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CHAPTER 15

MAGNETOHYDRODYNAMIC WAVES

1. INTRODUCTION

The most fundamental type of wave motion that
propagates in a compressible, non-conducting fluid 1is that of
longitudinal sound waves. For these waves the variations in pressure
{p) and in density (p), associated with the compressions and
rarefactions of the fluid during the Tongitudinal wave motion, obey

the adiabatic energy equation commonly used in thermodynamics,

po ¥ = constant (1.1)

where y denotes the ratio of the specific heats at constant pressure

and at constant volume. Differentiating (1.7) gives

v = (—3-) T
= V2 % (1.2)
where
Vv = (_JILJI/Z= (_IEI_)I/Z (1.3)



is the velocity of propagation of sound waves, known as the
adiabatic sound velocity., Fig. 1 illustrates the regions of compression
and rarefaction of the fluid, associated with the longitudinal motion

of sound waves.

Fig. 1 - Schematic representation of longitudinal sound
waves that propagate in a compressible, non-
conducting fluid, showing the regions of
compression and rarefaction associated with
the longitudinal wave motion.

1.1 - Alfven waves

In the case of a compressible, conducting fluid

immersed in a magnetic field, other types of wave motion are possible.

We have seen that in a magnetic field of intensity §0



the magnetic stresses are equivalent to a tension B;/uo along the
field lines, and an isotropic hydrostatic pressure B;/Zuo (see section
5, 0f Chapter 12). Since the latter can always be incorporatéd with the
fluid pressure, the magnetic field lines behave effectively as elastic
cords under a tension Bé/ué- Further, in a perfectiy conducting fluid
the plasma partic]es behave as if they were tied to the magnetig field
lines (see section 4, of Chapter 12), so that the lines of force act as
if they were mass-loaded strings under tension. Thus, by analogy with
the transverse vibrations of elastic strings, we expect that, whenever
the conducting fluid is slightly disturbed ffom the equilibrium
conditions, the magnetic field lines will perform transverse vibrations..
The velocity of propagation of these transverse oscillations are

expected to be given by

. BZ’,
vy = ( TensTon )1/2 = (—2)1/2 : (1.4)
Density P

This velocity is known as the Alfvén velocity, since the existence of
this type of wave mbtion was first pointed out by Alfven, in 1942, An
impottant property of these waves, as will be shown later, is the
absence of any fluctuations in density (p) or fluid pressure (p).

Fig.2 illustrates the transverse oscillations of the fluid (and of the

"frozen in" field lines) for the Alfvén wave.

1.2 Magnetosonic waves

Longitudinal oscillations are also expected to occur in

a compressible, conducting fluid in a magnetic field. For motion of



Fig. 2 - Transverse Alfvén waves in a compressible,
conducting magnetofluid. The velocity of
propagation is along the magnetic field
lines, and the fluid motion and magnetic
field perturbations are perpendicular to the
field lines.

the particles, and propagation of the wave, in the direction of the
magnetic field there  will be no perturbation in the magnetic
field, since the particles are free to move in this direction. Thus,
in this case, the waves will be ordinary longitudinal sound waves

propagating *at the velocity VS atong the field lines (Fig. 3).

On the other hand, for motion of the particies, and
propagation of the wave, in the direction perpendicular to the
magnetic field, a new type of longitudinal wave motion is possible

since now, in addition to the fluid pressure p, we must add the



Fig. 3 - Longitudinal sownd waves
propagating along the magnetic
field 1ines in a compressible,
conducting magnetofluid.

hydrostatic magnetic pressure 82/2u0 in the plane normal to §o'
Hence, the total pressure is p + lezuo and, conseguently, the
velocity (VM) of propagation of these so-called magnetosonic waves

(Fig.4) satisfies the following relation, analogous to (1.1),
Vlp + B/ 2u,) = Vi o (1.5)

Therefore, we can write

Vﬁz—g*(w——) vz a4 (B (1.6)



where the suffix zero, in p, refers to the undisturbed state, and V
S

is the adiabatic sound velocity. Since the Tines of force are frozen

in the conducting fluid, the magnetic flux BdS across an element of

surface, dS, whose normal is oriented along the magnetic field, and
the mass p dS of a unit length of column having dS as base, are both
conserved during the oscillation, in such a way that (B/p) = (Bo/po)'

Consequently, (1.6) becomes

BZDZ BZ
R e I (1.7)
do  2u pg o=, UP,
or
Vy = (V2 + V)72 (1.8)

where V, is the Alfven velocity.
For propagation in a direction inclined with respect to
the magnetic field the waves are more complex. This subject will be

considered in some detail in section 5.

2. MHD EQUATIONS FOR A COMPRESSIBLE, NONVISCOUS, CONDUCTING FLUID

2.1 Basic equations

To investigate the propagation of waves in a conducting

magnetofiuid, let us consider a compressible, nonviscous, perfectly



conducting fluid immersed in a magnetic field. The appropriate
system of equations governing the behavior of this type of fluid,
and the assumptions involved, have been summarized in section 1, of

Chapter 12. These equations are

% tg.(u =0 (2.1)
at
U _
p — +p(U . v)u=-vp+JxB (2.2)
at -0 7 ”
=V v (2.3)
EX-@:pOH (2.4)
v xE = - 0B/at (2.5)
E+uxBa=0 (2.6)

This system of equations can be reduced by combining Eqs. (2.2) to
(2.4} in the form
au 1

~ + o] (E . E) E = - Y2 zp +
at 5 Yo

P (vxB) xB# (2.7)
as well as Egs. (2.5) and (2.6) in the form

v x (u x B) = aB/st (2.8)



Under equilibrium conditions, the fluid is assumed to be uniform,
with constant density Pys the equilibium velocity is zero, and

throughout the fluid the magnetic induction §O is uniformand constant.

In order to develop a dispersion relation for small-
amplitude waves, consider small-amplitude departures from the

equilibrium values, so that

B(r,t)=8 +8 (r,t) (2.9)
p(rs t) =p, *p (r, t) (2.10)
ufr, t)=u (r, t) (2.11)

Substituting Egs. (2.9) to (2.11) into Egs. (2.1), (2.7) and (2.8),and
neglecting second - order terms, we obtain the following linearized

equations in the small first - order quantities

p
—tp (9. u)=0 (2.12)
ot -
au i 1
4 _

0, " + Vs Yp1+ U— §0 x (V x El) =0 (2.13)

0

38

—1— -V x (gl xB))=0 ' (2.14)



2.2 Development of an equation for u

Eqs. (2.12) to (2.14) can be combined to yield an

equation for u alone. For this purpose, we first differentiate (2.13)
|

with respect to time, obtaining

3%u 3p . B
—— + V2 y(—21) + B, X [

O a2 5t u

Next, using (2.12) and (2.14), we can write (2.15) as

3%u
~1_ _ y2 = -
~ vsg(g.gl)+yAx{nyyx(glxyM]} 0 (2.16)

where we have introduced the vector Alfven velocity

V, = _____}élﬁq*_ (2.17)
(uo p0)1/2

Without Toss of generality we can consider plane wave

solutions of the form
u (ry t) = u exp (i k.r-iduwt) (2.18)

In what follows u can stand for either the amplitude or the entire
~1
expression (2.18). Thus, in (2.16) we can replace the operator V by

i k and the time derivative by - iw, so that

oty V2 (kL u )k -V x {kx [Kx (Uox¥y) ]3=0 (2.19)
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Since, for any three vectors A, B and C we have the vector identity

Ax (BxC)=(A.C)B-(A.B)C (2.20)

we can rearrange (2.19) to read

~wtu o+ (2R (ku) ke (ke YL (kL V) -

- My u) k- (kou)¥1=0 (2.21)

Although this expression appears to be somewhat involved, it leads to
remarkably simpie solutions for waves propagating in the directions

para]]el or perpendicu]ar to the magnetic field.

3. PROPAGATION PERPENDICULAR TO THE MAGNETIC FIELD

For the case when the wave vector k is perpendicular to

the magnetic induction §0, we have k . V, =0, and (2.21) simplifies

~A
to

-wfu o+ (V24 VE) (k.u) k=0 (3.1)

=1 -~ ~1
from which we obtain

u o= (V24 V3) -(—'2~5 (3.2)

Therefore, 91 is parallel to k, so that k . u

= ku , and the solution
-~ 1

for u is a longitudinal wave with the phase velocity



-1 -
o 2 2y1/2
, (V2 +v2) (3.3)

The magnetic field associated with this Tongitudinal

wave can be obtained from (2.14). Taking

§1 (rs t )= §1 exp (i k.r-iawt) (3.4)
we obtain
—cu§1 - kX (gl X §0) =0 (3.5)

Using the vector identity (2.20), and noting that k . §0 = 0, we find

5 -1 g (3.6)
-1 (LU/k) ~0 \

The electric field associated with this wave is seen,

from (2.6), to be given by

E=-u x8B (3.7)

This wave is, therefore, similar to an electromagnetic
wave, since the time-varying magnetic field is perpendicular to the
direction of propagation, but parallel to the magnetostatic field,
whereas the t}me-varying e]ectric field is perpendicular to both the
direction of propagation and the magnetostatic field. It is a
Tongitudinal wave, however, since the velocity of mass flow and the

fluctuating mass density associated with it are both in the direction

of wave propagation. For these reasons, this wave is called the
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magnetosonic wave. The phase velocity of this wave is independent of
frequency, so that it is a nondispersive wave. As illustrated inFig.4,
the magnetosonic wave produces compressions and rarefactions in the
magnetic field lines without changing their direction. Since the
fluid is perfectly conducting, the lines of force and the fluid move

together.

Fig. 4 - The Tongitudinal magnetosonic wave propagates perpendicularly
to the magnetic field, causing compressions and rarefactions
of both the Tines of force and the conducting fluid.

The restoring forces, operating in the magrietosonic wave,
are the gradient of the fluid pressure and the gradient of the
compressional stresses between the magnetic field Tines. If the fluid
pressure is much greater than the magnetic pressure, the effect of the
magnetic field is negligible, so that w/k = VS and the magnetosonic
wave becomes essentially an acoustic wave. On the other hand, if the
magnetic field is very strong, so that the magnetic pressure is much
larger than the fluid pressure, then the phase velocity of the

magnetosonic wave becomes equal to the Alfven wave velocity VA.
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The magnetosonic wave mode is also known variously as

the compressional Alfven wave Or the fast Alfven wave.

4, PROPAGATION PARALLEL TO THE MAGNETIC FIELD

For waves propagating along the magnetic field
| (k]iBy), we have k . V5 = k Vp, and (2.21) simplifies to

2
VS

2
Vi

(k2 VR - w?) uy + (—— - 1) K* (u; . ¥a) ¥ = 0 (4.1)

In this case there are two types of wave motion possible.

For u, parallel to B, and k, we find, from (4.1), that

a longitudinal mode is possible, with the phase velocity

Loy : (4.2)
k S

This is an ordinary longitudinal sound wave, in whichthe velocity of
mass flow is in the direction of propagation (Fig. 3). There is no
e1ectricfie1d,e1ectric current density, and magnetic field associated

with this wave.

A transverse wave, with u; perpendicular to By and k,
is the other possibility. In this case, u;. ¥y = 0, and (4.1) gives
for the phase velocity of this transverse wave, known as the Alfven
wave ,

L=y (4.3)
" A
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Since the phase velocity is independent of frequency, there is no

dispersion.

The magnetic field associated with the Alfven wave is
found, from Eqs. (2.14) and (3.5), to be given by
u

B = - BO — (4.4)

o (w/k)
Hence, the magnetic field disturbance is normal to the original
magnetostatic induction go. The small component §1, when added to go’
gives the lines of force a sinusoidal ripple, shown in Fig.5. The

associated electric field is given by Eq. (3.8).

The Alfven wave involves no fluctuations in the fluid
density or pressure, al though both the fluid and the magnetic field
lines oscillate back and forth laterally, in the plane normal to 90'
The magnetic energy density of the wave motion, §f/2uo, is equal to
the kinetic energy density of the fluid motion, pbgi/Z. This

equipartition of energy is easily verified from (4.4),

B2 B2 wu? B% u?

_ ~1 . o~ _ 1 2
= = = po El
2u0 Zuo {w/k)? Zuo V; 2

where we have used Eqs. (4.3) and (2.17).

The Alfven wave mode is also known variously as the

shear Alfven wave or the slow Alfven wave.
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Fig. 5 - Schematic illustration for Alfven waves propagating alongB,,
showing the relations between the oscillating quantities.
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5. PROPAGATION IN AN ARBITRARY DIRECTION

Proceeding further, let us now investigate the case of

wave propagation in an arbitrary direction with respect to the

magnetic induction @0. With no Toss of generality, we introduce a
Cartesian coordinate system such that the y-axis is normal to the
plane defined by the direction of propagation E and the magnetic

induction @O, and choose Z to be along @O , as shown in Fig.6.

g

Fig. 6 - Cartesian coordinate system with
the relative directions of the vectors
5 and §O.

Denoting by © the angle between k and B, we have

k=k (Xsin@+2zcos Q)

(5.1)



_']7_"_

Yp=VpZ (5.2)
u =u 31—%y 3*’%2 z (5.3)
k. !A = k VA cos 9 (5.4)
k. g1= k ( %X sing + %z €os 0 } {5.5)

Substituting these expressions into equation (2.21) for gl;performing
the required algebra and rearranging the terms, we obtain for the x-

component equation,

u (-w®+ k% V2

2 y2 12
» at k VS sin“0) + u

2 Y2 o3 =
- (k Vs sin @ ?os 0)=0 (5.7)

for the y - component equation ,

_ 2 2 y2 2 Ay -
uly (-w* + k VA cos“ ¢ ) =10 (5.8)

and for the z - component equation ,

f

2 42 oo - 2 2 2 -
u . (k> ¥ sin @ cose)+ulz( w?+ k* & cos?@) = 0 (5.9)
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5.1 Pure Alfven wave

From (5.8) we see that there is a linearly polarized
wave involvingoscillations in the direction perpendicular to both k

and BO (u1 # 0), with a phase velocity given by
- y

L V, cos © (5.10)
k

The field components associated with this wave can be seen to be
Biys Uiy, Eix, and Jiy, so that it is a transverse Alfven wave. For
this reason, this wave is generally referred to as the pure Alfven
wave. Note that for propagation afong the magnetostatic field (©=0).
Eq. (5.10) gives w/k = VA,while for propagation across the
magnetostatic field (0 = 90°) this wave disappears, since w/k = 0.

This mode is also known as the oblique Alfven wave.

5.2 - Fast and slow MHD waves

Eqs. (5.7) and (5.9) constitute a system of Fwo
 simultaneous equations for the amplitudes of uix and u,z. To have a
solution in which u;x and u,; are nonzero, the determinant of the
coefficients of this system of equations must vanish. Therefore,

setting

(-w?+ k2 Vi + k? V2 5in2Q) (k® V2 sin® cosO)
A s S

=0 (5.11)

(k? Vg sin o cosO) (-w? + Kk? Vg cos? )



-19 -

we obtain the following dispersion relation, expréssed in terms of the

phase velocity w/k,

Uju [Ua
— - (Vs + Vﬁ) — 4 Vé Vi cos?0 = 0 (5.12)
k k* _

Solving this equation for w?/k?, we obtain two real solutions

2
wz = _l_.(vé + Vﬁ):f—l‘ [_(Vé + VE)2 --4V§'VE cos? G)]‘/z (5.13)
k 2 i

The solutions with the plus-and-minus sign are called, respectively,

the fast and slow MHD waves.

5.3 Phase velocities

AT1 the three MHD waves have constant phase velocities,
given by {5.10) and (5.13), for all frequencies, and hence there is no
dispersion. Fig.7 displays how the phase velocity varies, for each of
these waves, as a funtion of the angle o between k and B_, for both

cases when VAj’Vs and when VS'>V The phase velocity of the fast MHD

A
wave increases from V, (or V_ if V_>V,) when O = 0°, to (Vé + Vi)l/2
when @ = 90°, while that of the slow MHD wave decreases from

Vo (or Vy if V>V, ) when g = 0%, to zero when g = 90°. Therefore, if
V,> V., the fast MHD wave becomes the Alfven wave for ¢ = 0°, and the
magnetosonic wave for ¢ = 90°, while the slow MHD wave becomes the

sound wave for @ = 0°, and disappears for € = 90°%. On the other hand,

if V. >V,, the fast MHD wave becomes the sound wave for © = 0° and the
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magnetosonic wave for O = 90°, while the slow MHD wave becomes the

Alfven wave for o = 0° and disappears for o = 90°,

5.4 Wave normal surfaces

The propagation of these waves are conveniently
represented by means of diagrams cailed phase velocity or wave normal
surfaces, which give the variations of the magnitude of the phase
velocity of plane waves with respect to the magnetic field direction.
Fig.8 shows the wave normal diagram for the pure Alfven wave,
constructed trom Eq. {5.70). The vector drawn from the origin to a
point P on the curve represents the phase velocity of a plane wave
and © the: ditection of the wave norma] with respect to the
magnetostatic field. The actual state of affairs, in three dimensions,
is obtained by rotating the circles of Fig.8 about the axis oriented
along QO. The three-dimensional surface, thus obtained,is called the wave

normal surface.

Fig.9 shows the wave norma] diagrams for propagation of
the pure Alfven, the fast and the slow MHD waves, for the two cases
VA > VS and VA< Vs. The three-dimensional wave normal surfaces are
obtained by rotating Fig.9 about the axis oriented along @O. The wave
norma surface corresponding to the fast MHD wave is a smooth,
closed surface enclosing the two spheres passing through 0 which
correspond to the pure Alfven wave, Within each of these spheres,

there is another smooth, closed wave normal surface corresponding to

the slow MHD wave.
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6. EFFECT OF DISPLACEMENT CURRENT

In magnetohydrodynamics, the displacement current
(eo 9E/3t) term, which appears in Maxwell V x B equation,is usually
neglected. This approximation in valid only for fluids of high
conductivity at comparatively low frequencies (well below the ion

cyclotron frequency), as discussed in section 6,0f Chapter 9. The

IB;,

Fig. 8 - Wave normal diagram illustrating the variations of the phase
velocity and the direction of the wave normal at any angle ©
with respect to B , for the pure Alfven wave.
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Fig. 9 - Wave normal diagrams for the pure Alfven, the fast and the
slow MHD waves, for (a) VA > VS and (b) VA < VS.
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inclusion of the displacement current in the basic equations wmodify
the propagation of the Alfven and magnetosonic waves. The results
obtained, however, are valid only at frequencies where charge

separation effects are unimportant.

6.1 Basic equations

To investigate the effect of the displacement current
on the propagation of MHD waves in a compressible, nonviscous,

perfectly conducting fluid, Eq. (2.4) must be modified to read

; o
VXB=yu J+-—-— {6.1)

O~ 2 at

Consequently, the current density to be inserted into the J x B term,

in the equation of motion (2.2}, is now

J:-L[VxB{.]__é._.(uxB)] (6'2)
- w2 ¢t 3t ”

where use was made of (2.6). Using expressions (2.9) to (2.11) for
small-amplitude waves, the set of Tinearized equations (2.12) to (2.14)

for the small quantities p > U and Bl, become now
2 2

op
oy (7 .u)=0 (6.3)
at -7
3g1 . 1 1 Bu1
0 +V:Vp +—Bx (VxB +— "1 xB)=0 (6.4)
° st S~ T T 2 g O
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~—1 - vx(u xB)=0 (6.5)

6.2 Equation for 91

To obtain an equation for u alone, we take the time

derivative of (6.4), and use (6.3) and (6.5), which gives

3%u
~1  _ y2 -
VT ) G X LTk, XY T
1 82u1
+— V¥V, x (——xV,) =0 (6.6)
c2 A at? A

where !A is the vector Alfven velocity, defined in (2.17). From the

vector identity (2.20), we have

329 32 _ _
( Bt; x V,) = CVEu - (v, . u) V] (6.7)

v
’ A 3t? T

~A

so that (6.6) can be rearranged in the form

9% - A ) A 5 _ 2
at? AU c2 )E1 (!A l'J'l) c? . VS v B1) ¥
+gAx{yx[yx(glng)] } =0 (6.8)

It is evident that this equation reduces to (2.16), if Vi/c2 << 1,

Plane wave solutions of (6.8), in the form (2.18),

give
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2 Vﬁ E 2 2
~w? D (T + " u o= (Vg o) > T+ eV (kou) ke
+ (k. Y) I (k Vplu - (Y -u )k - (k 'El) Ya ]=0 (6.9)

6.3 Propagation across the magnetostatic field

For k l_§0 we have k . V, =0, so that (6.9) gives

A
(yA . gl) = 0 and
"a
ol 2 2 =
we (1 + v )gl + (VS + VA) (k . gl) k=0 (6.10)

This equation is similar to (3.1), except that the square of the
frequency is multiplied by the factor (1 + Vi/cz). Thus, the phase
velocity of the longitudinal magnetosonic wave propagating across §O
becomes now
2 2y1/2
(VS + VA)

= (6.11)
k(1 /e

6.4 Propagation along the magnetostatic field

For k || 8., inspection of (6.9) shows that for u
parallel to !A (i.e., EO) it becomes identical to (2.21). Thus, for
the longitudinal sound wave. propagating along §O there is no change

from the results obtained before.

However, for the transverse Alfvén wave (u [ k) we
~1

have (EA . EI) = 0 and (6.9) reduces to
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- (1 +VR/C?) u 4 kP VU = 0 (6.12)

Consequently, the modification introduced in the Alfven wave by the
displacement current is that the square of the frequency must be
multiplied by the factor (1 + Vﬁ/cz). Thus, the phase velocity of the

Alfven wave becomes

= (6.13)

In the usual Timit of Vi/c2 << T, (6.13) reduces to {4.3) and the
effect of the displacement current is unimportant. On the other hand ,
if Vf\/c2 >> 1, then w/k becomes equal to the speed of Tight. In
using these results, however, it must be kept in mind that they are
valid only at frequencies where charge separation effects are

negligible.

7. DAMPING OF MHD WAVES

In this section it is shown that when the fluid is
not perfectly conducting, but has a finite conductivity, or if
viscous effects are present, the MHD oscillations will be damped.
Denoting the kinematic viscosity (viscosity divided by mass density)
of the fluid by T and the magnetic viscosity by
n. |_see Eq. (6.2.5.) ], the linearized set of equations (2.12) to(2.14)

are modified to include additional terms, as follows,
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9p
L +p (V.u)=0 (7.1)
at ° -~
Mo ] )
Py +VSYp1+——-—§ox(E’x§1)-ponk v g1=0 (7.2)
at il
0
aB
= ) ) )
—{;—;— v X (gl X go) Ny ¥ ﬁl 0 (7.3)

Although, for a compressible fluid the use of the simple viscous -
force term Pq Mk y? gl is not really allowed, it is, nevertheless,
expected to give the correct order of magnitude behavior. The
displacement current is not included in the treatment presented in this

section.

For plane wave solutions, the differential operators
3/3t and V are replaced, respectively, by -iw and ik, so that the set
of differential equations (7.1)to (7.3) are replaced by a correspondent

set of algebraic equations. Thus, we have

oy
p1 = P, (7.4)
W
_ 1 y2 1 _ s 2 '
wgl = VS k +—§OX(EX§1) Ty k !1 (7.5)
Po Mo Po
E X (21 X EO)
B = - ~ (7.6)
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Substituting (7.4) and (7.6) into (7.5} , and rearranging, we obtain

1’}kkz T]k2 nmkz 2
W (1 =) (1 Yu # (141 — v,
~1

Comparing this equation for gl with (2.19), we see
that we obtain the same results as before, except that w? must be
multiplied by the factor (1 + in, kZ2/w) (1 + in, k?/w), and VI must be

multiplied by the factor (1 + inm k*/w).

7.1 Alfven Waves

For the case of the transverse Alfven waves

propagating along §o’ the relation (4.3) between w and k becomes

n. k2 k?
k? Vi =w? (1 +1 ,__E____) (1 +1 m )
w w
4
- k2 e M K72

In order to simplify this result, we shall assume that the correction
terms corresponding to the kinematic and magnetic viscosity are small,

so that the term in the right-hand side of (7.8) can be neglected. Thus,

1
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- . k2
2 g2 o, .2
k VA—UJ l_1+'l-w—(nm+nk)]
- . m '
= g2 |_1+1?(nm+nk):l (7.9)
A

where we have replaced w/k, in the right-hand side, by the first order
result (VA)' Eq. (7.9) can be further simplified to the form (using

the binominal expansion (1 + x)¥/2 =1 + x/2, x << 1)

2
k=2 +i-"(n +n) (7.10)
v vz Mk
A A
The positive imaginary part in this expression for
k{w) implies in damping of the waves. This is easily seen by writing
k = kr + i ki’ with kr and ki real numbers, and noting that
-k.z ik z
e’ - 1 e T (7.11)
which represents a wave propagating along the z - axis with wave
number kr’ but with an exponentially decreasing amplitude, the
amplitude falling to 1/e of its original intensity in a distance of

]/ki'

Expression (7.10) shows that the attenuation of Alfven
waves increases rapidly with frequency {or wave number), but

decreases rapidly with increasing magnetic field intensity. Also, the
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attenuation increases with the fluid viscosity and the magnetic

viscosity. The latter increases as the fluid conductivity decreases.
7.2 Sound waves

For the longitudinal sound waves propagating along

B , Eg. (4.2) is modified to read

2
k2V2'=2(]+1'—?L) | (7.12)
s Y u ’

Considering that the resistive and viscous correction terms are small,

we find

P S (7.13)

This shows that attenuation of sound waves also increases rapidly
with frequency, but decreases with increasing sound velocity. It also

increases with increasing fluid viscosity, as expected.

7.3 Magnetosonic waves

For Tongitudinal magnetosonic waves propagating across

B,s the dispersion relation becomes [ see Eq. (3.3) ]

2 3 nm k* 2 2 2 T]I‘( k* nm k?
k VS (1 + i———) +k VA= o7 (1T+i———) (1 + i) (7.14)
(4] ) [V
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To simplify this expression we consider that the kinematic and
magnetic viscosity are small, and neglect the term involving the
product n_ M k*/w?. Hence, (7.14) becomes, after some rearrangement,

2 y2
k Vs

2

)]} (7.15)

_ ,
P (V2 e Vi) =w? (0 i £ Ty v o0 (1
w w

In the terms in the right-hand side of (7.15) we can replace w¥k?2 by

the approximate result (Vé + VE), so that (7.15) can be further

simplified to give the following dispersion relation

_ W . w2 - T -
C i T e ey LU
S A s A s’ A

Thus, the attenuation of magnetosonic waves also increases with
frequency, and with kinematic and magnetic viscosity, but decreases

with increasing magnetic field strength.
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PROBLEMS
Calculate the speed of an Alfven wave for the following cases:

(a) In the Earth's ionosphere, considering that n = 10° cm” 3,
B = 0.5 Gauss and that the positive charge carriers are atomic

oxygen ions;

- (b) In the solar corona, assuming n, = 106 ‘em~3, B = 10 Gauss

15.2 -

15.3 -

and that the positive charge carriers are protons;

(c) In the interstellar space, considering n = 107 m™3 and

B = 10-7 Weber/m2, the positive charge carriers being protons.

Show that Alfven waves, propagating along the magnetic field,

are circularly polarized.

gint: for this problem it is appropriate to derive first the
dispersion relation for transverse electromagnetic waves
propagating along Eo’ in a two-fluid (electrons and one type of

ions) plasma, and then take the 1imit for very low frequencies.

For the pure Alfvén wave, propagatingatan angle © with respect

to the magnetostatic field Eb’ with phase velocity given by
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Eq. (5.10), determine the associated field components Byy, Uyy,

Eixs and Jpy .

15.4 - Include the effect of finite conductivity’in the derivation of
the equations for the plane Alfven wave propagating along the
magnetic field. Show that the linearized equations are satisfied
by solutions of the form exp {ecz - iwt) and determine the

coefficient a.

15.5 - A plane electromagnetic wave is incident normally on the surface
of a conducting fluid of large but finite conductivity (o),
immersed in a uniform magnetic field @0 such that E.l go .
Assume that the magnetic field (B) of the incoming wave is
parallel to QO. Show that there are two wave modes which
penetrate the fluid: anunatténuated magnetosonic wave, and
another mode which has an effective skin depth 53:(VS/VM) 8¢t
where VS and VM are the sound and magnetosonic velocities, =

respectively, and 6rc is the skin depth in a rigid conductor.

15.6 - For the fast and slow MHD waves, let u, -and uy be the
components of the velocity ofmass flowwhich are Tongitudinal and
transverse, respectively, to the direction of propagation.

Show that u, and uy are in phase for the fast wave and 180°
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out of phase for the slow wave. Also, show that the perturbations
of the kinetic and magnetic pressures are in phase for the fast

wave and 180° out of phase for the slow wave.

Consider the following closed set of MHD equations in the so--

-called Chew, Goldberger and Low approximation:

IE
T
+
1]
* >
——
ol
=
—
i
(e}

Dt
AL
28
TrE - —
ot
E-E:

pc/eo
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In the equations of this set, involving thé pressure tensor P,

it is considered that

r h!

p, 00
p=140 p, 0

0 0 pu

(a) Taking the equilibrium mean velocity equal to zero, show

that the dispersion relation for the magnetohydrodynamic waves

is given by
( 2 2
p0w2+kcoselp..- pl-—B—O—]-kzsinze {2p1+£°— =
. U u
o] Q

p2 k* sin20 cos?e

powz - 3p. k? cos?o

where 0 is the angle between k and §O, and 0> Pus Pu and E

stand for the unperturbed quantities.

(b) Show that these waves are unstable for all values of o Tess

than a critical angle Ocs which satisfies the equation
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9
2 -
B p, (1 + sin? OC) = —— sin? o, + 2 p, cos? 0.
U 3pll

0
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