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CHAPTER 13

THE PINCH EFFECT

1. INTRODUCTION

In view of the the importance of plasma confinement by
a magnetic field 1in controlled thermonuclear research, as well as in
other applications, we present in this chapter a detailed treatment
of plasma confinement for the special case in which the confinement is
produced by an azimuthal (©) self-magnetic field, due to an axial
current in the plasma generated by an appropriately applied electric

field.

Consider an infinite cylindrical column of conducting
fluid with an axial current density J = Jz(r) z and a resulting
azimuthal magnetic induction B = By(r) B, as depicted in Fig.l. The
J x B force, acting on the plasma, forces the plasma column to
contract Taterally. This lateral constriction of the plasma column is
known as the pineh effect. The isobaric surfaces, for which p =

constant, are, in this case, concentric cylinders.

As the plasma is compressed laterally, the number
density and the temperature of the plasma increase. The plasma kinetic
pressure counteracts to hinder the constrictionof the plasma column,

whereas the magnetic forces act to confine the plasma. When these



counteracting forces are balanced, a steady state condition results,
in which the material is mainly confined within a certain radius R,
which remains constant in time. This situation is commonly referred
to as the equilibrium pinch. When the self-magnetic pressure exceeds
the plasma kinetic pressure, the radius of the plasma column changes
with time resulting in a situation known as the dynamiec pineh. In
what follows we investigate first the equilibrium pinch and

afterwards the dynamic pinch.

Fig. 1 - Pinch configuration in which a magnetoplasma
is confined by azimuthal magnetic fields
generated by axial currents flowing along the

plasma column.



2. THE EQUILIBRIUM PINCH

For simplicity, the current density, the magnetic field
and the plasma kinetic pressure are assumed to depend only on the
distance from the cylinder axis., For steady state conditions, none of
the variables change with time. The various parameters of the
equilibrium pinch are schematically shown in Fig.2. Since the system
1s cylindrically symmetric, only the radial component of Eq. ( 12.5.1)

must be considered,

dp(r) _
i J,(r) By(r) (2.1)
¥ % ‘jz{r)
iRyl
.‘.9‘{” ¢t§ ps o
AR
2 .
=T B, (1)
= "
D

Fig. 2 - Schematic diagram illustrating the various parameters

relevant to the study of the equilibrium longitudinal

pinch configuration.



Inside a cylinder of general radius r, the total enclosed current,

I_(r), is

,

r
Iz(r) = J Jz(r) 2w r dr (2.2)
0

Note that the variable r inside the integrand is a dummy variable.

From (2.2) we obtain

di_(r)
Z =2 J,(r) (2.3)
dr

Ampere's law in integral form relates Be(r) to the total enclosed

current, giving for for the magnetic induction

Bo(r) = Z:F I(r)
r
. o J_(r) r dr (2.4)
r

A number of results can be obtained even without specifying the pre-
cise form of Jz(r). If the conducting fluid Ties almost entirely inside
r = R, then the magnetic induction Be(r) outside the plasma is

u I

By(r) = ; 0 (r > R) (2.5)
wr




where

I = } Jz(r) 2y dr = Iz(R) (2.6)
0

which is the total current flowing inside the cylindrical plasma
column. The substitution of Be(r) and Jz(r), from Eqs. (2.4) and

(2.3), respectively into Eq. (2.1), gives

do(r) . _ Yo AL (2.7)
dr 4m2p2  ?

which can be written as

422 dp{r) _ _ d
dr dr

1;0 I;(Y‘) :| (2.8)

If we now integrate this equation, from r = 0 to r = R, and simplify

the left-hand side by an integration by parts, we obtain

R
}y - 4n

R
2nr p(r) dr = - Ié (2.9)

(4m2r® p(r)

0 0

where 1 = IZ(R) is the total current flowing through the entire
cross section of the plasma column and, obviously, IZ(O) = 0 by Eq.
(2.2). Considering the plasma column to be confined to the range
0¢r <R, it follows that p(r) is zero for r > R, and finite for

0 < r <R, so that the first term in the left-hand side of Eq.(2.9}



vanishes. Therefore, we find that

R
12 - &n J 2nr p(r) dr (2.10)

o

0

If the partial pressures of the electrons and the ions are governed

by the ideal gas law,

Pe(r) =n(r) kK T, (2.11)

It

p(r) = n(r) k T (2.12)

assuming that the electron and ion temperatures, Te and Ti’ respecti-

vely, are constants throughout the column, we have

pr) = pg(r) + pi(r) = n(r) k (T, + T)) (2.13)

Eq. (2.10) becomes, therefore,

R
12 = B k(T 4 T) | 2er n(r) dr (2.14)
UO JO
or
2= 8 e (2.15)
0 N e i’ e )



where

R
NR = J 2mr n{r) dr (2.16)

0

is the number of particles per unit length of the cylindrical plasma

column.

Eq.(2.15) is known as the Bemmett relation. It gives
the total current that must be discharged through the plasma column
in order to confine a plasma at a specified temperature and a given
number of particles, NR, per unit Tenght of the plasma column. The
current required for the confinement of hot plasmasis usually very
large. As an example, suppose that N, = 10'? particles per meter and
that the plasma temperature is such that Te + Ti = 10% %K. Since
bo=4m x 1077 H/m and k = 1.38 x 107°° J/%, it follows that the

O

required current I0 is of the order of one million Amperes.

To obtain the radial distribution of p(r) in terms of
Be(r), it is convenient to start from Eq.(2.1) and proceed in a
different way. First, we note that from Maxwell curl equation
v x B(r) = My J(r) we have, in cylindrical coordinates, with only a

radial dependence,

1 r Be(r) ' = u Jz(r) (2.17)

r

4
dr



from which we get

B.(r)
J(r):l__.g_Be(r)+_1_ 9
i dr My T

Substitution of this result for Jz(r) into Ea.(2.7), yields

2
dp(r) _ _ BO(P) d B (r) - B@(r)
dr M, dr © u,r
- 1 d 202y |
= - — | r*Bz(r)
2uor2 dr [ o J

We now integrate this equation from r=0 to a general radius r,

In particular, since for r=R we have p(R) = 0, we obtain

) rzBé(r) ] dr

r I_ i

R
p(0) = 1 [ 1 d
2u_; r® dr

0

o]

and substituting this result into Eg. (2.20),

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)



The average pressure inside the cylinder can be
related to the total current I0 and the column radius R without
knowing the detailed radial dependence. The average value of the
kinetic pressure inside the column s defined by

R
1

p = 2wr p{r) dr (2.23)
TR?

Simplifying this expression by an integration by parts, yields

) R (R
p= e |- [ e e ae
R | dr
0
R
= A e d p(r) dr (2.24)
R? dr

since the integrated term is zero, because p(R) = 0. Replacing

dp(r)/dr,using Eq. (2.19),we get

2 2
= %) o (2.25)
EUO 8n? R?

This result shows that the average kinetic pressure in the equilibrium
plasma column is balanced by the magnetic pressure at the boundary

of the column.
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From Eqs. (2.2), (2.4) and (2.22), we can deduce the
radial distribution of Iz(r), Bg(r),and p(r) 1if we know the radial
dependence of Jz(r). So far, the radial dependence of Jz(r) has not
been discussed. In what follows, we will consider two simple
possibilities, in order to illustrate the use of the above-mentioned

equations,

As a simple example consider the case in which the
current density, Jz(r), is constant for r < R. Taking JZ = IO/TrR2

in Eq. (2.4),we obtain for r < R,

u oI r
Be(r) = 09 r dr
T R%r
0
w1
=2 9 r (r < R) (2.26)
2mR 2

If we substitute this result into Eq. (2.22), we obtain a parabolic

dependence for the pressure versus radius,

R 2 12 4
I= r
d U
p(r) = | S 02 o

M, Jortodr 4n* R

r
p 12 2
0 (1-L (2.27)
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Note that, in this case, the axial pressure p(r = 0) 1is twice the
average pressure, p, given in Eq. (2.25). The radial deoendence of

the various quantities in shown in Fig. 3

A

plr}

——— e st —

Jp )

Fig.3 - Radial dependence of the azimuthal magnetic induction Be(r)
and plasma pressure p(r} in a cylindrical plasma column with

a constant current density J,(r). The radius of the column is R.

Another radial distribution of Jz(r), which is also of
interest in the investigation of the dynamic pinch, is the one in
which the current density is confined to a very thin layer on the
surface of the column. This model is appropriate for a highly
conducting fluid or plasma. In a perfectly conducting plasma, the
current cannot penetrate the plasma and exists only on the surface of
the column. In this case, there is no magnetic field inside the
column and Be(r) exists only for r > R, From Eq. (2.5) the magnetic

induction is given by
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5 (r) = o L (r >R) (2.28)
@ Zmr

where I0 is the total axial current. Therefore, from Eq. (2.20), we

have

p(r) = p{0) (0 < r <R) {(2.29)

so that the plasma kinetic pressure is constant inside the cylindrical
column and equal to the average value given in Eq.(2.25)

2
uO IO

(0 < r <R) (2.30)
8m2R?

The radial dependence of the various gquantities, for this model, is

sketched in Fig. 4. Thus, for a perfectly conducting plasma column,

the magnetic induction vanishes inside thecolumn and falls off as

1/r outside the column. The plasma kinetic pressure is constant

inside the column and vanishes outside it. The pinch effect, in this

special case, can be thought of as due to an abrupt build up of the

magnetic pressure Bé./EuO in the region external to the column.
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J, ()

!
p(r) :
!

| By (1)

Fig. 4 - Radial dependence of the azimuthal magnetic induction, B@(r),
and plasma pressure, p(r), in a cylindrical plasma column
with a current restricted to a very thin layer on the

surface of the column.

3. THE BENNETT PINCH

W. H. Bennett, the discover of the pinch effect, has
investigated a special model of the equilibrium longitudinal pinch,
in which the radial distribution of thevarious quantitites corresponds
to a situation in which the drift velocity of the plasma particles
is constant throughout the cross section of the cylindrical plasma
column.As an instructive application of the previous equations for
the equilibrium pinch configuration, we investigate this particular

model 1in what follows. In view of the fact that the ion mass is
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much larger than the electron mass, the drift velocity of the ions is
much smaller than that of the electrons, since they are produced by
the same magnetic field, and can, therefore, be neglected. Thus, we

take the current density to be given by
J(r) = - en(r) u, (3.1)

Since the applied electric field is in the z - direction, we have
J(r) = Jz(r) z and Ug = = Uy, 25 where Uy, s positive and constant,
independent of r. Therefore,

J_(r) = en(r) (3.2)

ez

Substitution of this equation for Jz(r), and Eq.(2.13} for p(r),into

the hydrostatic equation of motion (2.1), yields

d
k (T, +T.) _Z_}(-L) = - en(r) ug, By(r) (3.3)

I[f we multiply this equation by r/[h(r) k (Te + Ti)} and

differentiate it with respect to r, we obtain

d [ din] .. ez 4[] (3.0)
n(r) dr k (Te+Ti) dr - -

From Eqs. (2.17) and (3.2), we have
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r B@(r) ] SHgeU, T nir) (3.5)

and using this result in Eq. (3.4), it becomes

_ 2,2
d r dn{r) J : ’ Ho & Yoz

dr -n(r) dr k (Te+T1)

} rn(r) =0 (3.6)

The solution of this nonlinear differential equation
gives the radial dependence of the number density, n(r). Bennett has
obtained the solution of this nonlinear equation subject to the
boundary contition that n(r) is symmetric about the z-axis, where

r = 0,and is a smoothly varying functionof r, so that

dn(r) -0 (3.7)
dr r=0

The solution of Eq. (3.6}, subjected to the boundary condition (3.7),

is known as the Bewnett distribution, and is given by

n

n(r) = —2—— (3.8)
{(1+n_ br?)?
0
where n, =n{r=0), which is the number density on the axis, and
u o e? u?
b=—0 €z (3.9)

8 k(Te+Ti)
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which has  dimensions of length. This radial dependence of the
number density is sketched in Fig. 5. From Egs. (3.2) and (2.13) we
see that the radial dependence of Jz(r) and p(r) is the same as that

of n{r). It can be used to determine Be(r) according to Eq. (2.4).

A n(r)

o

Fig. 5 - The Bennett distribution of the number density, n(r),of the

particles in an equilibrium pinched plasma column.

The Bennett distribution (3.8) shows that particles
are present up to infinity but, since n(r) falls off very rapidly
with increasing values of r, we can consider, for all practical
purposes, that the plasma is essentially concentrated symmetrically
in a small cylindrical region about the z-axis. Using Eq. (3.8) we

can obtain the numberofpartic]esNR(R),perunit1enght,contained in a
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cylindrical column of radius R,

R
Ni(R) J n(r) 2mr dr

0

R
om. | —T—— dr (3.10)
(1+n_br2)2
5 0

Evaluating the integral yields

. ) nO?rR2
R(R) =2 (3.11})
(I+nObR2)

Since particles are present up to infinity, the Zotal number of
particles per unit length can be obtained from Eq. (3.11) by

taking the Timit as R » « , which gives

N, (=) = L (3.12)

If we let o denote the fraction of the number of particles per unit
length that is contained in a cylinder of radius R, that is,

QL(R)_ - _.b_Ni(_R.), (3.13)

Nﬁ(m) T
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and use Eq. (3.11), we obtain, after some rearrangement,

R(n, b)/2 = (—2 )2 (3.14)

1-a

Therefore, if 90% of the plasma particles are confined within the

cylindrical plasma column of radius R, that is o = 0.9, we have
R(n, b)*/% = 3 (3.15)

Thus, even though the particles extend up to infinity, the major
portion of them lies in a small neighborhood around the z-axis.

Note that, since (nO b)1/2 has dimensions of an inverse length,
we can think of R(n, b)2/% as a normalized radius of the cylindrical
plasma column. It is convenient to assume, arbitrarily, that a
plasma is confined within a cylindrical surface of radius R if 90%
of the particles are within this cylindrical column. Therefore, the
radius R of the cylindrical surface, within which the plasma is

confined, is given by {3.15).

4. DYNAMIC MODEL OF THE PINCH

The simple theory of the equilibrium pinch, considered
in section 2, is valid when the radius of the plasma column is

constant in time or when it is varying very slowly compared with the



- 19 -

time required for the plasma to attain a constant temperature. In
actual practice ,however, static or quasi-static situations do not
arise and it is necessary to consider the dynamical behavior of the
pinch effect. Initially, when the current starts flowing down the
plasma column, the kinetic pressure 4is generally too small to
resist the force due to the external magnetic pressure, so that the
radius of the cylinder of plasma is forced inwards and the plasma
column is pinched. The essential dynamic features of the time-varying

pinch are illustred by the following simple model.

Suppose that a fully ionized plasma fills the interior
region { 0 < r < R0 } of a hollow dielectric cylinder of radius RO
and length L. A voltage difference V is applied between the ends of
the cylinder, so that a current I flows in the plasma. This current
produces an azimuthal magnetic induction Be(r), which causes the
plasma to pinch inwards. The plasma is assumed to be perfectly
conducting, so that all the current flows on the surface and there is
no magnetic flux inside the plasma. Also, the plasma kinetic pressure
is neglected. Let R{t) be the radius of the plasma column at time t
(Fig. 6). The magnitude of the azimuthal magnetic induction just

adjacent to the current sheathat radius R(t)}, is given by

B (R) = Y5 (4.1)

where I(t) is the total axial current at the instant t. In

particular, for t = 0, we have R = R0 » and this equation gives the
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jnital value BB(RO) of the magnetic induction.

T
———

— e — —

\GURRENT
B,(r) / SHE ATH

- 7T 1T T

\ CYLINDRIGAL
DIELECTRIC

PLASMA

-——————

Fig. & - Plasma column of infinite conductivity, inside a hollow

cylindrical dielectric, with a current sheath on its surface.

- The magnetic pressure, pm(R), produced by this magnetic induction,

acting on the current sheath radially inwards, is given by

P, (R)

BS(R)/ZUO

ul?(t)
S (4.2)
8r2Re

The force per unit length of the current sheath, acting radially

inwards, is obtained from Eq. (4.2) as

F(R)

I
ts)

F(R) = - 2R p (R) 7

B by 12(t) _
= - —— . F (4.3)
4qR -
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To set up the equation of motion, relating I(t) to the
instantaneous radius R(t) of the pinch discharge, we must make some
assumption about the plasma. We shall consider a model, known as
the snowplow model, in which the current sheath is imagined to
carry along with it all the material which it hits as it moves
inward. If o is the original mass density of the plasma, then
the mass per unit length carried by the interface as it moves in,

at time t, when the radius of the current sheath is R, is given by

M{R) = 'ﬁ(Rz - R2)p {4.4)

Fig. 7. illustrates the cross sectional area swept by the current

sheath as it moves from the radius R0 to R(t).

AREA-T {R%-R%)

Fig. 7 - Area swept by the current sheath as it moves

inward from the radius R0 to R(t).
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From Newton's second law, the magnetic pressure force and the rate of

change of momentum are related by

d | drR 1
— | M{(RY =2 | = F(R
dt t (R) dt | = F®)
or
d dR n, 1*(t) (4.5)
—_ R2 - p2y 2 - L. _©
dt [ﬂ > & ) dt J 4nR

where we used Eqs.(4.3) and (4.4). If the functional dependence of
the pinch current I(t) is known, Eq.(4.5) permits the evaluation of

the radius of the pinch discharge as a function of time.

A standard inductive relation between the applied
voitage, the current and the dimensions (inductance)of the plasma
column can be obtained using Faraday's law of induction. For this
purpose, consider the closed loop shown in Fig. 8, in which the inner
arm lies on the interface and moves inward with it. Applying Faraday's

law to this dotted loop,

§E.d9,=-~.‘.’_((s.d5) (4.6)
E . de a8 0E

and noting that the only contribution to the Tine integral of E comes

from the side of the loop lying in the conducting wall, we obtain
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Ro
Y .4 J Bo(r) dr (4.7)
L
R

- R
.o 1(t) an (—2— ) | (4.8)
2 dt R(t) |

[f we denote the appliedelectric field,V/L,by E0 f(t),where the function
f(t) is assumed known and is normalized so that the peak value of

the applied electric field is Eo, Eq. (4.8) becomes

I(t) &n ( % ) = 2T (t F(t') dt' (4.9)
- ] _
R(t) w, °)

Fig. 8 - Sheamatic representation of the closed loop, for
application of Faraday's law, with the inner side lying on

the interface and moving inwards with it.
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This equation can be used to eliminate I(t) from the
equation of motion (4.5), resulting in the following equation for the
rate of change of R(t)

E2 Ht f(t) de ]’

0
M, P R[ tn (R /R) ?

-

d [ (R? - Rzﬂ&} i (4.10)

dt dt

It is convenient to introduce the following dimensionless variables

x = R/R, (4.11)
. 1/
EO
T=| ——m t (4.12)
Ly O R;

and recast Eq. (4.10), in normalized form, as

T 2
L] ey 2] Lyt o0 ] (4.13)

x (&n x)?2

This equation cannot be solved without knowing the
function f(t). However, some idea of the results can be obtained,
without solving this equation, by noting that x changes significantly
for time periods such that v = 1. Thus, from Eq. (4.12), the scaling

law for the radial velocity of the pinch is, approximately,



(4.14)

The typical experimental conditions involved in a small scale pinch
cotumn of hydrogen or deuterium plasma are initial densities of the
order of 10°° gm/cm® and applied electric fields of the order of 103
Volts/cm, which give a velocity Ve of the order of 107 cm/sec. For

these conditions, in a tube of 10 cm radius, the current measured is

of the order of 10° or 10° Ampéres.

It is instructive to consider a particular case in

which the pinch current varies in time according to

I(t) = I sin (wt) = I_ wt (4.15)

Then, from Eq. (4.5), we obtain directly

-d—[(l-x?-)-ﬁl‘-]h—ﬁ (4.16)

with x as given by Eq. (4.11), and

u 12 w2 1/4
9.0 t (4.17)
4n? o R*
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Equation (4.16) has to be solved numerically to determine x(t). The
resulting relation between the normalized radius of the dynamic pinch
and the normalized time 1is sketched in Fig. 9. This simplified model
indicates that the radius of the plasma column goes to zero in a time
sTightly greater than t. This is a consequence of neglecting the
kinetic pressure of the plasma. The above discussion is, therefore,

valid only for very short times after the onset of the current flow.

Fig. 9 - Normalized radius x = R/R0 of the dynamic pinch column as

a function of the normalized time T, according to Eq.(4.16).

An important phenomenon that usually occurs in the
dynamic pinch has not been considered in this analysis. As the current
sheath moves radially inwards, compressing the plasma, the behavior
just discussed is modified. A radial wave motion is usually set up by
the pinch and this wave travels faster than the current sheath. These
waves, travelling inwards, get reflected off the axis and move
outwards striking the interface and retarding the inward motion of

the current sheath or even reversing it. This phenomenon is known as
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bouncing. This sequence of events takes place periodically and the
amplitude of each succeeding bounce becomes smaller, and the radius
of the plasma column presumably reaches an equilibrium state at some
radius less than RO.Fig.1O illustrates the general behavior expected for

the radius R of the column as a function of time.

Fig. 10 - Normalized radius of the plasma column as a function of the

normalized time, illustrating the phenomenon of bouncing.

5. INSTABILITIES IN A PINCHED PLASMA COLUMN

Although it is possible to achieve an equilibrium
state for plasma confinement with the pinch effect, this equilibrium
state is not stable. Asmall departure from the cylindrical geometry of
the equilibrium state, results in the growth of the original perturbations
with time and the desintegration of the plasma column.The growth of

instabilities is the reason why it is difficult to sustain reasonably
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long-Tived pinched plasmas in the Taboratory.

A detailed matheﬁatica] treatment of these instabilities
is out of the scope of this text. For simplicity, in the following
discussion of instabilities,we shall consider a perfectly diamagnetic
plasma column confined by a static magnetic field. Since the plasma
is perfectly diamagnetic, there is no magnetic field and, consequently,
no magnetic pressure inside the plasma column. The plasma kinetic
pressure 15 assumed to be uniform jnside the plasma and vanishes
outside it. In the equilibrium state, the magnetic pressure at the

plasma surface, p__, must be equal to the kinetic pressure p of the
mo

plasma,
BZ
0
p=p = (5.1)
mo 2u0

where Bo is the magnitude of the magnetic flux density at the plasma
surface. This situation of a sharp plasma boundary is an idealized
one, and is difficult to create in laboratory, since the plasma
particles diffuse through the magnetic field lines in a diffussion
time of the order of U, O L2, in view of the finite conductivity %

of the plasma, as discussed in section 3, of Chapter 12.

In the cylindrical pinch column, the confining magnetic
field lines have a curvature such that they are concave toward the plasma
and the field strength decreases whith increasing distance from the

center of curvature of the field lines {Fig. 11) According to
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Fig. 11 - Unstable equilibrium configuration of a cylindrical plasma

column. The azimuthal B field decreases radially outwards.
Ampere's law, this azimuthal magnetic field is inverselly proportional

to the radial distance r from the axis of the cylindrical plasma

column.

6. THE SAUSAGE INSTABILITY

Suppose that the equilibrium state of the pinched plasma
column, shown in Fig. 11, is disturbed by a wave-like pertubation,with
the crests and throughs on the surface of the plasma column and

cylindrically symmetric about the column axis, as indicated in Fig.12.

Fig. 12 - The sausage instability.
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We shall consider that the plasma is constricted in some locations and
expanded at others, in such a way that its volume does not change.
Consequently, the uniform kinetic pressure of the plasma is left
unchanged. However, in view of the 1/r radial dependence of the
azimuthal magnetic field, the magnitude of this field at the surface
of the disturbed plasma column will vary from place to place on the
surface. At the locations where the radius has decreased, in relation
with the equilibrium value, the magnetic pressure at the constricted
plasma surface will be larger than the plasma kinetic pressure, and
will force the plasma surface radially inward, thus enhancing the
constriction. At the locations where the radius has become Targer than
the equilibrium value, the plasma kinetic pressure will be larger than
the magnetic pressure at the expanded plasma surface and will force
the surface radially cutward, increasing the local expansion of the
plasma. Therefore, the troughs will become deeper and the crests
higher. The initial perturbation gives rise to forces that tend to
further increase the initial disturbance, so that the initial
equilibrium state is unstable. When the constrictions reach the axis,
the column appears like a string of sausages and, for this reason,

this type of instability has been called a sausage instability.

The sausage instability can be inhibited by a
longitudinal magnetic field applied inside the plasma column. This
longitudinal magnetic field is produced by passing a current through

a solenoidal coil wound around the column. Because of the high elec-
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tric  conducticity of the plasma, the longitudinal field Tines are
frozen in the plasma. When the sausage distortion starts to grow, the
longitudinal magnetic field lines are compressed at the constrictions,
causing an increase in the pressure inside the plasma that opposes the
increased magnetic pressure of the azimuthal field at the constricted
surface, and forces the constriction to expand. At the locations where
the column radius has increased, the longitudinal field Tines move
apart with the plasma expansion, thus decreasing the internal pressure,
with the result that the net pressure forces the plasma surface

radially inwards. This is illustrated schematically in Fig. 13.

Fig. 13 - A longitudinal magnetic flux density BZ can be used to

inhibit the sausage instability.

We shall, next, determine what must be the magnitude
BZ of the Tongitudinal magnetic flux density, as compared to the
magnitude of the azimuthal BO field, in order that the longitudinal
field be able to stabilize the plasma column against the setting of
the sausage instability. If the radius r of the column, at the

constriction, is decreased by an amount dr, and considering that the
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magnetic flux (@m = BZ 7™ r?) through the cross sectional area of the

column remains constant during compression, then we have

- 2 —
d@m =7y dBZ + BZ 2Zr rdr =0 (6.1)

Hence, the longitudinal magnetic flux density, Bz’ is increased by

the amount

a8, =-28, " (6.2)

Consequently, the corresponding internal magnetic pressure increases

by the amount

dp. = - - B, dB, (6.3)

or, using (6.2),

282
z dr (6.4)

Hy r

dpzz-

Considering now the azimuthal magnetic flux density, Be, it is easily

seen, from Ampere's law, that external to the column we have

r Be(r) = constant (6.5)
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so that the azimuthal magnetic flux density, at the constriced

surface, increases by the amount

3 = - B 2T (6.6)

B, dB B2
Yo By T

Therefore, in order that the plasma column be stable against the

sausage distortion, we must have dpZ > dpe, or, using (6.4) and (6.7),
B2 > 1 B2 (6.8)
z 5 @ '

7. THE KINK INSTABILITY

Another type of instability of the pinched plasma
column is the so-called kink instability. The kink distortion consists
of a perturbation in the form of a bend or kink in the column, but with
the disturbed column maintaining its uniform circular cross section,
as shown in Fig.14. Usually, there may be several kinks along the
length of the plasma column. In the neighborhood of the column, where
the kink has developed, the magnetic field lines are brought closer
together on the concave side, and separated on the convex side, so

that the external magnetic pressure is increased on the concave side
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Fig. 14 - The kink instability.

and decreased on the convex side. Therefore, the changes in the
external magnetic pressure are in such a way as to accentuate the
distortion still further. This type of distortion 1is,therefore,

unstable.

The kink instability can be hindered by the application
of a Tongitudinal magnetic field within the plasma column, as in the
case of the sausage instability. In the kink distortion, the
1;;gitudina1 magnetic field lines, frozen inside the plasma column,are
stretched, and the increased tension acting along the longitudinal

magnetic field 1ines opposes the external forces. The net result is

the stabilization of the column (Fig.15).

In actual pratice, however, the plasma is not perfectly
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Fig. 15 - The increased tension of a Tongitudinal magnetic field, applied

inside the column, inhibits the kink instability.
diamagnetic and other fields may also be present. The calculation of

the stability of the pinched plasma column is not, in general, a very

simple task.

8. CONVEX FIELD CONFIGURATIONS

In the linear pinch configuration, the azimuthal
magnetic field confining the plasma column is produced by a longitu-
dinal current flowing along the column. The configuration of this
field is such that the magnetic flux lines are concave towards the
plasma. Configurations of this type are unstable, as we have seen

with the sausage and the kink instabilities.
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Configurations for which the field Tines are convex
towards the plasma lead to a stable equilibrium, since the magnetic
field strength increases in a direction away from the plasma. If the
plasma surface is perturbed by a wave-like disturbance, the magnetic
pressure at the crests will be larger than the internal kinetic
pressure, and the plasma is forced to return to its equilibrium
configuration (assuming that the kinetic pressure is not affected by
the perturbations). At the troughs, the internal kinetic pressure will
be larger than the magnetic pressure acting on the plasma surface,
and will force the plasma to expand. Therefore, for plasma confinement,
it is desirable to use a magnetic field configuration in which the
magnetic flux lines are everywhere convex towards the plasma. An
example of this type of configuration is the cusp field, which can be
produced by an array of four current-carrying wires, as shown in Fig.
16. The presence of sharp edges and cusps at the plasma boundary,
however, can lead to escape of the plasma particles. Although edges
and cusps are characteristics of these configurations, modifications
of the cusp field geometry are commonly employed for confinement of
high temperature plasmas. Higher order cusp fields can be produced by
Tining up several pairs of current-carrying wires as,for example, in

the picket-fence field geometry illustrated in Fig. 17.
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Fig. 16 - Plasma confinement by a cusped magnetic field,

produced by four current-carrying wires.

Fig. 17 - Picket-fence field configuration for magnetic

confinement of a plasma.
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PROBLEMS

The minimum intensity of the magnetic induction (go) necessary
to confine a plasma at an internal pressure of 100 atm

is (seé Problem 12.3) 5 Weber/m2. Assuming that this
field is produced by an axial current flowing in a cylindrical
plasma column (as in the longitudinal pinch effect) of 10 cm
radius, show (applying Ampére's law) that the total
current, necessary to produce this magnetic field (gc) at the
surface of the cylindrical plasma column, is 2.5x 10% Ampéres.

(1 atm = 10° Newton/m?; u, = 4w x 1077 Henry/m).

For the equilibrium Bennett pinch with cylindrical geometry,
calculate Bs(r) using Eq. {Z2.4) and the expression for n(r)
given in Eq. (3.8). Make a plot showing theradial distribution
of p(r), Jz(r) and Be(r).

For the equiiibrium theta-pinch produced by an azimuthal

current in the theta-direction (ge)

Chapter 12, determine expressions for the radial distributions

, as illustrated in Fig.6 of

of Je(r) and p(r) in terms of Bz(r). Draw a diagram illustrating
these radial distributions for the special case when

BZ = constant.
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13.4 - Consider the dynamical theta-pinch. Derive the differential
equation which specifies the time-dependence of the radius,

R(t), of the plasma column using the snowplow model.

13.5 - Use the equation for the fluid velocity component (u,} normal
to B, derived in Problem 9.7, to determine the relative

orientations of u, B, E, J and vp in a theta-pinch device.

13.6 = In the longitudinal equilibrium pinch shown schematically in
Fig. 1,assume that the radial dependence of the current density
Jz(r) is such that

J_=0 for O<r<a

constant for a<r<b

[
il
=i
(s
It

Calculate p(r) and Be(r) and make a plot showing the radial
dependence. Show that, as a-b, the magnetic pressure BS/ZUO
at r = b becomes equal to p at r = 0, while as a-0, Bg/u0 at

r = b becomes equal topat r = 0.
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13.7 - (a) Show that a force-free magnetic field satisfies the relation

and show that

oo
L]
t<l
Q
n

o

(c) Verify that the surfaces o=constant are made up of

magnetic field Tines.

(d) Show that af{r), as defined in part (b), for the force-free

field, can be expressed as

=2
1
[Re=})
.
——
1<3
x
1T}
S—r

(e) Prove that for the force-free field VB Ties on the
osculating plane (E, n plane, where n is the principal normal

to the field Tine).
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13.8 - Consider the following basicequation for the equilibrium of a

plasma column with cylindrical geometry (see Problem 12.9)

B2 B2 B2
A (e —z 0 ]z ] 8
dr 2110 2“0 uo r

(a) Verify that, for the e¢-pinch, this equation reduces to

B2
p + —Z = constant

2y

8]

whereas, for the longitudinal pinch, it becomes

B2 B2
_d_[p+__e_]=__1_ b
dr ZuO Mo r

(b) For the cylindrical screw-pinch, in which both Be and Bz
are nonzero, assume that the longitudinal current density and

the kinetic pressure are given, respectively, by

Verify that



- 43 -

poJ 2
Be(r) =_°2 ©° r[] - J:;} (r ¢ a)
2 2a
u J a2
Be(r) S 40 L (r > a)
r

B2 2 2
)
2110 2u Moo r

From this equation determine Bz(r) and make a plot showing p(r),

Jz(r), B_(r) and Bz(r) as a function of r.

o
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