MORPHOLOGICAL DECOMPOSITION OF EXTREME GRAY-LEVEL LOCATION OPERATORS

Gerald Jean Francis Banon

Instituto Nacional de Pesquisas Espaciais – INPE Divisão de Processamento de Imagens – DPI CP 515 12 201–970, São José dos Campos, SP, Brazil

São José dos Campos, February, 1997

CONTENT (1/1)

Introduction

Extreme gray-level location operator

Operator construction (intuitive approach)

Measure construction (decomposition approach)

Union and intersection construction

Operator construction (decomposition approach)

Conclusion

REFERENCES

(1/1)

G.J.F. Banon & J. Barrera, Decomposition of mappings between complete lattices by mathematical morphology, Part I. General lattices Signal Processing 30 (1993) 299–327

R. Rector & G. Alexy The 8085 Book OSBORNE/McGraw–Hill, Berkley, California (1980)

INTRODUCTION

(1/1)

Extreme gray-level \equiv maximum/minimum gray-level.

Extreme gray–level location is an important issue in image pattern matching.

Mathematical morphology is the appropriate framework to study the construction of operators for extreme gray–level location.

Some implementation aspects are important in terms of computation time.

EXTREME GRAY–LEVEL LOCATION (1/1)

Let *E* be a nonempty set and let (K, \leq) be a finite chain of gray–levels.

Let ψ be the maximum gray-level location operator.

Let ψ be the minimum gray–level location operator.

How to construct the operators ψ and ψ ?

OPERATOR CONSTRUCTION (intuitive approach)

(1/2)

Let μ be the *maximum gray–level evaluation measure* and let σ be its Galois compagnon. Let = be the identity relation between images.

The measure μ is a dilation and the operator $\sigma \circ \mu$ is a morphological closing

OPERATOR CONSTRUCTION (intuitive approach)

(2/2)

Let $\underline{\mu}$ be the *minimum gray–level evaluation measure* and

let σ be its Galois compagnon.

Let = be the identity relation between images.

The measure $\underline{\mu}$ is an erosion and the operator $\sigma \circ \mu$ is a morphological opening

How to construct the measures μ and μ ?

MEASURE CONSTRUCTION (decomposition approach)

(1/2)

Let π_x be the *projection w.r.t x* and let \lor be the union on the chain (K, \leq)

The measures π_x are dilations and erosions and the measure μ is a dilation.

MEASURE CONSTRUCTION (decomposition approach)

(2/2)

Let π_x be the *projection w.r.t x* and let \wedge be the intersection on the chain (K, \leq)

The measures π_x are dilations and erosions and the measure μ is an erosion.

How to construct the operations \lor and \land ?

UNION AND INTERSECTION CONSTRUCTION (1/7)

Let (K, \leq) be a finite chain of gray–levels and let the order relation \leq assume value 1 when it is true and value 0 otherwise.

UNION AND INTERSECTION CONSTRUCTION (2/7)

Let $(2^n, \leq)$ be the usual computer chain codification of the first integers.

Let \square and \square be the union and intersection on $(2^n, \leq)$.

The assembler program for \sqcup on the 8086 is:

	XOR	AH,AH	
J1	MOV	AL,[BX+SI]	8+EA
	CMP	AH,AL	3
	JAE	J2	4/16
	MOV	AH,AL	2
J2	INC	SI	2
	DEC	CX	3
	JNZ	J1	16
			49 (EA=6)

UNION AND INTERSECTION CONSTRUCTION (3/7)

Construction of \leq

Let $s = (s_1, ..., s_n)$ and $t = (t_1, ..., t_n)$ be two elements of 2^n .

UNION AND INTERSECTION CONSTRUCTION (4/7)

Improvement for the union \sqcup

Let $s = (s_1, ..., s_n)$, $t = (t_1, ..., t_n)$, and $u = (u_1, ..., u_n)$ be three elements of 2^n such that $u = s \sqcup t$.

Let call IOR the corresponding computer instruction.

UNION AND INTERSECTION CONSTRUCTION (5/7)

Improvement for the union \Box

The assembler program for \sqcup on the 8086 like becomes:

	XOR	AH,AH	
J1	IOR	AL,[BX+SI]	9+EA (OR)
	INC	SI	2
	DEC	CX	3
	JNZ	J1	16
			36 (EA=6)
	DEC JNZ	СХ J1	3 <u>16</u> <u>36</u> (EA=6)

Time cut is:

$$(1 - \frac{36}{49}).100 = 26.5\%$$

(6 hours per day)

UNION AND INTERSECTION CONSTRUCTION (6/7)

Chain codification (threshold decomposition)

Let $D(2^n)$ be the set of decreasing elements of 2^n .

Example:

 $D(\mathbf{2}^3) = \{(0,0,0), (1,0,0), (1,1,0), (1,1,1)\}$

The subposet $(D(2^n), \leq)$ of $(2^n, \leq)$ is a chain.

UNION AND INTERSECTION CONSTRUCTION (7/7)

Let \lor and \land be the union and intersection on $(D(2^n), \leq)$.

Construction of the union \vee

Let $s = (s_1, ..., s_n)$, $t = (t_1, ..., t_n)$, and $u = (u_1, ..., u_n)$ be

three elements of $D(2^n)$ such that $u = s \lor t$.

There is no carry.

(1/4)

The maximum gray–level location operator ψ

can be decomposed as a union of sup-generating operators

(Banon & Barrera, 1993).

(2/4)

Let $K = \{s_1, s_2, s_3, s_4\}$ and

let $s_1 \le s_2 \le s_3 \le s_4$.

Each of the four sup-generating operators is an intersection of an

erosion and an anti-dilation (Banon & Barrera, 1993).

(3/4)

The erosion and dilation are threshold operators.

(4/4)

The anti-dilation is a closing followed by a negation.

CONCLUSION

(1/1)

Some implantation aspects are important in terms of computation time.

$(2^n, \leq)$	$(\mathbb{D}(2^n), \leq)$	time
CMP		1
10R IAN	or And	.73

The decomposition approach uses implicitly the Threshold Decomposition which may allow a 26.5% time cut on sequential machines as the 8086.