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CHAPTER 15 

MAGNETOHYDRODYNAMIC WAVES 

1. INTRODLJCTION 

The niost fundamental type of wave motion that 

propagates in a compressible, non-conducting fluid is that of 

longitudinal sound znves. For these waves the variations in pressure 

(p) and in derisity (p), associated with the compressions and 

rarefactions of the fluid during the longitudinal wave motion, obey 

the adiabatic energy equation connonly used in thermodynamics, 

ppY = constant 
	

(1.1) 

where y denotes the ratio of the specific heats at constant pressure 

and at constant volume. Differentiating (1:1) gives 	. 

yp= (YP)yp 
p 

= v 	p 	 ( 1.2) 

where 

V 	= (_ 	),- /
2. = 	)'/ 	

( 1.3) 
5 	p 
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is the velocity of propagation of sound waves, known as the 

adiabatic sound velocity. Fig. 1 iliustrates the regions of compression 

and rarefaction of the fluid, associated with the longitudinal niotion 

of sound 	waves. 

Fig. 1 - Schematic representatiori of longitudinal sound 

waves that propagate in a compressible, non- 

conducting fluid, showing the regions of 

compression and rarefaction associated with 

the longitudinal wave motion. 

1.1 - Aifvënwaves 

In the case of a conipressible, conducting fluid 

immersed in a magnetic field, other types of wave motion are possible. 

We have seen that in a magnetic field of intensity § 
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the magnetic stresses are equivalent to a tension 8 2/p along the 

field lines, and an isotropic hydrostatic pressure B 2 /2p 	(see section 

5,of Chapter 12). Since the latter can always be ihcorpovatéd with the 

fluid pressure, the niagnetic field lines behave effectively as elastic 

cords under a tension B 2/1j. Further, in a perfectly conducting fluid 
o 

the plasma particles behave as if they were tied to the magnetic field 

lines (see section 4,of Chapter 12), so that the lines of force act as 

if they were rnass-loaded strings under tension. Thus, by analogy with 

the transverse vibrations of elastic strings, we expect that, whenever 

the conducting fluid is slightly disturbed from the equilibriuni 

conditions, the magnetic field lines will perforni transverse vibrations.. 

The velocity of propagation of these transverse osciliations are 

expected to be given by 

8 2  
Tension 1/2 = (_o ) 1/2 

) 

Density 	 ilop 
(1.4) 

This velocity is known as the Alfvnvelocity, since the existence of 

this type of wave motion was first pointed out by A1fvn, in 1942. An 

important propertyof these waves, as will be shown later, is the 

absence of any fluctuations in density (p) or f1uid pressure (p). 

Fig.2 iliustrates the transverse osciliations of the fluid (and of the 

"frozen in" field lines) for the Alfv&n wave. 

1.2 Magnetosonic waves 

Longitudinal osciliations are also expected to occur in 

a compressible, conducting fluid in a magnetic field. For motion of 
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Fig. 2 - Transverse Alfven waves in a compressible, 

conducting niagnetófluid. lhe velocity of 

propagation is along the magnetic field 

lines, and the fluid rnotion and niagnetic 

field perturbations are perpendicular to the 

field lines. 

the particles, and propagation of the wave, in the direction of the 

magnetic field there will be no perturbation in the magnetic 

field, since the particles are free to move in this direction. Thus, 

in this case, the waves will be ordinary longitudinal sound waves 

propagating at the velocity V along the field lines (Fig. 3). 

On the other hand, for niotion of Um particles, and 

propagation of the wave, in the direction perpendicular to the 

magnetic field, a 	new type of longitudinal wave motion is possible 

since now, in addition to the fluid pressure p, we niust add the 



d 
(p+ ) M 

dp 
o 

d 
=2 

(82) 

5 dp 2p o 
p = p0 

(1.6) 
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p. 

Fig. 3 - Longitudinal sowzd waves 

propagating along the magnetic 

field lines in a compressible, 

conducting magnetofi uid. 

hydrostatic magnetic pressure B 2 /2p0  in the plane normal to B 0 . 

Hence, the total pressure is p + B 2 /21i and, consequently, the 

velocity (VM)  of propagation of these so-called rnagnetosonic waves 

(Fig.4) satisfies the foliowing relation, analogous to (1.1), 

V(p + B 2 / 2p0 ) = V Vp 
	

(1.5) 

Therefore, we can write 



fl 

where the suffix zero, in p, refers to the undisturbed state, and 

is the adiabatic sound velocity. Since the lines of force are frazen 

in the conducting fluid, the magnetic flux BdS across an element of 

surface, dS, whose normal is oriented along the magnetic field, and 

the mass p 45 of a unit length of column having dS as base, are both 

conserved during the osciliation, in such a way that (B/p) = (B /p0 ). 

Consequently, (1.6) becomes 

B 2  p 2  
d 	(0 	

) 	=v2+ 
M 	5 	 5 

dp 	2ii0p 	
P=P 0  

o 

PO PO  
(1.7) 

ar 

V = (V 
LI 	

+ V$ )h/ 2  (1.8) 

where VA  is the Alfvén velocity. 

For propagation in a direction inclined with respect to 

the magnetic field the waves are more complex. This subject will be 

considered in some detail in section S. 

2. MHD EOUATIONS FOR A COMPRESSIBLE, NONVISCOUS, CONDUCTING FLUID 

2.1 Basic equations 

To investigate the propagation of waves in a conducting 

magnetofluid, let us consider a compressible, nonviscous, perfectly 
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conducting fluid immersed in a magnetic field. The appropriate 

systeni of equations governing the behavior of this type of fluid, 

and the assuruptions invôlved, have been summarized in section 1, of 

Chapter 12. These equations are 

+v.(pu)=O 	 (2.1) 
at 

p 	+ p(u . v) u = - vp + J x B 	 (2.2) 
- - 	 - 	 - - 

vp = V 2  vp 	 (2.3) 

VXB=p 0 J 	 (2.4) 

v xE=-B/at 	 (2.5) 

E+uxB=O 	 (2.6) 

This system of equations can be reduced by combining Eqs. (2.2) to 

(2.4) in the form 

__________ 
p 	+ p (u . v) u = - V 2  vp + 1 	(v x B) x B ' 	(2.7) - - - 	 po  - - 	- 

as well as Eqs. (2.5) and (2.6) in the form 

vx(uxB)=aB/t 	 (2.8) 



n 

linder equilibrium conditions, the fluid is assumed to be uniform, 

with constant density p, the equilibiuni velocity is zero, and 

throughout the fluid the magnetic induction B is uniform and constant. 

In order to develop a dispersion relation 	for small- 

amplitude waves, consider small-amplitude departures from the 

equilibrium values, so that 

B(r,t)=B +B (r,t) 	 (2.9) 

	

-P0 	.%.1 

p (r, t) = p 
o 
 +p (r, t) 	 (2.10)  - 

u (r, t) = u (r, t) 

	

1 	 (2.11) 

Substituting Eqs. (2.9) to (2.11) into Eqs. (2.1), (2.7) and (2.8), and 

negiecting second - order tens, we .obtain the following linearized 

equations in the small first - order quantities 

Bp 
1 + p ° (V . 	u• 	) 

1 
= O 

at 

1 +V27p+_i!_B 
-o - x(vxB)=O - 1-l o  

(2.72) 

(2.13) 

BB 

ât 
-Vx(u xB)=O 

- 	1 	O 
(2.14) 



fl 

2.2 Development of an equation for u 

Eqs. (2.12) to (2.14) can be combined to yield an 

equation for ti alone. For this purpose, we first différentiate (2.13) 

with respect to time, obtaining. 

2 u 	 Bp 	 1 
+ V 2  v( 	' ) +-iL—B x [v x ( 	) 	= O 	(2.15) 

~ t I 	 110  
J 

Next, using (2.12) and (2.14.), we can write (2.15) as 

B 2 u 
- 	 V (v . u) + VAX (v x 	x (u x V 	}=O (2.16) 

where we have introduced the vector A1fvn velocity 

B 
= 	-0 	 (2.17) 

(p0 p)1/2 

Without loss of generality we can consider plane wave 

solutions of the form 

u 	(r, t) = u exp (1 k . r - iwt) 
	

(2.18) 

In what foliows u can stand for either the amplitude or the entire 

expressidn (2.18). Thus, in (2.16) we cari replace the operator V by 

i k and the time derivative by - iw, so that 

+ V 2  (k . u ) k - V x {k X 	x (ti x VÃ)] }=O (2.19) s 
- 	 -. 	 —A 	- 	 - 
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Since, for any three vectors A, 8 and C we have the vector identity 

A 	(BxC) = (A. C) B- (A. B)C 	 (2.20) 

we can rearrange (2.19) to read 

- u+(V+V)(k.u)k+(k.VA)[(.VA)u-- 	1 

- 	 - ( 	) YAI =0 	 (2.21) 

Although this expressiori appears to be soniewhat involved, it leads to 

remarkably simple solutions for waves propagating in the directions 

parallel or perpendicular to the magnetic field. 

3. PROPAGATION PERPENDICULAR TO TI-IE MAGNETIO FIELD 

For the case when the wave vector k is perpendicular to 

the magnetic induction B, we have k . 	= O, and (2.21) sirnplifies 

to 

-co 2 u + (V 2  + V 2 ) ( k . u) k = O 	 (3.1) s 	A 

from which we •obtain 

u =(V2-i-V) 	
(k 	%) k 
	 (3.2) 

1 	5 - 

Therefore, u is parallel to k, so that k . u = ku , and the solution 

for u is a longitudinal wave with the phase velocity 



= (V + V2 )1/2 
	

(3.3) 
k 

The magnetic field associated with this longitudinal 

wave can be obtained from (2.14). Taking 

(r' t ) = B exp (i k . r - iwt) 	 (3.4) 

we obtain 

- k x (u x B0 ) = 0 
	

(3.5) 

Using the vector identity (2.20), and notirig that k . B = 0, we find 

u 
1 	B 
	

(3.6) 
(w/k) 

The electric field associated with this wave is seen, 

from (2.6), to be given by 

E=- u x  
- 	1 	-O 

(3.7) 

This wave is, therefore, similar to an electromagnetic 

wave, since the time-varying magnetic field is perpendicular to the 

direction of propagation, but paraliel to the niagnetostatic field, 

whereas the time-varying electric field is perpendicular to both the 

direction of propagation and thernaqnetostatic field. It is a 

longitudinal wave, however, since the velocity of mass flow and the 

fluctuating mass density associated with it are both in the direction 

of wave propagation. For these reasons, this wave is called the 



- 12 - 

magnetosonic wave. The phase velocity of this wave is independent of 

frequency, so that it is a nondispersive wave. As illustratedinFig.4, 

the magnetosonic wave produces conipressions and rarefactions in the 

magnetic field lines without changing their direction. Since the 

fluid is perfectly conducting, the lines offorce and the fluidmove 

toget her. 

Fig. 4 - The longitudinal magnetosonic wave propagates perpendicularly 

to the niagnetic field, causing conipressions and rarefactions 

of both the lines of force and the conducting fluid. 

The resto ring forces, opera ting i  the niagrietosonicwave, 

are the gradient of the fluid pressure and the gradient of the 

conipressional stresses between the magnetic field lines. If the fluid 

pressure is much greater than the magnetic pressure, the effect of the 

magnetic field is negligible, 50 that u/k 	and the magnetosonic 

wave becomes essentially an acoustic wave. On the other hand, ifthe 

magnetic field is very strong, so that the niagnetic pressiire is much 

larger than the fluid pressure, then the phase velocity of the 

magnetosonic wave becomes equal to the A1fvn wave velocity VA. 
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The niagnetosonic wave mode is also known variously as 

the conipressional Alfvén wave or the fast Alfvén wave. 

4. PROPAGATION PARALLEL TO THE MAGNETIC FIELD 

For waves propagating along the niagnetic field 

(kjB0 ),we have k . VÃ = k VA.  and (2.21) simplifies to 

(k2 
V____  

- w2) ti1 + ( 	- 1) k 2  (ti' . VA )  VA = o 	(4.1) 
,2 

In this case there are two types of wave motion possible. 

For u 1  paraliel to Bo and k, we find, from (4.1), that 

a longitudinal niode is possible, with the phase velocity 

(4.2) 
k 

This is an ordinary longitudinal sound wave, in which the velocity of 

mass flow is in the direction of propagation (Fig. 3). There is no 

ele ctricfield, electric current density, and rnagneticfiefd associated 

with this wave. 

A transverse wave, with u l  perpendicular to B0  and k, 

is the other possibiuity. In this case, u 1 . VA = O, and (4.1) gives 

for the phase velocity of this transverse wave, known as the Alfven 

wave, 

(ii 	 ii 

= 	 (4.3) 
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Since the phase velocity is independent of frequency, there is no 

dispersion. 

The magnetic field associated with the Alfvn wave is 

found, from Eqs. (2.14) and (3.5), to be given by 

u 
B= - B 	 (44) 

° 	
(oi/k) 

Hence, the magnetic field disturbance is normal to the original 

rnagnetostatic induction B 0 . The sinail component B, when added to 

gives the lines of force a sinusoidal ripple, shown in Fig.5. The 

associated electric field is given by Eq. (3.8). 

The Alfvn wave involves no fluctuations in the fluid 

density or pressure, although both the fluid and the magnetic field 

lines osciliate back and forth lateraily, in the plane normal to B. 

The rnagnetic energy density of the wave motion, B 2 /2p, is equal to 

the kinetic energy density of the fluid motion, Ø  u 2 /2. This 
0-1 

equipartition of energy is easily verified from (4.4); 

B 2 	B 2  is 2 	B 2  u 2  = 	o - i 	= 	o-.1 	=_j 	u 2  
211 	2p (w/k) 2 	2p 	2 	

° 
o 

where we have used Eqs. (4.3) and (2J7). 

The Alfvn wave mode is also known variously as the 

shear Alfvén wave or the slow Álfvén wave. 



/ 
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Fig. 5 - Schematic lilustration for A1fvn waves propagating alongB 0 , 

showing the relations between the oscillating quantities. 
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S. PROPAGATION IN AN ARBITRARY DIRECTION 

Proceeding further, let iis now investigate the case of 

wave propagatiori in an arbitrary direction with respect to the 

magnetic induction B 0 . With no loss of generality, we introduce a 

Cartesian coordinate system such that the y-axis is normal to the 

plane defined by the direction of propagation k and the magnetic 

induction B, and choose i to be along B 0  , as shown in Fig.6. 

3~,_ 

x 

Fig. 6 - Cartesian coordinate system with 

the relative directions ofthevectors 

k and 8 
- 	-'0 

Denoting by e the angle between k and B , we have 

k = k ( 	sin e + 	cos e 
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YA = VA 2 	 (5.2) 

U = ii 	x+ u 	+ u 	2 	 (5.3) 
1 	ix 	iy - 	—iz - 

• A = kvAcose 	 (5.4) 

k . u
1 	 1X 	 12 

= k ( u 	sina + u 	cose) 	 (5.5) 
-  

VA . u i = VA iZ  u 	 (5.6) 
- 	 —  

Substituting these expressions into equation (2.21) for uperfornuing 

the required algebra and rearranging the terns, we obtain for the x-

component equation 

u 	(-w2 + k 2  V + k2 V2  sin28) + u 	(12  V2 
ix 	

si  o cose) = O 	(5.7) 

for the y - comporient equation 

u 	( — oi2  +k2 Vcos 2 e)=C 	 (5.8) 
ly 

and for the z - component equation 

u 	(k2  V. sin e cos e ) + u ( — w 2 + k 2  \. cos 2 e) = O 	(5.9) 
ix 	 1  



n 

5.1 Pure Alfvn wave 

From (5.8) we see that there is a linearly polarized 

wave involvingosciliations in the direction perpendicular to both k 

and B (u 0), with a phase velocity given by 
-'O 	

iy 

!_. V
A 
	Ç) 

k 	
A 

(5.10) 

The field components associated with this wave can be seen to be 

Biy , Uiy, Eix, and Ji,  so that it is a transverse A1fvn wave. For 

this reason, this wave is generally referred to as the pure Alfvérz 

wave. Note that for propagation a1ong the magnetostatic field (Ç=0). 

Eq. (5.10) gives w/k = VAwhile for propagation across the 

magnetostatic field (e = 90 ° ) this wave disappears, since w/k = 0. 

This niode is also known as the oblique Alfvin wave. 

5.2 - Fat and slow MHD waves 

Eqs. (5.7) and (5.9) constitute a system of two 

simultaneous equations for the amplitudes of uax  and Uiz. To have a 

solution in which Uix and Uiz  are nonzero, the determinant of the 

coefficients of this system of equations niust vanish. Therefore, 

setting 

(-w 2 + k 2  V + k2 V2  sin 2 6) (k2 V2  sino cose) 

= o 	(5.11) 

(k 2  V sin t  cose) 	(-W 2 + k2 V2  cos 2  9) 
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we obtain the foliowing dispersion relation, expréssed in ternis of the 

phase velocity w/k, 

(V 2  + V) W 	+ v 2  V 2  cos 2 8 = O 	 (5.12) 
k 	 k2 	

5 A 

Solving this equation for w 2 /k 2 , we obtain No real solutions 

1 
(V 2  +V2 ) +-i-_ E(v + V 2 ) 2  - 4V 2  V cos2 ej1/2 	(5.13) 

2 	
5 	A- 2  ' -'s 	A' 	s 

The solutions with the plus-and-niinus sign are called, respectively, 

the fast and sliow MHD waves. 

5.3 Phase velocities 

Ali the three MHD waves have constant phase velocities, 

given by (5.10) and (5.13), for ali frequencies, and hence there is no 

dispersion. Fig.7 displays how the phase velocity varies, for each of 

these waves, as a funtion of the angle e between k and 	for both 

cases when VA>Vs  and when Vs>VA.  The phase velocity of the fast MHD 

wave increases froni VA  (or V 5  if Vs>VA)  when e = 0 0 , to (V + V) 1 /'2  

when o = 90, whiie that of the slow NHD wave decreases from 

V5  (or VA  if V >VA)  when o = 0 0 , to zero when Q = 90 0 . Therefore, if 

VA>Vs. the fast Nt-ID wave becomes the A1fvn wave for e = 0 0 , and the 

magnetosonic wave for o = 90, whiie the siow MHD wave becornes the 

sound wave for o = 00, and disappears for e = 90. On the other hand, 

if V5 >VA  the fast NHD wave becomes the sound wave for e = 0 0  and the 
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Fig. 7 - Phase velocity curves (independent of frequency) as a function 

	

of the angle between k and 	for the pure A1fvn, the fast, 

and the slow MHD waves, for the cases (a) VA > V and 

(b) V 5  >VA 
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magnetosonic wave for O = 90 0 , while the slow MHD wave becomes the 

Alfvn waVe for ® = 0 0  and disappears for e = 90 ° . 

5.4 Wave normal surfaces 

The propagation of these waves are conveni.ently 

represented by means of diagrams called phase velocity or wave normal 

surfaces, which give the variations of the magnitude of the phase 

velocity of plane waves with respect to the magnetic field direction. 

Fig.8 shows the wave normal diagram for the pure Alfvén wave, 

constructed troni Eq. (5.10). The vector drawn from the origin to a 

point P on the curve represents the phase velocity of a plane wave 

and the 	direction of the wave normal with respect to the 

magnetostatic field. The actual state of affairs, in three diniensions, 

is obtained by rotating the circles of Fig.8 about the axis oriented 

along B. The three-dimensional surface,.thus obtáined,is called the wave 

normal surface. 

Fig.9 shows the wave normal diagrams for propagation of 

the pure Alfvn, the fast and the slow MHD waves, for the two cases 

> V5  and VA<  V. The three-dimensional wave normal surfaces are 

obtained by rotating Fig.9 about the axis oriented along 	The wave 

normal surface corresponding to the fast MHD wave is a smooth, 

closed surface énclosing the two spheres passing through O which 

correspond to the pure Alfvn wave. Within each of these spheres, 

there is another smooth, closed wave normal surface corresponding to 

the slow MMD wave. 
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6. EFFECT OF DISPLACEMENT CURRENT 

In magnetohydrodyriamics, the displacement current 

(c
o  E/t) term, which appears in Maxwell V x B equation,is usually 

neglected. This approximation in valid only for fluids of high 

conductivity at comparatively low frequencies (well below the ion 

cyclotron frequency), as discussed in section 6,of Chapter 9. The 

v o  

Fig. 8 - Wave normal diagram illustrating the vâriations of the phase 

velocity and the direction of the wave normal at any angle O 

with respect to for the pure A1fvn wave. 
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Fig. 9 - Wave normal diagrams for the pure Alfv&n, the fast and the 

slow MHD waves, for (a) VA > V and (b) VA < V. 



- 24 - 

inclusion of the displacement current in the basic equations modify 

the propagation of the A1fvn and niagnetosonic waves. The results 

obtained, however, are valid only at frequencies where charge 

separation effects are unimportant. 

6.1 Basic equations 

To investigate the effect of the displacement current 

on the propagation of MIlO waves in a corupressible, nonviscous, 

perfectly conducting fluid, Eq. (2.4) niust be niodified to read 

BE 
VxB=lio - 
	c 2 	Bt 
	 (6.1) 

Consequently, the current density to be inserted into the J x B temi, 

in the equation of motion (2.2), is now 

? x B 	 ( x B) 
no 	 c 2  at 

(6.2) 

where use was niade of (2.6). Using expressions (2.9) to(2.11) for 

.srnall-amplitude waves, the set of linearized equations (2.12) to (2.14) 

for the small quantities p , u and B , beconie:now 
1 	- 1 

Bp 
+p 	(V .0 )=O 	 (6.3) 

at 	° 	- 

au 
p 	+V 2 Vp +-1---Bx (VxB 	 ' x 	)=O 	(6.4) 

1 	 - 	-n 	 ~i 	c 2 	at o 
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BB 
x (u 

1 
 x B O  ) = O 	 (6.5) 

-  

6.2 Equation for u 

To obtain an equation for u alone, we take the time 

derivative of (6.4), and use (6.3) and (6.5), which gives 

3 2 u 
- V 2  v (V . u ) +

YA 
x {V x LY x (li x !A) J } + 

5 - 	 - 1 3t 2  

3 
+ —]-- V x( 	' x  

-A 	
3t2 

(6.6) 

where V is the vector A1fvn velocity, defined in (2.17). From the 

vector ideritity (2.20), we have 

32 
YAX( 	xVA)= at2 
	A - 
rv2u - (VA.u)VAJ 
- 	 - 

so that (6.6) can be rearranged in the form 

- 

- 

92 	_____  
(1 + 
	

A )u - YA 	 J 	5 - - . -' 
V 2 V(V 	u)+ 

- 	c2 -' 

+ YA x 
{v x 	 = 

(6.7) 

(6.8) 

It is evident that this equation reduces to (2.16), if V2/C2 c< 1. 

Plane wave solutions of (6.8), in the form (2.18), 

give 



- 26 - 

u) 	J+(V2+V2)(k.u)k+ 

c 2  
- 	L (1 + 	A )u - (VA. 

1 - 

+ (k .VA) Í(k.VA)u - (VA.0 )k - (k.0 ) VA 	= 	(6.9) 1 - 	- 	-1 - 

6.3 Propagation across the magnetostatic field 

	

For 	we have k . VA = 0, so that (6.9) gives 

• 	= O and 

V2  
-w2(l + 
	

A )u +(V 2  +V) (k . u) k=0 	 (6.10) 
c2 -' 

This equation is similar to (3.1), except that the square of the 

frequency is multiplied by the factor (1 + V/c 2 ). Thus, the phase 

velocity of the longitudinal magnetosonic wave propagating across 

becomes now 

(V2 + V 2 ) 1/2 
5 

k 	(1 + V/c 2 ) 1 / 2  

6.4 Propagation along the magnetostatic field 

For k 11 B., inspection of (6.9) shows that for u 
paraliel to YA (i.e., B) it becomes identical to (2.21). Thus, for 

the longitudinal sound wave. propagating along B 0  there is no change 

from the results obtained before. 

However, for the transverse Alfven wave (uI k) we 

have (VA . u) = O and (6.9) reduces to 
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-tj 2  (1 + V/c2) U + k 2 	u = O 
	

(6.12) 

Consequently, the rnodification introduced in the Alfv&n wave by the 

displacement current is that the square of the frequericy must be 

multiplied by the factor (1 + V/c 2 ). Thus, the phase velocity of the 

Alfvn wave becomes 

(Ii 

k (1 + V /c 2 ) 1 / 2  
(6.13) 

In the usual limit of V1c 2  cc 1, (6.13) reduces to (4.3) and the 

effect of the displacement current is unimportant. On the other harid 

if V 2 /c 2  » 1, then w/k beconies equal to the speed of light. In 

using these results, however, it niust be kept in mmd that they are 

valid only at frequencies where charge separation effects are 

negligible. 

Z. DAMPING OF MHD WAVES 

In this section it is showri that when the fluid is 

not perfectly conducting, but has a finite coricluctivity, or if 

viscous effects are present, the MHD osciliations will be damped. 

Denoting the kinematic viscosity (viscosity divided by mass density) 

of the fluid by 
nk'  and the niagnetic viscosity by 

r 	!see Eq. (6.2.5.)], the linearized set of equations (2.12) t'o(2.14) 

are modified to include additional terms, as follows, 



n 

3p 
1 + 0  (y 	= o 	 (7.1) 

P 	' + V 2  v p + —1-- B x (VxB ) 	1k 	u = O 	(7.2) 
o 	 5 — 	

110 -0 
	- 	 —i 	 1at 

38 
V x (u x B ) -

° 	
V 2  B 	= O 	 (7.3) 

1  

Although, for a conipressible fluid the use of the siniple vscous 

force temi P n
k  2  U is not really allowed, it is, nevertheless, 

expected to give the correct order of magnitude behavior. The 

displacement current is not included in the treatment presented in this 

section. 

For plane wave solutions, the differential operators 

3/3t and V are replaced, respectively, by -ito and ik, SO that the set 

of differential equations (7.1)to (7.3) are replaced by a correspondent 

set of algebraic equatioris. Thus, we have 

k.0 
p

i 
 = P

O 	
ai 

1 	 (7.4) 

p  
= 	1  V2k+ 	

1 	
B x(kxB)-  i 

 ~10  PO  
—i 	

0 	- 	

-o 	— —' 	

k 2  u 	 (7.5) 

k x 	x 
B 	= - 	 (7.6) 

(w + i ri1  k2) 
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Substituting (7.4) and (7.6) into (7.5) , and rearranging, we obtain 

Ti r 	k2 nmk 2  2 
-w2(1+i 

k)(1+ )u+(1+i )V(k.u)k- 
O) O) O) 

5 
- - i - 

- 	
x {k x 	X 	x 	} = o 

	
(7.7) 

Comparing this equation for a 	with (2.19), we see 

that we obtairi the sarne resuits as before, except that w 2  must be 

rnultiplied by the factor (1 
+ 1k 

k 2 /w) (1 + irim k 2 /w), and 	must be 

mui tiplied by the factor (1 + in k 2 /o). 

7.1 Alfvén Waves 

For the case of the transverse Alfvén waves 

propagating along B  	
the relation (4.3) between u and k becornes 

k 2 V=w2 (i+i 	)(1+i 
qk2 

O) 	 O) 

k 2 	 _______ 
)- =)2[1 (k 	1rn 	2 

(7.8) 

In order to simplify this result, we shall assume that the correction 

terms corresponding to the kinernatic and magnetic viscosity are small, 

50 that the term in the right-handside of (7.8) can be neglected.Thus, 
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2  k2V2 W2  El + i 
k 

 - T m + 
Ti 

(1) 

2 
	+'-v(22-- 
	 (7.9) 

where we have replaced w/k, in the right-hand side, by the first order 

result (VA).  Eq. (7.9) can be further simplified to the form (using 

the binominal expansion (1 + x)h/2 	1 + x/2, x « 1) 

kr--- +1 	 (7.10) 
VA 	2V 

The positive imaginary part in this expression for 

k(w) implies iii damping of the waves. This is easily seen by writing 

k = k  + 1 k 1 , with k and k. real numbers, and noting that 

IkZ = 	
lkyZ 

e 	e 
	

(7.11) 

whichrepresentsa wave propagating along the z - axis with wave 

nurnber k  	
but with an exponentially decreasing amplitude, the 

amplitude failing to 1/e of its original intensity in a distance of 

1/k 1 . 

Expression (7.10) shows that the atterivation of Alfvn 

waves increases rapidly with frequency (or wave number), but 

decreases rapidly with increasing magnetic field intensity. Also, the 
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attenuation increases with the fluid viscosity and the magnetic 

viscosity. The latter increases as the fluid conductivity decreases. 

7.2 Sound waves 

For the longitudinal sound waves propagating along 

Eq. (4.2) is niodified to read 

k 2 V 2 =w 2  (1 +i 	) 5 	 41) 
(7.12) 

Considering that the resistive and viscous correction terms are small, 

we find 

k +i Ti  
2V3 k V 

5 5 

(7.13) 

This shows that attenuation of sound waves also increases rapidly 

with frequency, but decreases with increasing sound velocity. It also 

increases with increasing fluid viscosity, as expected. 

7.3 Magnetosonic waves 

For longitudinal magnetosonic waves propagating across 

the dispersion relation becomes [see Eq. (3.3) J 

n k2 	 k k2 
)(1+i_% 

k 	
(7.14) k 2  V 2  (1 + i_ 	)+ k 2  V 	( =w 2 l+ i 

5 
o) 	 o) 	 41) 
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To siniplify this expression we consider that the kinematic and 

niagnetic viscosity are small, and neglect the term involving tEm 

product T m  n k  k'/w'. Hence, (7.14) becomes, after some rearrangement, 

- 	 k 2  V 2  
k 2  (V +VÂ) 	w 2  {1 + i 	

+ 	m (1 - 
	

)] } 	(7.15) 

In the terms in the right-hand side of (7.15) we can rep1acew'k 2  by 

the approxiniateresult (V + Vi), so that (7.15) can be further 

siniplified te give the foliowing dispersion relatiori 

fl 

	

2 	 - 
k= 	 ti 	

w 	 m 
(VI + V)h/2 	2 (V 	 Hk t  + V)3/2 -. 	 V2/V 	

(7.16) 

	

(1 + 	) 

Thus, the attenuation of magnetosonic wayes also increases with 

frequency, and with kinematic and magnetic viscosity, but decreases 

with increasing magnetic field strength. 
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PPflRI RM 

15.1 - Calculate the speed of an A1fvn wave for the following cases: 

(a) In the Earth's ionosphere, considering that ne = ]OS cm3, 

B = 0.5 Gauss and thatthePositive charge carriers are atomic 

oxygen ions; 

- (b) In the solar corona, assuming n  = 106 cn{, 8 = 10 Gauss 

and that the positive charge carriers are protons; 

(c) In the interstellar space, considering n = io m 3  and 

8 = 10-7 Weber/rn 2 , the positive charge carriers being protons. 

15.2 - Show that A1fvn waves, propagating along the magnetic field, 

are circularly polarized. 

Hint: for this problem it is appropriate to derive first the 

dispersion relation for transverse electromagnetic waves 

propagating along B, iri a two-fluid (electrons and one type of 

ions) plasma, and then take the limit for very low frequencies. 

15.3 - For the pure A1fvn wave, propagating at an angle O with respect 

to the magnetostatic field B, with phase velocity given by 
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Eq. (5.10), determine the associated field components B1, Uiy,  

Eix, and 

15.4 - Include the effect of finite conductivityinthe derivation of 

the equatíons for the plane Alfvn wave propagating along the 

magnetic field. Show that the linearized equatiõns are satified 

by solutions of the form exp(czz - iüt) and determine the 

coefficient ct. 

15.5 - A plane electromagnetic wave is incident normally on the surface 

of a conducting fluid of large but finite conductivity (a), 

immersed in a uniform magnetiÇ field B such that k 1 B 

Assume that the magnetic field (B) of the incoming wave is 

parailel to B. Show that there are two wave ruodes whtch 

penetrate the 'fluid: anunattênuated niagnetosonic wave, and 

another mode whtch has an effective skin depth 5= '(V/VM) 6rc' 

where V and V are the sound and magnetosonic velocities, 

respectively, and rc 
 is the skin depth in a rigid conductor. 

15.6 - For the fast and slow MHD waves, let u 'and u t be the 

components of the velocity ofmass flowwhich are longitudinal ánd 

trans''ere; respectively, to the direction of propagation. 

Show that u 	ãnd u are in phase for the fast wave and 1800
91 
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out of phase for the slow wave. Also, show that the perturbati ons 

of the kinetic and magnetic pressures are in phase for the fast 

wave and 1800  out of phase for thé slow wave. 

153 Consider the foliowing closed se  of MEIO equations i  the so-

-called Chew, Goldberger andLow approidmation: 

P. + v:(pu) = O 

D 	 B2 

= 	- 	[± +j 
+B.v{[I- (PP±fl B 

Dt 	 a2 

í Pi B2 	
= 

Dt L p 3 

( 	pi. 	" 1=0 
Dt 	pB 

= u o  

38 
v x  E = - 

• E = 
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+ 	x B = O 

In the .equationsof this set, involvinthé pressure tensor p, 

itis considered that 

í P.L O O 	'1 
p=O P  

[o o 

Taking the equilibriwn niean velocity equal to zero, show 

that the dispersion relation for the niagnetohydrodynamic waves 

is given by 

( 
p W2  + k cos e 	- p1 

- 	
- k 2  s i n 2  e [2 p 1  +  

o 
P 	 ii 

o 	 o 

p 2.  k' sin 2 o cos 2 e 

pw 2  - 3p1 k 2  cos 2 e 

where e is the angle between k and BOI  and p , 	, p, and B 
o 	- 	o 

stand for the unperturbed quantities. 

Show that these waves are unstable for ali valuesof o less 

than a critical angle o, which satisfies the equation 
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p  
-+ p1 (1 + sin 2  e) =- sin 2  e + 2 p,, cos2ec 

c 
P C 	 3p., 
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