with e
source message, we argue ways to encode the source mes;

sage such that the nonoptimal dynamical system can stiE iy.igrs))ir?ftrgzes;?nrggﬁﬁ(rzj)e((:)t]:)%osl;l/bliiizquences of
provide the encoding trajectories that are transmitted. ' '

With respect to the encoding of the source, probl&m 1 B 1
it might be common to have a potentially optimal dynamical ~ Q(w)= lim & > Qean_- (©)

. . . .. Pl e=1 e

system, whose capacity is not being fully utilized. In that
situation, we say that the system is being misused as it hapote that this function is also partition dependent.
pens when one makes a wrong placement or choice of the  An approximately accurate calculation of the the KS en-
phase-space partitigithe partition of the phase space that is tropy is thus given by
responsible for the encoding of trajectories into symbolic
sequences, the basis for the dynamical process to encode the Hiks=SURQ(w)], (4
source messa@eWhen that happens, the information of the ¢
encoding trajectories is less than the topological entropyvhich is now partition independent. We call this quantity the
of the dynamical system. With respect to the second probinformation rateof the dynamical systerfh. TheHg is con-
lem (ii), the same procedure of choosing trajectories robushected to the metric characteristics of the dynamical system.
against unbounded noise could be used in selecting traje¢f the Lyapunov exponents are independent of the trajectory,
tories that could be transmitted over limited bandwidthwhich is true for Lebesgue almost all initial conditions,
channels. thert!

(@9 @
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defined through the probabilitieg; of a discrete symbol
HKSS}\ZO Ais (5)  space. In the approach described in this work, for a better
' analogy to the dynamical entropies, we define the Shannon
where each\; is a positive Lyapunov exponent of the dy- entropy through the probabilitigs; with which the random
namical system. For ergodic maps$ys is an invariant quan- variable X; (efR) visits the different partitiong€), within
tity for the dynamical system, calculated from its naturalthe intervall.
invariant measure. It is often convenient in practice to encode the source
In addition to the Kolmogorov—Sinai entropy, which is message both for securitgncryption and to reduce redun-
related to the probability of certain symbolic sequences talancy(compression The average code-word length) for
appear, we can measure the capacity of the system by they source encoding is bounded &$=H(S), according
ability it has in generating a certain amount of symbolicto the source-coding theorem, which states that information
sequences. So, the amount of information contained in theannot be created by the encoding process itself. Another
symbolic sequence, for a given partitian is given by the  way of looking at the source-coding theorem, better suited

IN[E(n)] when one uses dynamical systems to encode source mes-
W(w)= lim ——, (6)  sages, is by measuring the entropy of the encoded message
nooe N M. . This entropy is calculated by the encoded symbolic

alphabetS, and is defined substituting by S; in Eq. (9). It

where E(n) is the number of accessiblallowed symbol i bounded as

sequences of lengti. We call this quantity thenformation
capacity of the dynamical system for a given partitian H(S,)<HS). (10)
Thus, Eq.(6), like Eq. (1), is partition dependent. The maxi-
mum capacity of information generation of a dynamical Sys-yy, ENCODING WITH DYNAMICAL SYSTEMS
tem is then the supremum of E) over all possible parti-
tions, Analogously to the source-coding theorem, as mentioned
in the previous section, a general information sousmirce
Hr=sup, W(), (@) messagecan be encoded by the chaotic systéignamic
which is now partition independent. We denominate thissymbolic sequengewith arbitrarily small error probability
quantity theinformation capacityof the dynamical systeri. ~ only if the following condition holds:
This qu_antity is equivalent and fo_rmally .the same as the H(S,Q)<H-. (11)
topological entrop§2° of the dynamical trajectory. Because
of this equivalenceli + can be appropriately estimated by the We call this relation as thdynamical source-coding condi-
numberP(n) of unstable periodic orbits of periad embed- tion. If this condition is not satisfied, we may then try to code
ded in the chaotic attractor. These two quantities are relateie messageM using another alphabe; such thatH(S.)
by P(n)~en*HT (See Ref. 12 for an efficient method for SHT. In fact, this was done in Ref. 13. Otherwise, if the
detection of unstable periodic orbitdn general, condition is satisfied, there must exist then an encoding
scheme that allows the message¢ to be encoded by the
trajectory{x;}.
Let us now use the concepts just outlined, obtained from
lll. INFORMATION OF THE SOURCE the Information Theory and the Theory of Dynamical Sys-

. . . ms to analyze specific examples of chaotic-based commu-
We consider an information source that can be modeleée y P P

by a discrete memoryless source as the following. Let théncatlon systems in order to explore their limits, as spelled

; . out in Eqgs.(1)—(10). Let us consider an information source
random (memoryless variable X; be associated to the that can be modeled by a discrete memorviess sogdice
2-symbol 0,1 of the alphabe$, through the partition(), y y X

. . where the random variableX; are associated to the
[.O,X[,'and = .[A.‘/’l]' Furtrlermore_, in this czise, once 2-symbol 0,1 of the alphabe$ through the partition(),
X is uniformly distributed,py=p(sp)=X and p;=p(s;) - - A .
a o ; . =[0,x[ andQ,=[x,1]. Furthermore, in this case, onieis
=1-— X are the probability functions for the discrete random - o - B "~ =
i L . . uniformly distributed,pg=p(Sg)=x andp;=p(s;)=1—x
variable X, considering the partitionf). We consider the y . . .
are the probability functions for the discrete random variable
messageM to be a sequence of symbols 0 and 1 that reprex S o . . :
: . . X, considering the partitiof). Consider, as an illustrative
sents the variableX; . The amount of information, based on . o
o . . : . _example of a chaotic-based communication system, the lo-
the chosen partition, is defined as the average information; .
S gistic map
per source symbol, and is given by the Shannon enfropy

Xn+1= Fp(Xp) =bX(1—Xp), (12

k=K 1
Hs(S5,Q)= 2 pkm(p—)- (9 which is a discrete-time dynamical process, to be used to
k=0 k encode the source information. For the logistic fanfily,
One important property of the entropids is that 0 the attractive sets, when they exist, are located in the interval
<H/S,Q)=<InK, where the upper limit is reached if and J=[0,1]. For comparison between the use of information
only if p,=1/K for all k, which is the case fof)=0.5. This  theory in a discrete memoryless source and in a dynamical
upper limit is denoted by (S), where we omit the symbol system, we choose a binary alphabet to represent the variable
Q in this representation. Note that the Shannon entropy i, so R=[0,1], and we divide the interval in two parti-

Hgs<Hr~. (8)
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(12), and findHs=0.531739831 andH;=0.562321723
(for x=0.5). Not all the sequences are generated, since Eq.
(12) for b=23.9 is not conjugate to a Bernoulli shift. Because
of condition(11), the dynamics of Eq.12) cannot be used to
encode a discrete memoryless source for witigk p; and
H=In(2)=0.693 147 1806, for example. When condition
(12) is not satisfied, we must code the alphalSeinto S;
such thatH+(R)<H(S;), thus coding the messagel into
M. That can be done, for example, by eliminating possible
sequences of the source, like the authors did in Ref. 13, due
to runlength constraints. Thus, say that the binary source has
| alphabetS and the characteristicgy=p,=0.5, so,H¢(S)
0! : ‘ | =1In(2). Suppose that the trajectories are coded by a binary
0 05 ! alphabetR and the dynamics does not allow for the appear-
X ance of two zeros in a row, and that the other possible se-
FIG. 1. The Shannon entropy, and the quanti@eandW, the information ~ quences of two symbols 01,10,11 are equiprobable. Thus,
measure of the symbolic sequence generated by the chaotic system with al}é;ing Eqg.(7) one findsH(R)=0.63651416829. To use
without control of the trajegtory, respectively. The entropies, as _defined bysuch dynamical system to communicate under this condition,
Egs.(9), (4), and(7), respectively, are shown far=0.5. We seb=4 in Eq. o .
12. it is necessary to encode the source message into code-words
that does not allow the two-symbol sequence “d@dbdeS
into S.). One encoding is by coding “0” into “01” and “1”
tions, Qo=[0,x[ and Q;=[x,1 (K=1). Oncex, is not into “1.” Doing this coding, the probability of appearance of
uniformly distributed in the intervall, g%y and q;#1  the symbol “0”in the coded source messagepis=3 and
— . the probability of appearance of the symbol “1”in the coded
We now calculatéd,, by using Eq(9), and the partiton Source message ipo=73. Therefore, Hy(S:)=H(R)
dependent quantitie®(y) andW(x), given by Egs(3) and  =0.636 514168 29, and then, the dynamical system can now
(6), respective|y. By Varying the partition positior)(s we be used to transmit the coded source mesme Another
find how Q(x) andW(x) approache$is andHy, respec- Way to overcome a forbidden sequence of symbols, that a
tively. Initially, we analyze thé=4 case whose logistic map Particular dynamical system might have, is by using a granu-
is conjugate to the tent m&pwhich behaves as the Bernoulli lar partition like the one proposed in Ref. 1. However, the
shift. In this case, the maximum capacity of generating indinformation capacityHr of a dynamical system that uses a
formation for a dynamical system takes place, i.e., a trajecgdranular partition cannot be larger than the information ca-
tory through a generating partition creates all possible sympacity of the same system when using a generating partition.
bol sequences. In Fig. 1, we pléts, Q(x), and W(y)
versus the partition positiog. We use a trajectory of length
9000000 and sequences of lendl20 for various pos- V. COMMUNICATION WITH BOUNDED NOISE
sible values ofy. All entropies have the same maximum Now, we show the limitations on the information trans-
value In(2) forxy=0.5, because themgy,=p,, andqy=q;. mission imposed by noise of the physical medium. For ex-
For this partition value,Hcs=Q(x)=Ht=W(x)=In(2).  ample, due to the presence @bounded noise in the chan-
Some considerations can be drawn from this figure. For anpel, it is advantageous to avoid orbits that arelose to the
X, Q(x)=W(x) andW(x)=<In(2). Note that Eq(5) is sat-  partition boundary. It makes difficult for the receiver to de-
isfied since the Lyapunov exponent for Efj2) with b=4 is  code the information of trajectories which eventually pass
equal to In(2). A wrong placement of the partition position, close to the partition boundary if the trajectories are cor-
i.e., the y#0.5, produces symbolic sequences that do notupted by noise during the transmission. So, to have robust
reflect the whole dynamics of the system. In fact, in this caseencoding trajectories againstbounded noisé®!” we im-
different orbits of Eq.(12) are coded by the same symbolic pose a restriction that not all the chaotic attractor, but just a
sequences, limiting the number of possible sequences, amtibset of it can be used as the communication system. We
thus reducing the information per symbol. Analogously,discard the orbits that reach the open intervat-(e, x + €).
choosingy such thatpy# p,, Hg of the source is smaller The remaining orbits, the ones used for encoding does not
than that forpy=p; and, thus, reducing the uncertainty fall in this open interval and in all its preimages. They are,
about the symbol generated by the source. Another importartherefore, located in a nonattracting chaotic saddle embedded
characteristic of the functioWV(y) in Fig. 1 is that it is in the chaotic attractor. The return mapping of the nonattract-
nonmonotonic. The reason for this is that, as we chapge ing chaotic saddle of Eq(12) is shown in Fig. 2 fore
some orbits are destroyed but others might appear in thei0.05. Since the chaotic saddle is a subset of the chaotic
place. This phenomena is explained in Ref. 15. attractor, its entropyH+(e€) is smaller than the one of the
For the case in which the system is not a Bernoulli shiftcorresponding chaotic attractad;. For example the en-
(b<4), the system dynamics impose limitations on the posiropy of the set shown in Fig. 2 i${(e=0.05p=4)
sible sequence of symbols that can be generated, and $8,0.534 824 014, whiled(e=0,b=4)=1In(2).
H+<In(2). To illustrate this case, we choobe=3.9 in Eq. To ensure that the encoding trajectory can be decoded
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0 0.2 0.4 0.6 0.8 1 FIG. 4. Probability distribution of the encoding trajectoryblack line and
X; probability distribution of the received noisy trajectdty(gray line. The

horizontal axis represents eitheror X.
FIG. 2. A numerically calculated trajectorjusing the triple PIM triple
method of size 50 000 of the nonattracting chaotic saddle for a gap of size
€=0.05. We us=4 in Eq.(12).
orbits that are robust againsbounded noise is performed in
practice by eliminating some code-words which are known
. o - to lead the orbits to the gap.
with arbitrarily small probability of error, we need In controlling a dynamical system to obtain a given re-
Hr(e)=H(S,), (13)  sponse, in order to encode a message, it often happens that
e , ) the perturbation is applied in critical situations. For example,
similar to Eq.(11), but with the topological entropy calcu- it 5 small perturbation is applied to E(L2) when the trajec-

lated u_sing th_e trajectories in the chaotic saddle. The§e no%ry is close to the boundaries of the interdalthe trajectory
attracting orbits have an entropy smaller than the trajectorynight go toward the attractor at infinity. So, it is appropriate

of the chaotic attractor. Thus, the nonattracting orbits havg, \york with trajectories that are sufficiently far from the
limited capacity to encode a source of information. More-pqndaries. This would be another reason for the reduction
over, the derivative of the topological entropy with respect to¢ information generation in a dynamical system by elimi-

eis very likely to be zero, since the functidtir(e) versuse  54ing additional critical regions of the phase space.
is a devil's-staircase-like functioff,as shown in Fig. 3. So,

slight increases on the gap size does not affect the encoding
capacity of the system. In other words, the chosen encodingl. COMMUNICATION WITH UNBOUNDED NOISE
orbits might be robust against variations of the noise ampli-

tude. The calculation of the nonattracting chaotic set with L€t us model the channel by adding, to the encoding
trajectory points, an independent noisy tegmwith Gauss-

ian probability distribution of variance;=0.05 and zero

mean. So, every point of the transmitted trajectory repre-
0.7 ' ' sented byx;, is corrupted by noise, i.e., the receiver gets
Xi=X;+ 7; . Assuming that the source is a random process,
whatever is the probability distribution of the source symbols
the probability distribution of the encoding chaotic trajectory
is given by the probability distribution on the chaotic set.
This distribution, numerically obtained, using E42), for a
trajectory of 2 000 000 points, is shown with the black line in
Fig. 4. The knowledge of this distribution shape is advanta-
geous when communicating with chaos for the following
06 reasons:

0.65 r ]

H.(e)

(i) For the purpose of security, the analysis of the distri-
bution of the transmitted encoding chaotic trajectory
should not reveal any statistical particular behavior of

‘ , , the source symbols. So, whoever has no knowledge of

0.02 0.04 0.06 the partitionw, with which it is possible to convert the

€ trajectory into symbols whose probabilities of appear-
FIG. 3. Topological entropyH+(e) versus the gap size usingb=4.0 in ance should be the same as the source symbols of the
Eq. (12), and nonattracting saddle trajectories of length 200 000. message, cannot decode the message.

0.55
0
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(i)  The information contained in the chaotic trajectory sible when the the information capachiy of the chaotic set
per point is given by the Kolmogorov—Sinai entropy used as the encoding wave signal is greater than or equal to
which can also be obtained through the probabilitythe entropy of the sourdd. A nonoptimal encoding arises
density,u(x), of the distributionp(x), shown in this  whenH;#H,. When the encoding trajectories are transmit-

figure. Thus, ted over a channel with bounded noise, a subset of the cha-
N otic set can be selected, a chaotic saddle, whose orbits are

KKSZJ E N p(x)dx. (14) robust tq the given noise amplitude, i.e., the_ noisy encc_)d_ing
0 trajectories of the saddle can be decoded into the original

source message without losses. For this case, the condition
for an efficient communication is given bk (e)=Hg,
whereH¢(e€) is the topological entropy of the saddle con-
structed for a gap of size When the channel has unbounded
noise, efficient communication is possible whely=H,
—H., whereH. is the condition entropy that measures the
information losses due to the existence of noise in the chan-

As discussed before, if the positive Lyapunov expo-
nents(denoted byr;") of the chaotic system does not
depend on the density(x), thusKxs==\;", which

in the case for the logistic magks=1In(2).

(ili)  For the purpose of filtering, when transmitting the sig-
nal through a noisy channel, the noisy trajectefy
has a distribution;y(X;), that differs fromu(x), as
one can see by the gray line of Fig. 4. As the infor-
mation is corrupted by the noise, the distributj@(x)
is changed intoy(X;). Any nonlinear filter applied to
the trajectory or any other dynamical filter, based on
the dynamical system dynamit$,should work so to
make the distributiony(X) to be as close as possible

In a channel with other physical restrictions, such as a
limited-frequency bandwidth, efficient communication is
possible if one finds a subset of the chaotic trajectories
whose typical wavelength are high enough to be transmitted
over this channel.

Finally, by combining Eqgs(5) and (11), we conclude

10 p(X). at a dynamical system can encode a sourcg,if.o\;
(iv)  To understand how the channel affects the transmitteéh N> 0%
=H((S), what can be used when one does not want to cal-

information, we have to define the condition probabil- . ) . . T
culate the information capacity. Note that this equation is

it
vy as also valid even for higher dimensional systems.
Hc:_pro,sl|n(pr0,sl)_prl,soln(prl,so)v (15)
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