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CHAPTER 3

MOTION OF CHARGED PARTICLES IN NONUNIFORM
MAGNETOSTATIC FIELDS

1. INTRODUCTION
-

When the fields are spatially nonuniform, or when they
vary with time, the integration of the equation of motion (2.1.1)
is a mathematical problem of great difficulty.
In this case, since the equation of motion is nonlinear, the theory
becomes extremely involved and a rigorous analytic expression for the
trajectory of the charged particle cannot, in general, be obtained
in closed form. Complicated and tedious numerical methods of

integration must be used in order to obtain all the details of the

motion.

There 1is one particularly important case, however, in
which it becomes possible to obtain an approximate, but otherwise
general solution without recourse to numerical integration, if the
details of the particle motion are not of interest. This is the case
when the magnetic field is strong and slowly varying in both space and
time, and when the electric field is weak. In a wide variety of
situations of interest the fields are approximately constant and
uniform, at least on the distance and time scales seen by the particle

during one gyration about the magnetic field. This is the case for many



laboratory plasmas, including those of relevance to the problem of
controlled thermonuclear reactions, and also for a great number of

astrophysical plasmas.

In this chapter we investigate the motion of a charged
particle in a static magnetic field siightly inhomogeneous in space.
The word slightly here means that the spatial variation of the
magnetic field 1inside the particle’'s orbit is small compared with the
magnitude of B. In other words, we shall consider only magnetostatic
fields whose spatial change in a distance of the order of the Larmor

radius, oo is much smaller than the magnitude of the field itself.
To specify more quantitatively this assumption concerning

the spatial changes of B, let 6B represent the spatial change in the

magnitude of B, in a distance of the order of r¢, that is,

§B = r_ |VB | (1.1)

where vB is the gradient of the magnitude of B. It is assumed

therefore that

§8 << B (1.2)

Consequently, in what follows we 1imit our discussion to problems

where the deviations from uniformity are small and solve for the



trajectory only in the first order approximation. The analysis of

the motion of charged particles in stationary fields based on this
approximation, is often referred to as the first order orbit theory.
This theory was first used systematically by the Swedish scientist
Alfven, and it is also known as the Alfvén approzimation or the guiding

center approximation.

The concept of guiding center is of great utility in the
development of this theory. We have seen that 1in a uniform magnetic
field the particle motion can be regarded as a superposition of a
circular motion about the direction of §, with a motion of the guiding
center along the magnetic field lines. In the case of a nonuniform B
field, satisfying the condition (1.2), the value of B at the position
of the particle differs only slightly from its value at the guiding
center. The component of the motion of the particle, in a plane normal
to the field line that passes through the instantaneous position of

the guiding center, will still be nearly circular (see Fig. 1).

AT

6 g

Fig. 1 - The motion of a charged particle in a magnetostatic field
slightly inhomogeneous is nearly circular.



However, due to the spatial variation of B, we expect in this case a
gradual drift of the guiding center across the magnetic field lines, as

well as a gradual change of its velocity along the field lines.

The rapid gyrations of the charged particle about the
direction of B are not usually of great interest and it is convenient
to eliminate them from the equations of motion, and focus attention on
the motion of the guiding center. In the motion of the guiding center,
the small oscillations (of amplitudes small compared with the
cyclotron radius) occurring during one gyration period may be
averaged out, since they represent the effect of perturbations due to
the spatial variation of the magnetic field. The problem is thus
reduced to the calculation of the average values over one gyration
period {(and not the instantaneous values) of the transverse drift

veloctty and the pavallel acceleration of the guiding center.

2. SPATIAL VARIATION OF THE MAGNETIC FIELD

Any of the three components of the magnetic flux

density, B = B x + B

« y o+ B, Z, may vary with respect to the

y
three coordinates x, y, and z. Consequently, nine parameters are
needed to completely specify the spatial variation of B. These
parameters can be conveniently represented by the dyadic (or tensor)

v B, which can be written in matrix form as



( -
2B, / Bx 3B, / o 8B, / ox | X ]
vB = (X§Zz) |B /3y 9B /oy 9B, /dy g (2.1)
g/ -
L B, /o2 aBy/az aBZ/:}zJ \EJ

0Of these nine components only eight are independent, since the

following Maxwell equation

3B aB aB
geB=—Tt+—¥L + 2L -0 (2.2)
-7 ax 3y ¥4

shows that only two of the divergence terms are independent.

If 1in the region where the particle is moving the
condition J = 0 is satisfied, then other restrictions exist in the
number of independent components of YB since, under these
circumstances, the relation v x B = 0 holds. This means that in
regions where there are no electric currents B can be written as the

gradient of a scalar magnetic potential,

B = ¥4, (2.3)
where the magnetic potential e satisfies Laplace equation
v2g. = 0 (2.4)



In regions where an electric current density exists, we have
vxB = My J and we cannot define a scalar magnetic potential, > S

indicated. The number of independent components of VB cannot,

in this case, be reduced without knowing the current density J.

Let us consider a Cartesian coordinate system such
that at the origin the magnetic field is in the z-direction, that

is,

B (0, 0,0) =B =B Z (2.5)

The nine components of the dyadic vB can be conveniently grouped inte

four categories:

an 3B BBZ
(a) Divergence terms: s N (2.6a)
ax dy 3z
3B, aBZ
(b) Gradient terms: , (2.6b)
ax 3Y
BBX 3B
(c) Curvature terms: , J (2.6c)
3z 3z
BB, 3B
(d) Shear terms: , Y (2.6d)

3y DX



2.1 - Divergence terms

We shall initially discuss the magnetic field
line geometry corresponding to the divergence terms of vB. The
presence of a small variation of the component Bz in the z-direction
(i.e., aBZ/ 3z # 0), implies that at least one of the terms an/ ax
or aBy /3y is also present, as can be seen from (2.2). It is of great
utility to make use here of the concept of magnetic flux Iimes which,
at any peint, are parallel to the B field at that point and whose
density at each point 1is proportional to the local magnitude of B.

To determine the differential equation of a line of force, Tet
ds =dxx + dyy + dzZ (2.7)
be an element of arc along the magnetic field line. Then, we must have
ds xB =290 (2.8)

since ds is parallel to B, which gives by expansion of the cross

product,

= = (2.9)

Since we are focusing attention only on the divergence terms of B,

ahd in the region of interest the field is considered to be



mainly in the z- direction, we may expand Bx and By in a Taylor series

about the origin as follows (see Fig. 2)

2B 3B

B, (x1s 0, 0) =B, (0,0, 0) + { ) X1 = (—=) x1  (2.10)
ax X
3B aB

B (0, y,, 0) =B (0,0,0)+ (—X)y; =)y (2.1

where the second and higher order terms were neglected. Note that at
the origin Bx = By = 0. Therefore, the magnetic field line crossing
the z = 0 plane at the point (x;, y;, 0), when projected in the x-z
ptane (y = 0) and in the y - z plane (x = 0), satisfies

the following differential equations, respectively,

3B

d ‘
_____ X o_ox oLy (y=0) (2.12)
dz BZ BZ ax
B 3B
dy ¥ 1 yy (x=0) (2.13)
dz BZ BZ 3y

These equations show that the field lines converge or diverge in the
x -z plane or in the y -z plane, depending on the sign of the divergence
terms of B. Fig.3 i1lustrates the field line geometry for the case

when 3B,/8x and aBy/ay are positive.



7 B,{0.y,0)

Y

xﬂ’wy

Fig. 2 - The magnetic field components Bx and B, at the points
(X3, 0, 0) and (0, ¥1» 0), near the origin.

4:2

N

Fig. 3 - Geometry of the magnetic field lines corresponding
to the divergence terms 3B, /3x or BBy/ay, when they
are positive.
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2.2 - Gradient and curvature terms

An example of a vector field having a gradient in the

% - direction is

B=B,Z =B (1+ax) 12 (2.14)

(see Fig. 4). We must note, however, that in a region where Jd=0

the vector field of (2.14) does not satisfy the Maxwell equation

1<

x B =0, In order that B satisfies this equation, we must
add to the B-field of (2.14)a term of curvature, given by B, X = B, oz X.
Therefore, a magnetic field having gradient and curvature, and which

satisfies v x B = 0, 1is

B =B [azg + (1 + ax)gj (2.15)

el

-

Fig. 4 - Geometry of the magnetic field lines when B has a gradient in
the x-direction, according to Eq. {2.14), Note, however, that
this field geometry does not satisfy v x B = 0.
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The geometry of the magnetic field lines corresponding to this equation

is indicated in Fig. 5.

Fig. 5 - Geometry of the magnetic field lines corresponding
to Eq. {2.15), having gradient and curvature terms.

Generally, all terms correspending to divergence,
gradient and curvature are simultaneously present. Fig. 6 illustrates
a B field having divergence, gradient and curvature. A good example is
provided by Earth's magnetic field. Later in this section we will
investigate the effects of each group of terms of (2.6)
separately, on the motion of the charged particle. The net effect will
be the sum of each effect separately, since in the first order

approximation the equations are linear.
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Fig. 6 - Schematic representation of a magnetic field having
divergence, gradient and curvature terms.

2.3 - Shear terms

The shear terms of (2.6), an/ay and BBy / 8x, enter
into the z-component of v x B, that is, into B - (v x B), and cause
twisting of the magnetic field lines about each other. They do not
produce any first order drifts, although the shape of the orbit can be
slightly changed. Therefore, they do not give rise to any

particularly interesting effect on the motion of charged particles

and will not be considered any further.
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3. EQUATION OF MOTION IN THE FIRST ORDER APPROXIMATION

We consider that the magnetic field go, which exists at
the origin in the guiding center coordinate system, is in the

z-direction,

B (0,0,0)=8,=5

P

. (3.1)

The particle motion in the neighborhood of the origin can be
described by considering only a linear approximation to the magnetic
field near the origin. Let r be the momentary position vector of the
particle in the guiding center coordinate system (Fig. 1). In the
region of interest (near the origin) the magnetic field can be

expressed by a Taylor expansion,

B(r)=B + r-(vB) + ... (3.2)

where the derivatives of B are to be calculated at the origin. Note
that actually the instantaneous position of the guiding center
changes slightly during one period of rotation of the particle, while

the origin is kept fixed during this time.

Since we are assuming that the spatial variation of B
in a distance of the order of the Larmor radius is much smaller than
the magnitude of B itself, the higher order terms of (3.2) can be

neglected. The condition
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|r-(vB) ] << |8, | (3.3)

is clearly met [ see Eq. (1.2)] . Thus, the magnetic field at the
position of the particlediffersonly slightly from that existing at the
guiding center. The term of first order, r+ (vB), can be written

explicitly as

re{(vB)= (r« v) B = (x + Yy + Z ) B =
- -0 T ax ay 3z~
aB an BBX
= (x +y + 2z ) X+
ax 3y 3z -
aB aB 3B
+ (x y 4 y Y o4 z Y )y +
ax 3y 9z
3B aB aB
Fx—Z vy —2% 4+ %3 (3.4)
ax 3y az

where the partial derivatives are to be calculated at the origin of

the coordinate system.

The substitution of (3.2) into the equation of motion

(2.1.5) with E = 0, gives

dy
o

=q(YX§0)+qEX[r-(z§)] (3.5)

dt
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The Tast term in the right-hand side 1is of first order compared to

the first one. The particle velocity can be written as a superposition

(0) (1)

d d

v = v(o) + v(l) = : + : (3.6)
- dt dt

where !(1) is a first-order perturbation term

BRI (3.7)

and !(o) is the solution of the zero-order equation

O

M ——eme =q(!(0)x8

— B,) (3.8)

which has already been discussed in section 4 of Chapter Z. Neglecting

second-order terms we can write, therefore,
0
vx [r-(v8)]= !( )X[E(O) + (v8)] (3.9)

The equation of motion (3.5) becomes, under these approximations,

d
m di = g (Vv X Eo) + q !(0) X [r(o)- (yg):l {3.10)




- 16 -

The equation satisfied by v(!) is identical to (3.10) and may be
obtained by subtracting (3.8) from (3.10),

o)

mT = q (!(1)\( go) +q !(0) X [Y‘(D)' (Eg)] (3_]])

The second term in the right-hand side constitutes the
force term of Eq. (2.6.1). This additional force, however, is not
constant but it depends on the instantamecus position of the particle.
Thus, small oscillations occur during one period of gyration of the
particle. Since we are interested in the smoothed motion of the guiding
center we shall eliminate these small oscillations by averaging this
force term over one gyration period. Therefore, in what follows we

_ will be involved in calculating the average value over one gyration
period of the force term q !(o) X [15(01- (vB)]s which will allow
us to compute the parallel acceleration of the guiding center and its

transverse drift velocity using Eq. (2.6.2).

4. AVERAGE FORCE OVER ONE GYRATION PERIOD

We consider dnitially the case when the initial
velocity of the particle along B is zero, so that the particle path
differs but 1ittle from a circle. In a uniform magnetic field, this
would be equivalent to introduce a coordinate system moving with the
- guiding center with velocity v,. However, when the field lines

are bent, a coordinate system gliding along the field 1ine 1is not an
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inertial system. The curvature of the field lines give rise to

inertial forces and therefore to a curvature drift of the particle.
This effect will be investigated later in _sectiaon 7. For the

moment we will assume that the field Tines are not curved and that

the coordinate system moves with velocity Vy. The effects of each

group of terms of (2.6) can be considered separately since 1in the
region of interest the components of VBare small perturbations in

the z-component of B, and the first order equation of motion is Tinear.
Thus, we can examine situations where only one inhomogeneity occurs at
a time, and the resultant effect will be the sum of the individual

effects for each group of terms.

Under the conditions indicated above, the zero-order
variables, !(0) and r(o), are seen to be situated in the (x, y) plane.

The force term
F=q !(0) x [r(o). (YE)] (4.1)

can be separated in a component along §0 (z-axis), Fy, and a component
normal to §0 (x,y-plane), F,. Using a local cylindrical coordinate
system (r, 0, z) with the z-axis pointing along §0 at the origin

(see Fig. 7), we have

P (v8) = (%) (aB/ar) (4.2)

Of the three components of B= Br ro+ Be 6 + B, z, By 0 is

parallel to !(0) and therefore gives no contribution to F, while
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Br'E contributes to £, and B_Z contributes to F.. Hence, from

(4.1) and (4.2),

3B 3B

Fo=a (V1 B Py = a0 (7 e
ar or
3B 3B

Fo=q (v x gy 102y o g VIO WO 27 4y
ar r

(q>0) (g<0)

Fig. 7 - Local cylindrical coordinate system with the z-axis pointing
in the direction of the field B, at the origin.
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= v(o)g, whereas if g < 0

1-3)

Note that if q > 0 we have 3(0) X
we have !(D) X P = - v(o)z. Now, r(o) is the cyclotron radius

corresponding to BO,

we la| B,

and using the expression for the magnitude of the magnetic moment

[m| =m (v(o))Z/ZB0 [Eq. (2.4.34)], we can write (4.3) and (4.4) as

3B

Fu=2 |T|( r ) z (4.6)
ar
aB
Fo=-2|m|(—%)F (4.7)
ar

These results apply to both positively and negatively chargedparticles.

The average values of F, and F, over one gyration

period are given by

oo 3B, _ 9B,,
<F,> = 2 |m| z do | = 2 < > (4.8
mlz[—f =] 2iniz <> @)

3B
R T e R I CEE AT TI A C S RO
ar
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The force in (4.8) produces the parallel acceleration of the guiding
center, while the force in (4.9} is responsible for the transverse

drift velocity of the guiding center. The first one is the result of
the divergence terms of B, and the second one of the gradient terms.

We proceed now to evaluate each force term separately.

4.1 - Parallel force

To calculate the parallel force term we note that from

v-B =0 we have, in cylindrical coordinates,

12 ) v L2y + 2 (8,) =0 (4.10)
rooar ro 30 5z
The first term can be expanded as
oB B
L e LT (4.11)
r ar ar r

Since at r =0 we have Br = 0, and since near the origin Br

changes only very slightly with r, we can take near the origin,

ro-_T (4.12)

Consequently, in the region near the origin we have from (4.12) and

(4.11),
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aB 3B 5B
( ”)=-;[‘( Oy 4 ( Z)] (4.13)

3B aB aB
< lN):-:- L < ! ( E\'h)>— 1 < Z)> (4.14)
dr 2 r 38 2 3z
Now, since B is single-valued,
aB 3B
ey, o 3{1( @ ) de=0 (4.15)
r 30 2n r 30

Furthermore, since the term aBZ/ 3z is a very slowly varying function
inside the particle's orbit, it can be taken outside the integral

sign, so that we have approximately,

3B { aB 3B
Z y, .t 0 ( 2y do = —2 - 3B (4.16)
2 3

Z az dZ

<

3z

It is justifiable to replace BZ by B in (4.16), since all the spatial
variations of the magnetic field in the region of interest are very

small. Therefore, we have finally from (4.14), (4.15) and (4.16),

c—Tys = - L 2B (4.17)
2 oz
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Using this result, the parallel force (4.8) becomes

3B | =
<Fy>=-lm|l ()2 = - [of (BW (4.18)
Iz
or,equivalentiy,
N |m]
<Fy>=(m-v)Bz = - [(B-V) B] (4.19)
-7 B YT
sincem=- |m|Z=~- |m| B/B, and where the derivatives are

evaluated at the origin.

4,2 - Perpendicular force

To evaluate the average value of the perpendicular
force component given in Eq. (4.9), it is convenient to consider a
two-dimensional Cartesian coordinate system (x, ¥) in the

perpendicular plane, such that x

1

rcos @ and y ='r sin @ {see Fig. 8).

Hence,

r=cos 6x + sin® y (4.20)

+ sin @
ar dr ax dr dy BX 3y

(4.21)
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Therefore, we obtain

) (aBZ ) - . - BBZ o8
) >=< (cos © X + sin o §) ['COS O (5x) *+sin® (a—yzﬂ>

[ )

e 9B, _ cl: I
=< COS% O (Tﬁfj X >+< sin 0 cos 0 (?S?) yo>+
e cos s s 8B, ) 3B,
< — i v
0s@ sin o ( %y ) X >+ <sin® e (757) y > (4.22)

—= Y

Fig. 8 - Two-dimensional coordinate system in the perpendicular plane,

used in the evaluation of < EL >,
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Next we approximate(sB,/ax) by (3B/3x}, and the same for the
y-derivative, since these terms are very slowly varying functions
inside the particle's orbit, so that we can take them outside the
integral sign. Noting that < sin © cos ©>=0 and <cos?e> = <sine>=1/2,

we obtain

aB 1

- B, =, 1 3B, =
PP =7 (G Xt (5 ¥ (4.23)
Substituting this result into (4.9), yields
_ 3By & . ;9B 5
-l [
= - In| (). (4.24)

4.3 - Total average force

We proceed now to write down a general expression for
the total average force <F> = <F,> + <F,>. From (4.18) and (4.24) we

have

<F> = - |m| (9B)u - [m| (WB). = - |m| ¥B (4.25)
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Alternatively, we can use the vector identity

(7xB) x B = (B.¥) B - ¥ (B%/2) (4.26)
and write (4.25) in the form
||
<F>=- — [(B.W B-(VxB)xB] (4.27)
5 2-¥ 2 JAB 2
Since m = - [m| B/B, it results
<f>=(m.7) B +mx (7xB) (4.28)

This is the usual expression for the force acting on a small ring
current immersed in a magnetic field with spatial variation. The
first term on the right hand side of (4.28) alone gives the force

acting on a magnetic dipole.
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5. GRADIENT DRIFT

From (2.6.2) and {4.24) we see that the force < F. >
being perpendicular to B, causes the guiding center to drift with the

velocity

Vo T ————— = - (5.1)

Tnis gradient drift is perpendicular to the B field and to the field
gradient, and its direction depends on the sign of the charge. Thus,
positive and negative charges drift in the opposite direction, giving

riseto an electric current (Fig. 9).

B OUT OF PAGE

® ® ® ® & ¢ ¥ 5 r & ¥ & » ¥ B ¥ ¥ & ¥ g @

-] &

}“‘ VB
POSITIVE
. ION,
JR IR 4 ELECTRON

L] L) @ a

e

Fig. 9 - Charged particle drifts due to a B - field gradient perpen-
dicular to B.
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The physical reason for this gradient drift can be
explained as follows. We have seen [see Eq. (2.4.13)7] that the Larmor
radius of the particle's orbit decreases as the magnetic field
increases, so that the radius of curvature of the orbit is smaller in
the regions of stronger B field. Since the positive ions gyrate in the
clockwise direction for B pointing towards the observer (in Fig. 9),
while the electrons gyrate in the counterclockwise direction, the

positive ions will drift to the left and the electrons to the right.
In the case of a rarefied collisionless plasma,

associated with this gradient drift across the magnetic field lines

there is a magnetization current density QG’ given by

1
Jo=—— )Y Q. V. (5.2)
=G AV i ~Gi

where the summation is over all charged particles contained in the

element of volume AV. Using (5.1) in (5.2), yields

1
QG='(’XV“1Z [ms 1)

6. PARALLEL ACCELERATION OF THE GUIDING CENTER

The expression (4.18) for the parallel force < F, >
shows that, when the magnetic field has a longitudinal variation(i.e.,

convergence or divergence of the field Tines along the z-direction)



- 28 -

as  shown in Fig. 3, an axial force along z accelerates the

particle in the direction of decreasing magnetic field, irrespective
of whether the particle is positively or negatively charged. This is
illustrated in Fig. 10. There are several important consequences of
this respulsion of gyrating charges from a region of converging

magnetic field lines, which we proceed to discuss.

Fig. 10 - Repulsion of gyrating charges from a region of converging
magnetic field lines.
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6.1 - Invariance of the orbital magnetic moment and magnetic flux

Using (4.18), the component of the equation of motion

along B can be written as

dva -
m “Z=<~F">

dt =

-1 | (22

9z

IN}

If we multiply both sides of this equation by v, = dz/dt, we obtain
(replacing | m| by W,/B)

dva W
V _ d ( ] m V%) — L aB dZ (6.2)
dt dt 2 B 9z dt

m v,

where W, = m vZ/2 denotes the part of the kinetic energy of the
particle associated with its transverse velocity. Since the total

kinetic energy of a charged particle in a magnetostatic field is

constant,
W, + W. = constant (6.3)

it follows that

dt dt dt 2
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Therefore, from (6.2) and (6.4),

W, W,
dt B 3z dt B dt

where dB/dt represents the rate of change of B as seen by the
particle as it moves in the spatially varying magnetic field (i. e.,
in the frame of reference of the particle). Comparing this result with

the following identity

W, B W W
d 1 1 dB d 4
4wy = ) - + B (—)  (6.6)
dt dt B B dt dt B
we find that
W,
d ——y=0 (6.7)
dt B
or, equivalently,
W,
Im| = = constant (6.8)
- B

Therefore, as the particle moves into regions of converging or
diverging B its cyclotron radius changes, but the magnetic moment

| @| remains constant. This constancy of the particle's magnetic
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moment in the guiding center system holds only within the
approximation used, that is, when the spatial variation of B inside
the particle's orbit is small compared with the magnitude of B.
Consequently, the orbital magnetic moment is said to be an adiabatic
invariant. It is usually referredto as the first adiabatic

inpariant.

The magnetic flux, @m, enclosed by one orbit of the

particle 1is given by

m2 vZ W
o = |B-dS=wr2B=n B =_2m_( *, (6.9)
-~ - qZBZ q2 R
Therefore,
4 (o)=L & yn|-0 (6.10)
dt gz dt 7

in view of the invariance of the magnetic moment. Hence, as the charged
particle moves in a region of converging B field the particle will
orbit with increasingly smaller radius, so that the magnetic fluc

enclosed by the orbit remains constant.

6.2 - Magnetic mirror effect

As a consequence of the adiabatic invariance of the

orbital magnetic moment of the particle, and of the magnetic flux
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enclosed by its orbit, as the particle moves into a region of
converging magnetic field 1ines 1its transverse kinetic energy W,
increases, while iés parallel kinetic energy W, decreases, in order to
keep | @[ and the total energy constant. Ultimately, if the B field
becomes strong enough, the particle velocity in the direction of
increasing B field may come to zero and then be reversed. In the
reverse direction the opposite happens, i.e., the particle is speeded
up in the direction of decreasing field, while its transverse velocity
diminishes. Thus, the particle is wreflected from the region of
converging magnetic field lines. This phenomenon is called the magnetic
mirror effect and it is the basis for one of the primary schemes of

plasma confinement.

When two coaxial magnetic mirrors are considered, as
illustrated in Fig. 11, the charged particles may be reflected by the
magnetic mirrors and travel back and forth in the space between them,
being trapped. This trapping region has been called a magnetic bottle
and it is used in laboratory for the confinement of plasmas. Clearly,

it is the parallel force < F, > which causes the reflection.

The trapping in a magnetic mirror system is not
perfect, however. The effectiveness of the coaxial magnetic mirror
system 1in trapping the charged particles, can be measured by the
mirror ratio Bm/Bo,~where Bm is the intensity of the magnetic field
at the point of reflection (where the pitch angle of the particle is
n/2) and B0 is the intensity of the magnetic field at the center of
the magnetic bottle.
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Fig. 11 - Schematic diagram showing the arrangement of coils to produce
two coaxial magnetic mirrors facing each other for plasma
confinement, and the relative intensity of the magnetic field.
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Let us consider a charged particle having a pitch
angle %, at the center of the magnetic bottle. If v is the speed of
the particle, which in a static magnetic field remains constant, the

constancy of the magnetic moment |T | = W./B Teads to
mvZ sin2a/2B = m v2 sin? o,/2B, (6.11)

where o is the pitch angle of the particle at a position where the
magnetic field intensity is B. Thus, at any point inside the magnetic
bottle, for this particle,

in2

B(z) B

0

Suppose now that this particle is reflected at the “throat" of the

mirror, that is, a = n/2 for B{z) = B.- Therefore, from (6.12),

sin? o 1
£ = (6.13)
Bo Bm
This means that a particle having a pitch angle @y given by,
= ein-1 / 1. cin-1
o, = sin BO/Bm sin (VL/V% (6.14)

at the center of the bottle, is reflected at a point where the

intensity of the field is Bm' Therefore, for a magnetic bottle with
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a fixed mirror ratio Bm/Bo, the plasma particles having a pitch angle

at the center greater than « as given by (6.14), will be reflected

0’
before the ends of the magnetic bottle. On the other hand, if the
pitch angle of the particle at the center is less than g its pitch
angle will never reach the value w/2, which implies that at the ends
of the bottle the particle has a non-vanishing parallel velocity and,
hence,escapes through the ends of the.mirror system. There is
therefore a loss cone, a bi-cone of angle g with its vertex at the
center, as shown in Fig. 12, where particles which have velocity
vectors with a pitch angle falling inside it are not trapped in

the magnetic bottle system. The loss cone is determined by the mirror

ratic Bm/B0 according to (6.14).

Fig. 12 - The loss cone in a coaxial magnetic mirror system.
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Devices that have no ends, with geometries such that
the magnetic field lines close on themselves, offer many advantages for
plasma confinement. Toroidal geometries (see Fig. 13) for example
have no ends, but it turns out that confinement of a plasma inside a
toroidal magnetic field does not provide a plasma equilibrium
situation, because of the radial inhomogeneity of the field. In this
case a poloidal magnetic field is normally superposed on  the
toroidal field, resulting in helical field lines (as in the Tokamak).
The major problem in the confinement schemes; however, is that
instabilities and small fluctuations from the desired configuration are
always present, which Tead to a rapid scape of the particles from the
magnetic bottle. This instability problem is a fundamental one, and it

is 1ikely to occur in any conceivable magnetic confinement scheme.

{ TOROIDAL
MAGNETIC
FIELD LINES

Fig. 13 - Magnetic field with toroidal geometry
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A good example of a natural magnetic bottle is the
Earth's magnetic field, which traps charged particles of solar and
cosmic origin. These charged particles trapped in the Earth's
magnetic field constitute the so called Van Allen radiation belts.
As shown in Fig. 14, the geomagnetic field near the Earth is
approximately that of a dipole, with the field lines converging
towards the north and south magnetic poies. The electrons and protons
spiral in almost helical paths ajong the field lines towards the
magnetic poles, where they are reflected. These particles bounce back
and forth between the poles. In addition to this bouncing motion, the
charged particle in the Van Allen radiation belts are also subjected
to a gradient drift and a curvature drift, to be discussed Tater 1in

this chapter.

6.3 - The longitudinal adiabatic invariant

Consider a particle trapped between two magnetic mirrors
and bouncing between them. Suppose that the separation distance between
the two mirrors changes very slowly with time as compared to the
bounce period. With the periodic motion of the particle between the
two magnetic mirrors (whose separation varies slowly with time) there
is associated an adiabatic invariant called the longitudinal adiabatic

invariant, defined by the integral
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{
Jz?!'d9—-=§\/u dR) (6.15)

taken over one period of oscillation of the particle back and forth

between the mirror points.

CHARGED PARTICLE

QUTER INNER
aeLT BELT SPIRALING  ABCUT

FIELD LINE

Fig. 14 - Dipole approximation of the Farth's magnetic field. The
distance of the Van Allen radiation belts from the
center of the Earth, at the equator, is about 1.5 Earth
radii for the high-energy protons and about 3 to 4 Earth
radii for the high-energy electrons.

For a simple proof of the adiabatic invariance of J,
consider the idealized situation i1lustrated in Fig. 15, where the
existing B field in the z-direction is uniform in space, except near
the points M, and M, where the field increases to form the two
mirrors separated by a distance L. The mirror M, approaches the

other with velocity
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v = - = (6.16)

the negative sign being due to the fact that L decreases with time. It
is assumed that this velocity is much smaller than the Tongi tudinal
component of the particie velocity, that is, Vo << Ve Thus, the
distance moved by the mirror M;  during one period of oscillation of

the particle fis small compared to the distance L between the mirrors.

4 o 7
M
MOVING ' STATIONARY
MIRROR MIRROR

Fig. 15 - Schematic representation of a system of two coaxial
magnetic mirrors, approaching each other very slowly.
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Further, since B is assumed to be uniform throughout the space between
the mirrors (except near the ends), the longitudinal particle speed v,
may be taken to be constant in the space between the mirrors.

Neglecting the small end effects at the two mirrors, we can take

2l
J = J va d2 = 2 v, L (6.17)
0

The time rate of change of J is

an dV"
_'c'j'g"" = 2 Vau dL + 2'_ = - 2 Va Vv + 2L (6.]8)
" dt

dt dt dt

where use was made of (6.16). To calculate dv,/dt, we set

dv, AV, Av,,
= = {6.19)
dt At (2L/v,)

where Av, denotes the change in the particle speed v, on reflection
from the moving mirror, and at = 2L/v, is the period of oscillation
between the mirrors. In order to find av,, it is convenient to
transform to a coordinate system moving with the magnetic mirror M,
at the speed Vi Let us denote this moving coordinate system by a
prime and the incident and reflected particle speeds by subscripts i

and r, respectively. Thus,

(Vn)% = (V")i + Vm (6.20)
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(Vo) = va) = v (6.21)

which gives for the change in the particle speed, in one reflection,

Av, = (Vn)r - (V“)'i = 2 Vm (6.22)

since in the moving coordinate system (v,)' = (v.)' with only
i r
their directions reversed. Therefore, (6.19) becomes

dv,, 2v
= m - VoV, (6.23)
dt (2L/vy) L ™

On substituting this result into (6.18), we find

d (2v, L)
dd__ -0 (6.24)
dt dt

which shows that J is an adiabatic invariant. This quantity is also

referred to as the second adiabatic invariant.

The parallel kinetic energy of a charged particle

trapped between the two mirrors is (using J = 2v, L)

2
W, =_1_mvf-: = MmJde (6.25)
2

g L2
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which increases rapidly as L decreases. The italian physicist Fermi
suggested this process as a mechanism for the acceleration of charged
particles 1in order to explain the origin of high energy cosmic rays.
Fermi proposed that two stellar clouds moving towards each other, and
having a magnetic field greater than in the space between them, may
trap and accelerate the cosmic charged particles. There is a limit,
however, in the increase in the particle Tongitudinal speed, since the
direction of the particle velocity at the center of the mirror system
may eventually enter the loss cone and escape through the ends

of the system. It should be noted that a magnetic
mirror moving towards a stationary one involves in

fact time-varying B - fields and consequently electric
fields, which can lead to a change in the kinetic energy of

the particle.

7. CURVATURE DRIFT

So far the effects associated with the curvature of
the magnetic field lines have not been considered. As stated
previously, a B field with only curvature terms does not satisfy the
equation vxB=0, so that in practice the gradient drift will
always be present simultaneously with the curvature drift. In the
first order orbit theary the effects corresponding to each of the

components of the dyadic VB are additive.

We investigate now the effect of the curvature terms

3B, /0z and aBy/az [referred in (2.6¢c)] on the motion of a charged
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particle. It will be assumed that these terms are so small that the
radius of curvature of the magnetic field lines is very large compared
to the cyclotron radius of the particle. Let us introduce a Zocal
coordinate system gliding along the magnetic field line with the
particle's longitudinal velocity v.. Since this is not an inertial
system because of the curvature of the field lines, a centrifugal
force will be present in this noninertial system. This local
coordinate system can be specified by the orthogonal set of unit
vectors B, n, and n,, where E is along the field line, n; is along
the principal normal to the field line, and ﬁz is along the binormal

to the curved magnetic field line, as indicated in Fig. 16.

Fig. 16 - Curved magnetic field Tine showing the unit vector E along the
field line, the principal normal ﬁl,and the binormal n,, at
an arbitrary point (n; x ny = E). The local radius of
curvature is R.
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The centrifugal force, Fes acting on the particle as

seen from this noninertial system, is given by

where R denotes the local radius of curvature of the magnetic field
line and v, is the instantaneous longitudinal speed of the particle of

mass m. From (2.6.2), the curvature drift associated with this force is

Fc x B mvd
vo = ——— = - (ny x B) (7.2)
g B? RgB2

To express the unit vector n; in terms of the unit
vector B along the magnetic field line, we let ds represent an element

of arc along the field line subtending an angle d¢,
ds = R d¢ (7.3)

If dB denotes the change in B due to the displacement ds (seeFig. 16),

then dB is in the direction of iy and its magnitude is

|dB| = [B] do = do (7.4)
Consequently,
dB =y do (7.5)
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Dividing this equation by (7.3) side by side, gives

- (7.6)

The derivative d/ds along B may be written as (E- 7}, so that (7.6)

becomes

Incorporating this result into equation (7.1), we obtain

Fe=-mvi(B-7) 8 (7.8)

This force is obviously perpendicular to the magnetic field B, since
it is in the -f; direction [see (7.7)], and gives rise to a

curvature drift whose velocity is

m va _ _
T T [@'E) %]XQ (7.9)

Since B = BE and writing W, = m vZ/2 for the longitudinal kinetic
energy of the particle, the expressions (7.8)and (7.9) for the
centrifugal force and the curvature drift velocity can be written,

respectively, as
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ZN"
Fc=- [(B-v)B], (7.10)
BZ
Zwu
ve = - [(B-v)B]xB (7.17)
v o LErTEdxd

Thus, at each point, the curvature drift is perpendicular to the
osculating plane of the magnetic field line, as shown in Fig. 17.
An electric current is associated with the curvature drift, since

it is in opposite directions for particles of opposite sign.

FIELD
950 é‘u{: LINE
Y
PNPZL
X ol &
Ye

Fig. 17 - Relative direction of the particle drift velocity Ve
due to the curvature of the magnetic field line.
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From (7.11) and the definition of the electric current density, we

obtain for the curvature drift current density

Qc=‘2(—1—iwi..) [B-v)E]xB/B2 (7.12)
AV q -

where the summation extends over all charged particles contained in the

small volume element AV.

8. COMBINED GRADIENT - CURVATURE DRIFT

The curvature drift and the gradient drift always
appear together and both point in the same direction, since the term
7B points in the direction opposite to f¢ (see Fig. 5). These two
drifts can therefore be added up to form the combined gradient -
curvature drift. Thus, from (5.1) and {7.11), and noting that
|m| =W, /B =mvi/2B,

m v m v

Vap = Vg ¥ Vp = = —— (v8) x B - ——— [ (B-V)B]xB (8.1)
~GC 67 iC 2qB° - q B SR

When volume currents are not present (in a vacuum
field, for example) so that v x B = 0, the vector identity (4.26)

allows the expression (8.1) to be written in the compact form

- _ m

" (v + ; ) (E—BZE—) x B (8.2)
q

Yac
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In the Earth's magnetosphere near the equatorial plane
both the curvature and the gradient drifts (B decreases with altitude)
cause the positively charged particles to slowly drift westward and
the negative ones eastward, resulting in an east to west current. This
east to west current is known as the ring current. Fig. 18 illustrates
schematically the motion of a charged particle trapped in the Earth's
magnetic field. The particle bounces back and forth along the field
line between the mirror points M; and M,, and drifts in longitude as

a result of the gradient and curvature of the field lines.

Fig. 18 - Sketch indicating the motion of a charged particle in
the Earth's magnetic field. The longitudinal drift
velocity Veo » due to the gradient and curvature of
B, results in an east to west current called the ring
current,
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The trajectory described by the particlie is therefore contained in a

tire-shaped shell encircling the Earth (Fig. 19).

This tire-shaped shell encircling the Earth defines a
surface on which the particle guiding center drifts slowly around the
Earth. Connected with the periodic motion of the particle on this
drift surface there is an adiabatic invariant, called the third
adiabatic invariant, which is the total magnetic flux @m enclosed by
the drift surface. Clearly, in a static situation this flux is

obviously constant. The significant fact is that the total maanetic

Fig. 19 - Schematic representation of the longitude
drift of charged particles around the Earth.
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flux ¢ enclosed by the drift surface, remains invariant when the field
varies slowly in time, that is, when the period of moticn of the
particle on the drift surface is small compared with the time scale
for the magnetic field to change significantly. This invariant has

few applications because most fluctuations of B occur on a time scale

short compared with the drift period.
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PROBLEMS

Describe, in a semiquantitative way, the motion of an electron
in the region near the origin under the presence of a constant

electric field in the x-direction,

and a space varying magnetic field given by

B = B, I a(x¢z) X+ [V + a(x-2) ]

LY
—

where EO,BOandcxarepositiveconstants,{uxl<<1and{az|<<1. Assume
that initially the electron moves with constant velocity in

the z-direction, that is, v(t=0) = v, Z. Yerify if this

magnetic field satisfies Maxwell equations.

Verify if there is any drift velocity for a charged particle in

a magnetic field given by

B = By(x) y+B,2

where By(x) and BBy/ax are very small quantities. Does this

field satisfy Maxwell equations?
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3.3 - Consider a system of two coaxial magnetic mirrors whose axis

coincides with the z-axis, being symmetrical about the plane

; =0 as shown schematically in Fig. P3.1. Describe, in a

semiquantitative manner, the motion of a charged particle in
this magnetic mirror system considering that at z = 0 the

v?. What relation must

. 0
particle has v, = vy and v,

I
™~
a3

——
M~
it

14
N

exist between B, = z B(z=0), B

B : m) and o

0
(particle's pitch angle at z = 0) so that the particle be

reflected at zm?

-y 4

Fig. P3.1
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For the magnetic mirror system of Problem 3.3 suppose that the
axial magnetic field changes in time, that is, B, ..¢ = z B(z,t).
Considering that the magnetic moment [m| =m vi(z,t)/2 B(z,t)
is an adiabatic invariant (note that its value is the same at
z=0 and z =2z, and that v2 = v}, + vi), show that the

longitudinal adiabatic invartant Can be written in the form

L B(z,»t) - B(z,t) ]1/2 dz = constant

~Z
m

Consider the magnetic mirror system shown in Fig. P3.1.

Suppose that the axial magnetic field is given by
B(z) = B, [1+ (2/35)% ]

where B0 and a, are positive constants,and that the

mirroring planes are given by z = -2 and z = Z.

(a) For a charged particie trapped in this mirror system, show
that the component of the particle velocity along the z-axis

is given by

1/2

W 1 LS
L
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{b) The average force acting on the particle guiding center,

along the z-axis, 1is given by

Show that the particle performs a simple harmonic motion between
the mirroring planes, with a period given by

T = 2ma, ( m )1/2

2 |ml B,

(c) If the motion of the particle is to be limited to the region
|z| < Zos what restriction must be imposed on the total energy

and the magnetic moment?

Consider a toroidal magnetic field, as shown in Fig. P3.2.

(a) Show that the magnetic flux density along the axis of the

torus 1is given by
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(b) In what direction is the gradient drift associated whith
the variation of B¢ in the radial direction?
Examine qualitatively the type of charge separation that occurs.

Neglect the effect of the curvature of the magnetic field lines.

(c) If E denotes the induced electric field due to the charge

separation, in what direction is the ExB drift?

(d) Show that it is not possible to confine a plasma in a purely
toroidal magnetic field, because of the gradient drift and the

ExB drift.

Fig. P3.2
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3.7 - Consider a spatially nonuniform magnetostatic field expressed in

terms of a Cartesian coordinate system by
B(x,z) = B0 r azg + (1 +ax) Z]

where B0 and o are positive constants, Jox| <<1and |az] <<1.

(a) Show that this magnetic field is consistent with Maxwell
equations, so that both gradient and curvature terms are present.

Determine the equation of a magnetic flux Tine.

(b) Write down the Cartesian components of the equation of
motion for an electron moving in the region near the origin

under the action of this magnetic field.

{c) Consider the following initial conditions for the electron:

Ll

r(0}) X(x, + Viplu.)

(0)

175 e
1l
<5
o~
o
g
1]

150
~
’-
o
+
1IN
-

Solve the equation of motion using a perturbation technique,
retaining only terms up to the first order in the small

parameter o. Show that the leading terms in the velocity
components, after eliminating the time-periodic parts, are

given by
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- 2 ¢ 3
X a vy, tX
vi
o 0 5 -
= - 4+
b= ) g v )
YV, 7 Vg Z

(d) Show that the average position of the electron in the x-z
plane follows themagnetic flux line that passes through its

initial position.

(e¢) Show that the gradient and curvature drift velocities are

given, respectively, by

-, a vio
XG = ‘X ( mc ) 2
_ oo 2
Yo = 7Y (=) Vo

so that the total drift velocity is precisely the nonperiodic

art of v._ .
P Yy
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3.8 - The Earth's magnetic field can be represented, in a first
approximation, by a magnetic dipole placed in the Earth's center,

at least up to distances of a few Earth radii (RE).

{a) Using the fact that, at one of the magnetic poles, the field
has a magnitude of approximately 0.5 Gauss, calculate the dipole

magnetic moment.

(b) Consider the motion of an electron of energy E0 at a
radial distance o (ro > RE). Calculate its cyclotron

frequency and gyroradius.

(c) Assuming that the electron is confined to move in the
equatorial plane, calculate its gradient and curvature drift
velocity, and determine the time it takes to drift once around

the Earth at the radial distance ry-

(d} Calculate the period of the bounce motion of the electron,
as it gets reflected back and forth between the magnetic mirrors
near the poles. What is the altitude of the reflection points?

Assume that W,, = W; at the magnetic equatorial plane.

(e) Recalculate (b}, (c) and (d), considering EO =1 MeV and

ry = 4 RE. Examine these results in terms of typical values for

charged partic]es in the outer Van Allen radiation belt.



- 59 -

(f) Assuming that there is an isotropic population of 1 MeV
protons and 100 keV electrons at about 4 Rg s each having a

density ng =n; = 107 m™2 in the equatorial plane, calculate

e
the ring current density in Ampére/m?.

. 3.9 - Consider an infinite straight wire carrying a current I and
electrically charged to a negative potential @. Analyse the
motion of an electron in the vicinity of this wire using
first-order orbit theory. Sketch the path described by the
electron, indicating the relative directions of the

electromagnetic, gradient and curvature drift velocities.

3.10 -The field of a magnetic monopole can be represented by

-

r3

where A 1is a constant. Solve the equation of metion to
determine the trajectory of a charged particle in this field.
(You may refer to B. Rossi and S. Olbert, Introduction to the
Physics of Space, Chapter 2, section 2.5, pg. 29, Mc Graw-Hill,
1970).
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3.11 - Analyse the motion of a charged particle in the field of a
magnetic dipole. Determine the two constants of the motion
and analyse their physical meaning. (For this problem, you
may refer to C.Stormer, The polar Aurcra, University Oxford
Press, 1955, or to B. Rossi and $.0lbert, Introduction to the

Physies of Space, Chapter 3, pg. 45, McGraw-Hill, 1970).
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