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CHAPTER 16

WAVES IN COLD PLASMAS

1. INTRODUCTION

In this chapterwe analyze the problem of wave
propagation in cold plasmas. In a cold plasma the thermal kinetic
energy of the particles is ignored and the corresponding velocity
distribution function is the Dirac delta function. The study of
waves in plasmas is very useful for plasma diagnostics, since it
provides information on the plasma properties. The theory of wave
propagation in a cold homogeneous plasma immersed in a magnetic

field 1is known as magnetoionic theory.

There are two main different methods of approach that
can be used in analyzing the problem of waves in plasmas. In the first
approach, the plasma is characterized as a medium having either a
conductivity or a dielectric constant and the wave equation for this
medium is derived from Maxwel]l equations. In the presence of an
externally applied magnetostatic field, the plasma is equivalent to an
anisotropic dielectric characterized by a dielectric tensor or
dyad. In the second main method of approach, Maxwell equations are
solved simultaneously with the equations describing the motion of the
plasma particles. In this case, we do not explicitly derive a wave

equation, and expressions for the dielectric or conductivity dyad are



not obtained directly. Instead, we obtain a dispersion relation, which
relates the wave number k to the wave frequency w. A1l the information
about the propagation of a given plasma mode is contained in the
appropriate dispersion relation. This second method of approach is
often strajghtforward and simpler than the first one, and is the method

we shall adopt in this treatment.

The neglect of the pressure term for a cold plasma is
justified if the thermal velocity of the particles (vth) is small when
compared with the phase velocity (vph) of the wave (vth << Vph)'
Therefore, the cold plasma model gives a satisfactory description
except for waves with extremely small phase velocities. For waves with
such small phase velocities, the pressure term becomes important and
must be considered for a correct description. In this case, the plasma
is said to be warm. The propagation of waves in warm plasmas is the

subject of the next chapter.

The study presented here is restricted to small
amplitude waves,$0 that the analysis will be based on a Iinear
perturbation theory under the assumption that the variations in the
plasma parameters, due to the presence of waves, are small (to the
first order) as compared to the undisturbed parameters. The plasma is
assumed to be homogeneous and infinite (no boundary effects), and the
externally applied magnetostatic field is assumed to be uniform. This

medium is called a magnetoilonic medium.



Because of mathematical simplicity, the analysis will be made in terms
of plane waves. This does not imply in loss of generality, since any
physically realizable wave motion can always be synthesized in terms

of plane waves.

In magnetoionic theory, only the motion of the electrons
is considered. This is valid for high frequency waves, i.e., for
frequencies large compared to the ion cyclotron frequency. The theory
of high-frequency small-amplitude plane waves propagating in an
arbitrary direction with respect to the magnetostatic field, in a
magnetoionic medium, is known as the Appleton-Hartree theory, in honor
to E. V. Appleton and D. R. Hartree, who developed this theory when
studying the problem of wave propagation in the Earth's ionosphere. At
frequencies of the order of the ion cyclotron frequency, and smaller,
the motion of the jons must be considered. The theory of wave
propagation in a cold multicomponent plasma is commonly referred to

as the hydromagnetic extension of magnetoionic theory.

2. BASIC EQUATIONS OF MAGNETOIONIC THEORY

In a cold electron gas the two hydrodynamic variables
involved are the electron number density n(r, t) and the average
electron velocity u{r, t). They satisfy the equation of

continuity



an{r, t)
— o+ [nr, t) u(r, t)J=0 (2.1)
at

and the Langevin equation of motion

Bufr, t) _
m—"-"e =q [E(r.t)+ ulr, t) x B(r, t)-mulr, t) (2.2)
Dt T - - -
These two equations are complemented by Maxwell
equations
veE(rs 1) = o (r, t)/e, (2.3)
7-B(r, t) = 0 (2.4)
aB(r, t)
VXE(r, t) = - =T (2.5)
- - at
3E(r, t)
vxB(r, t) = u [Mr,t)+e —_— ] (2.6)
T °oL~= ° at



where the electron charge density in given by

p(rs t) = - en(r, t) (2.7)

and the electric current density by

d(rs t) = o (r, t) u(r, t}= -en(r, t) u(r, t) (2.8)

As previously discussed, Eq. (2.4) is actually considered only as an
initial condition for Eq. (2.5). Furthermore, Eqs. (2.3) and {2.6) can
be combined to yield the conservation equation of electric charge

density.

3. PLANE WAVE SOLUTIONS AND LINEARIZATION

Let us separate the total magnetic induction and the

electron number density into two parts,

+ Bi(r, t) (3.1)



n(r, t) = Ny * ni{r, t) (3.2)
where §o is a constant and uniform field, and N, is the undisturbed
electron number density in the absence of waves. For harmonic plane
wave solutions the quantities E, By, u and n; are all proportional to

exp [i(k-r-wt)],

E(r,t)=Eexp [i (k*r-uwt)] (3.3a)
By(r, t) =By exp [ 1 (k+r-wt)] (3.3b)
ur,t)=uexp [i(k-r-wt)] (3.3¢)
ni(rs t) =ny exp [i (k-r-ut)] (3.3d)

where k is the wave propagation vector and w is the wave frequency. The
use of the same symbol to denote the complex amplitude as well as the
entire expression in Eqs. (3.3) should lead to no confusion, because
in Tinear wave theory the same exponential factor will occur on both

sides of any equation and can be cancelled out.

Eg. (2.2) is not yet quite tractable because of the
nonlinear terms (u - 9) u and uxB. This difficulty can be eliminated
considering u and 91 as small first order quantities and neglecting
second order terms. As discussed in section 3, of Chapter 10, when

dealing with wave phenomena in plasmas the second order nonlinear term



uxB; can be neglected provided the average electron velocity is much

Tess than the phase velocity of the wave (u << w/k).

For harmonic plane wave solutions the differential
operators Vv and 3/5t are replaced, respectively, by ik and -iw.
Consequently, the differential equations become simple algebraic
equations. Therefore, Eqs. (2.2), (2.5) and (2.6) become, respectively,

neglecting second order terms,

~iemy = @(E+!x§& - mvu (3.4)
kx E=w By (3.5)
1|5x§1=u0 (-e nog-imsog) (3.6)

where use was made of {2.8). These three equations involving the three
dependent variables u, E and B; can be used to derive a dispersion
relation fTor wave propagation in a cold electron gas. In order to keep
matters as simple as possible, we investigate initially the

characteristics of wave propagation in a cold isotropic plasma with

§0=D.



4. WAVE PROPAGATION IN ISOTROPIC ELECTRON PLASMAS

4.1 - Derivation of the dispersion relation

In the absence of an externally applied magnetic field

(§0 = 0) the Langevin equation (3.4) gives

[ =
1]
1

— (4.1)
m{v~-iw) ~

Combining Eqs. (3.5), (3.6) and (4.1), we obtain

Twyp e?n A
kx (k x E) = - O 0 p- 8 ¢ (4.2)

m(v-iw) - ¢Z

It is convenient to separate the electric field vector
in a longitudinal component EE (parallel to k} and a transverse

component Et { perpendicular to K)s

E=E, +E, (4.3)

as shown in Fig. 1. Therefore,

(kxE,) =0 (4.4)

kx (kxE)=-KkE, (4.5)



Fig. 1 - Longitudinal and transverse components of
the electric field vector with respect to
the propagation vector k.

and (4.2) becomes

. 2
Twi _em™n 2
- K2 E, = - °c 9, (E,+ Ey) (4.6)
m{v - iw) c? -

This equation can be separated in a longitudinal component,

N o T
P - E, = 0 (4.7)
c2(1 +1iv/w) c?

and a transverse component,
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w2
- K2 E, = PE - L E, (4.8)
~ c2(1 + iv/w) c?

where we have introduced the electron plasma frequency,

- 2 1/2 ) - - »
Wne (noe /meao) . Eq. (4.7) yields the following dispersion

relation for a longZitudinal mode (Ei £ 0),

w? (1 + iv/w) - w;e =0 (4.9)

For a transverse mode (Et # 0) the dispersion relation is, from (4.8),

(0 = K%e?) (1 + iv/w) - wlo = 0 (4.10)

4.2 - Collisionless plasma

For simplicity we consider first the case in
which the collision frequency is much less than the wave frequency
(v << w), so that the effectof collisions canbe ignored . Insub-section
4.4 we shall take into consideration the effect of collisions. Thus,
for v = 0 the dispersion relation (4.9), for longitudinal waves,

becomes

w? = w? (4.11)

while, for transverse waves, (4.10) becomes
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kzcz 2 2 (4.]2)

1]
E
|
14

Eq. {4.11) shows that lomgitudinal oscillations
(E,#0) canoccur just at the plasma frequency e These longitudinal
oscillations are just the plasma oscillations discussed in section 1,
of Chapter 11. It is seen, from (4.1), that the electrons oscillate

with a velocity given by

fe (4.13)
Moy

1=
1
1

In virtue of (4.4) and (3.5) it is clear that B, = 0, so that there
is no magnetic field associated with these longitudinal oscillations.
Further, there is no wave propagation, since there is no relative phase
variation from point to point in space, so that the longitudinal
oscillations do not constitute a propagating mode . These oscillations
are, therefore, longitudinal, electrostatic and stationary. In the next
chapter we consider the wave propagation problem in a warm

plasma, in which the thermal effects are included, where we show that
these electron plasma oscillations correspond to the 1imit, when the
electron temperature goes to zero, of the longitudinal mode of

propagation called the electron plasmiwvave.

Considering now the dispersion relation (4.12) for

transverse waves (E, # 0), it is seen that k* is positive for w > B

and negative for w < Whe- Hence, for travelling waves {with w real)
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k becomes imaginary for frequencies below the plasma frequency, Woa-

Writing k = B8 + ic, where 8 and o are real quantities, it is seen,

from (4.12), that for w > w k = B; a=0) the transverse wave

pe (
propagates with a phase veloeity (w divided by the real part of k)

given by

e < (4.14)
P k Q- w;e/mZ)ifz (0 > w

<
n
It

pe

Also, for w > Yhe the group velocity of the transverse wave can be

obtained differentiating (4.12) with repect to Kk,

vo=ow € (0 > wpe) (4.15)

For w < wpe’ k is imaginary {k = ia) and the transverse

wave is exponentially damped, since
E, = exp (ikgz - iwt) = exp { -az) exp { - jwt) (4.16)

so that the wave dies out with increasing values of z. Such
exponentially damped fields are called evanescent waves and do not
transport any time-averaged power. Since B = 0, it is easily seen that,

in this case,

v, = (0 <

oh (4.17)

De)
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v =10 (w < w_) (4.18)

pe

Also, from (4.12) we find, for w < Whes

z _,2y1/2
a = Im(k) = (e =) (4.19)
C

where Im denotes the "imaginary part of".

A plot of phase velocity and group velocity as a
function of frequency is showninFig. 2{a), and the frequency dependence
of the attenuation factor, o, is shown in Fig. 2{b). Note that the
phase velocity is always greater than the velocity of light ¢, but the
group velocity, which is the velocity at which a signal propagates, is
always less than ¢, in agreement with the requirements of the theory of
relativity. For w >> Wh WE find, from (4.14) and (4.15),

V., =V =¢ (w>> w_) (4.20)

pe

which shows that for very high freguencies the plane wave

characteristics of a plasma degenerate to those of free space. This is
expected on a physical basis, since in the limiting case of infinite
frequency even the electrons are unable to respond to the oscillating

electric field.
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Fig. 2 - Frequency dependence of the phase velocity,
group velocity and the attenuation factor «
for transverse waves in a collisionless
isotropic cold electron gas.



-15 -

The dispersion relation (4.12) 1is plotted in Fig. 3
in terms of w as a function of the real part of k. In this text we
shall follow the usual graphic representation of dispersion relations,
which is plotting « versus k, rather than k versus w. The frequency
region in which the transverse wave is evanescent is the region for

which w < mpe.

w A

NO WAVE
/ PROPAGATION
/ REGION

/. / SLOPE 1S EQUAL TO THE
/  PHASE VELOCITY Vph

Fig. 3 - Dispersion relation, w(k), for the transverse
wave propagating in an isotropic cold electron
plasma. Note the geometrical representation of
the phase and group velocities at the point P.
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From the relation vg = 3w/dk we notice that at a given point in the
w(k) curve the group velocity is equal to the slope of the tangent to
the curve at that point, whereas the phase velocity, w/k, is equal to
the slope of the Tine drawn from the origin to this point. This

geometrical representation is illustrated in Fig. 3.

4.3 - Time-averaged Poynting vector

We evaluate next the time-averaged Poynting vector,
< 3 >, which gives the time-averaged power flow for the transverse

wave. From (3.5), taking B, = uoH1s we have

=
x
32l

Hi _ (4.21)

and the expression for < $ >, given in Eq. (14.5.13), becomes

1

Re [Ex (k* x £4)]
0

0 Re [ k* E(r, t) EX(r, t)] (4.22)

2
MW

where n is a unit vector in the direction of E x Hy. Using (3.3a) and

considering k to be a complex quantity, (4.22) becomes



- 17 -

Re {k¥exp [i(k-k*) ]} (4.23)

Therefore, since k is either real or imaginary according to whether

> By or w < Ve respectively, it follows from (4.23) that

<§> = 0 for w< e (4.24)

v for w>uw (4.25)

where, in (4.25), we have used the relation c?k/w = vg given 1in
(4.15). Thus, for w > wpe the fields transport power in the direction
E x Ay, whereas for u < ®ne there is no power flow and the

wave is evanescent. For this reason, the region w > wpe is called the
propagation region. Since the wave is totally reflected for w < Wogs
the frequency “he is often called a reflection point (where vph is
infinite}. It can be shown that the power transmitted into a semi-
infinite slab of plasma 1is zero if B = Re(k) is zero, so that in a
more general sense any frequency for which g = 0 (vph = @) is
referred to as a reflection point. However, if the plasma medium is

finite, some energy can be transmitted through the finite plasma slab

even if B = 0. This effect is known as the tunneling effect.
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4.4 - The effect of collisions

The principal effect of collisions is to produce a
damping of the waves. Before considering the dispersion relations
(4.9) and (4.10), itis useful todiscuss some general results concerning
dispersion relations of the form

k2 = A + iB (4.26)

where A and B are real quantities. If we separate k into its real and

imaginary parts,

k =8+ ic (4.27)

where B and o are both real, then it is a simple matter to verify that

Is
|

= Re(k?)

H

B2 - o2 (4.28)

[we)
H

= In(k?) = 2Ba (4.29)

On the other hand, since the waves are proportional to exp(ikg - iwt),

we have

exp(ikz - iwt) = exp(-az) exp(ifz - iwt) (4.30)

Thus, the sign of 8 determines the directiZon of wave propagation, i.e.,

B > 0 implies propagation in the positive ¢ direction, whereas 8 < 0
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implies propagation in the negative ¢ direction. The sign of o is
related to growing or damping of the wave amplitude as the wave
propagates. If both o and B are positive, then the wave travels in the
positive ¢ direction and is exponentially damped. If both o and B are
negative, then the wave travels in the negative ¢ direction and is

also exponentially damped. On the other hand, if o and 8 have opposite
signs, then the wave is exponentially growing (see Fig. 4). Inany case,
the sign of B determines whether the travelling wave is
growing or decaying. For B > 0 the wave is damped with distance,

whereas for B <0 the wave grows.

Similarly, for a dispersion relation having the form

w? = A+ iB (4.31)

it can be easily verified that, for standing waves, if B>0 the wave

grows in time, whereas if B<(0 the wave is damped.

Consider now the dispersion relation (4.9) for the

longitudinal oscillation,

W+ T - w2 = 0 (4.32)

or

- v2yr/2) (4.33)
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A
*+—— k(< 0)
o —» k(B >0)
ki (a)
a> 0
>
4
A
a<Q
A (b)
v
'% «— k(p<0O)
—— k (B>0)
>
g

Fig. 4 - For a > 0 {(a) the wave is exponentially damped
if it propagates in the positive z direction
{8 > 0), or exponentially growing if it propagates
in the negative ¢ direction (B< 0), whereas for
a < 0 (b) the opposite situation holds.
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This equation shows that for any value of v the imaginary part of
the frequency w is negative, so that the oscillation is damped, since

it is proportional to exp( - iwt).

For the transverse mode the dispersion relation (4.10)
gives
2 2
n 1w e(v/w)

K2c? = 2 - pe + (4.34)
1+ (vw)? 1+ (v/w)?

Consequently, in the propagation band B is negative and the
travelling waves are damped for all frequencies. Aplot of the
attenuation factor, a = Im{(k), as a function of the collision
frequency, v, is shown in Fig. 5, calculated from (4.34) for a given
frequency satisfying w >> We Fig. 6 shows the dispersion relation,

plotted in terms of w versus k, for the transverse mode of propagation

a 4
wg, i
40)0 \\
: | ! j t gy
o] t 2 3 4 N w

Fig. 5 - Attenuation factor, o, as a function of collision
frequency for a given freguency such that

W > W for the transverse wave.

pe’
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&

° k

Fig. 6 - Plot of the dispersion relation, w versus k, for

transverse waves in an isotropic cold electron plasma,
considering the effects of collisions (vi>vz>v; >0).

in an isotropic cold electron plasma, for several values of the

collision frequency, v, such that v >v, >v, >0.

5. WAVE PROPAGATION IN ANISOTROPIC ELECTRON PLASMAS WITH B, 20

We consider now the problem of wave propagation in

a cold electron plasma when there is a uniform magretostatic field
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externally applied. The presence of the magnetostatic field, go,

introduces an anisotropy in the plasma.

5.1 - Derivation of the dispersion relation

To derive a dispersion relation for this case, we start
from the coupled set of equations (3.4), (3.5) and (3.6). Combining

(3.5) and (3.6), and rearranging, this set reduces to

kx (kx E) «+ 92 F = oy (5.1)
kx (kxE —E=——u
c Cce
0
(e 2y ue d8 (gxpy--J¢ (5.2)
w wim wm

If we denote the angle hetween §Oand!§bye, and choose a Cartesian
coordinate system in which Z is in the direction of B, and ¥ is

perpendicular to the plane formed by §0 and k { Fig. 7), we have

B, = B, 2 (5.3)

X+ kyZ = ksine X+ kcosoZ (5.4)

Note that the index symbols | and || are used to denote components

perpendicular and parallel to the direction of the magnetostatic field,
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§0, whereas the indices & and t (used in the preyious section) refer to
components longitudinal and transverse with respect to the wave vector

ks, respectively.

With this choice of coordinate system, we have

-~
b
—
~
b

m
e
3]

(kX + kaZ) x [ (kX + kiZ) x (E.X + Eyg +E2) ]

1]

2 : _ T o LEr o
k cose(s1nEaEZ coseEX) x -k Eyl +

+ Ksing (cos8E -sin6E)) z (5.5)

zh
AB,

Fig. 7 - Set of vretangular coordinates (x, y, z),
chosen with z along go’ and y perpendicular to
the plane formed by §0 and k.
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Using this result in (5.1}, we find the following relations for the

X oy and z components of this equation,

2.2 2.2
x: (1- k7¢ cos®@8)E_ + ( kZ¢ singcos B) E_ = (—=Nayy (5.6)
- w? X w? Z we X
0
_ 2.2 .
j: (1-KC g = (Mg, (5.7)
w? y we Y

2.2 2.2 3
{ K E sing cos 9) E, * {1- k7e” §in2 9)E, = (—lgﬂﬂ)uZ {5.8)

1M}

W w? z we,
which can be written, in matrix form, as
1 2.2 2.2 3 i 3
(1- k€™ cos? 0) 0 k"¢® Sinocose E,
2 2
w w
kZc? £ =
0 (1 - ) 0 y
2.2 2.2
L singcos o 0 (1- ke sin?e) EZ
L w? w
3
u
X
= ir}g uy (5.9)
WE
0
u;
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Note that the quantity kc/w is the index of refraction of the medium.

Next, in order to write (5.2) also in matrix form, we

first note that (Fig. 7)
u x §0 = B0 (uy§ - uxz) (5.10)

Using this result in (5.2), and after some algebraic manipulations, we

obtain for the x, y, and z components of this equation

=, iv ce _ _ ¢ de
x: (1 + ) u, +( ) U, = ( )EX (5.11)
w W wm
- 1000 iv ie
yi - | yu, + (1 + ) uy = - ( )Ey {5.12)
w w wim
Z: (- yu = - (¢ (5.13)
z z
o wim
Introducing now the notation
Us=1+ -0 (5.14)
w
w
y = —LE (5.15)
w
w2
X = P& (5.16)
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we can write Egs. (5.11) to (5.13) in matrix form as

U iy 0] u, E,
YU olfu | = -8 |¢ (5.17)
y |y
\ 0 0 U I u, 1 k EZ ,

Inverting the 3 x 3 matrix of (5.17), and multiplying this equation by

the inverted matrix, we find

[ s . 1( £ I )
U -iuyY 0 % U,
. : _
(=) iUy u2 0 E | ={u, |(5.18)
Mo U(u? -y*) J Y
2 2
0 0 (v2-v2)| g, -y, |

Eqs. (5.9) and (5.18) can now be combined to eliminate

the velocity components u,, u_, and U yielding the following

X* Yy
component equations involving only the electric field,
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k?¢?
+ { sing cos@)E. = 0O (5.19)
a 4

w
o iXY . . K
y: (_E;_:;;_q E, + el - JE,= 0 (5.20)

3 o 2.2

z: ( k¢ sinpcosa)E +('—2(—“"-i o sin“e)E, = 0 (5.21)
= w2 X ] w? z

For reasons to become apparent later, it is appropriate to define the

following quantities

§=1-_MN__ (5.22)
UZ—YZ

p=- X (5.23)
uz - y?

p=1-LX (5.24)
U

With this notation, Eqs. (5.19) to (5.21) can be written in matrix

form as
2 2 9 T ~
r(S - K coste) -iD K€% Sing cos o Ey
w w?
2.2
iD (s - K<, 0 E | =0
w2 Yy
2.2 2.2
K7C” sinecose 0 (P~ ke sin“g) | E,
o 02 7] (5.25)

b
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In order to have a non-trivial solution (E # 0), the determinant

of the 3 x 3 matrix in (5.25) must vanish. This condition gives the
following dispersion reZatéon, by direct calculation of the

determinant,

2.2 2 2.2
(Ssin%e + Pcos?s) ( k¢ ) - [RLsin%@ + SP(1+cos?6)] (—E—E——)+
w w
+ PRL = 0 (5.26)
where
R=S+0D S = (R+L)/2 (5.27)
or
L=5-D D= (R - L)/2 (5.28)

Since (5.26) is a quadratic equation in k?*c?/w®, there will be two
solutions, that is, at each frequency there can be 1in general two
types of waves that can propagate (two values for k?c?/w?), or, two
modes of propagation. Note, however, that if we take the square root
of k?c?/w?, we have two values for kc/w which correspond to

opposite directions of propagation and not to two different modes.

5.2 - The Appleton - Hartree equation

This well known equation is used with considerable

success to study radio wave propagation in the ionosphere, taking
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account of the Earth's magnetic field. It is just the dispersion
relation (5.26}, but written in a different form. In order to obtain

the Appleton-Hartree equation, we first write (5.26) as

A( k:zz Y k:zz )+ C=0 (5.29)
where

A= (Ssin®s + Pcos?8) (5.30)

B = RLsin®0 + SP(1+cos?8) (5.31)

C - PRL (5.32)

Solving (5.29) for k*c?/w?*, we find

k?c? Bz B2 - 4AC
= {5.33)
w? 2A

Now, we add the quantity A(k%c?/w?®) to both sides of (5.29) and

rearrange, to obtain

k22 _ AKX /w?) - C
0?2 A(kZc2/w?) + A - B

(5.34)

Next, we substitute k*c?/w® from (5.33), into the right-hand side of

(5.34) and manipulate, obtaining
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k?c? _,__2(A-B+C) (5.35)
w? 2A-B+" B?-4AC

Finally, we substitute the appropriate expressions which define the

guantities A, B, C and S, D, P, R, L, to obtain

k2c?

wz

-1 - X (5.36)
U - Y231n28 + l: Y“sin‘*e +Y2 C052911/2
2(U - X) 4(u - X)2

This is the Appleton - Hartree equation. 1t is valid for high wave
frequencies as compared to the <on cyelotrom frequency, since ijon

motion was neglected in the analysis presented here.

Because of the complexity of either (5.36) or (5.26), in
order to simplify matters we shall first analyse the wave propagation
problem when k is either parallel to, or perpendicular to ﬁo‘
Afterwards, it will be easier to analyze some important aspects of
wave propagation at an arbitrary angle & with respect to go using the

dispersion relation (5.36) or (5.26).

6. PROPAGATION PARALLEL TO §0

For wave propagation in the direction of B, (k|| @0) we

have 8 = 0, so that (5.25) simplifies to
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‘ k2c?2 v ¢ 3
(s - ) y
wz iD 0 EX
X 2.2
iD (s--X <) ol g |=0 (6.1)
V)
0 0 p ||k
\ .z

For a non-trivial solution (E # 0), we must require the determinant of
the 3 x3 matrix 1in (6.1) to vanish. Thus, by direct calculation of

the determinant we find three independent conditions

P=20 3 (_E_n = —E'QJ# 0) (6'2)

( k2§2 ) =S+D=R; (E.=E #0) (6.3)
w

( kzzz )=S-D=L; (E,=E #0) (6.4)

Using Eqs. (5.22) to (5.24), and (5.14) to
{5.16), which define S, D, P, and U, Y, X, respectively, we obtain

from (6.2), neglecting collisions (v = 0),

w? = w? (6.5)

which corresponds to the Zongitudinal electron plasma oseillations

discussed previously in section 4. Thus, these oscillations are not
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affected by the presence of the magnetostatic field, QO, in the
direction of the oscillations (z-axis). Since there is no wave
propagation in this case, these plasma oscillations do not constitute

a mode of propagation.

Eq. (6.3) corresponds to transverse right-hand

etrcularly polarized waves {RCP), with the dispersion relation

Lo S R SR (6.6)

or, neglecting collisions (v = 0),

k?c? mZe
) =1 - E (6.7)

w? R wlw - w

(

ce)

Eq. (6.4) corresponds to transverse Lleft - hand

eircularly polarized waves (LCP), with the dispersion relation

) =1 -—2 — =1 (6.8)

or, neglecting collisions (v = 0),

2
k2C2 ) _1 - (.Upe

w? L w{w + w

(

ce!
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The polarization of these two modes of propagation can

be obtained from the x-component of (6.1), which gives

E .
_X = iD (6.10)
E (S - k*c?/w?)
h
Thus, for the RCP wave, substituting k?c?/w? = R,
B
= - (6.11)
E
Y
whereas for the LCP wave, substituting k?c?/w? = L,
E
. S (6.12)
EY

Since the time dependence of E is of the form exp( - iwt), if we take
EX « cos{wt} then for the RCP wave we have Ey « sin{wt), whereas for
the LCP wave we have Ey « =sin{wt). Therefore, for an observer looking
at the outgoing wave, as time passes the transverse electric field
vector Et rotates in the clockwise direction for the RCP wave, and in
the counterclockwise direction for the LCP wave. This is illustrated
in Fig. 8. Note that the RCP wave rotates in the same direction as the
electrons about the Eo field. This means that, when W= W the RCP
wave is in resonance with the cyclotron motion of the electrons, and

therefore energy is transferred from the wave to the electrons. This
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Z g z}
B, LGP 8, RGP
2 % Qé
ion E / x
fad t - K t -
y ° y
_2,//?;;EGNON ,f///gaRECHON
OF ROTATION OF ROTATION
OF E, OF Ky
X X

Fig. 8 - For propagation along the magnetostatic field (6 = 0), the
LCP wave rotates in the counterclockwise direction, and the
RCP wave rotates in the clockwise direction, for an observer
Tooking at the ocutgoing wave.

absorption of enerqgy by the electrons, from the RCP electromagnetic
wave, at the electron cyclotron frequency, is used as a means of
heating the plasma electrons. When the motion of the ions is taken
into account, a resonance exists between the cyclotraon motion of the
jons and the LCP wave, at w = B since the 1ions gyrate in the same
direction as the Et vector of the LCP wave.

The phenomenon of resonance occurs when the phase
velocity goes to zero, Vph = 0 (or kc/w+«), whereas reflection 0CCUYrS
when Voh T (or kc/w = 0}. Thus, it is clear from (6.7) and from the
physical argument just given that the RCP wave has a resonance at

W= Wegs whereas {6.9) indicates no resonance for the LCP wave (for the
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case when ion motion is included the LCP wave has a resonance at wci)'
Also, from (6.9) it is easily verified that the LCP wave has a

reflection point when

o/ wd 4t ) (L = 0) (6.13)

1
w=wn Z— (-
. ce ce” “pe

and, from (6.7), the RCP wave has a reflection point when

W = Wez = 1 (wce + vV w? o+ dw? )

ce pe

(R = 0) (6.14)

+
Woa ¥ Wea

The phase velocity of the LCP wave is obtained, from

(6.9), as

N c(l + mce/m)l/2
(Vph)L = (—-—) = ((.U > U.lol) (6.]5)

o2 g2Y1/2
k L (]i-mce/m mpe/m y/

For w < wp, the wave number k is imaginary and the LCP wave is

evanescent. Thus, the LCP wave propagates only for w>wg.

Similarly, the phase velocity of the RCP wave 1is

obtained, from (6.7), as

c{1 - wce/w)1/2
(Vph) = (—) = H @J<mce;tu>m02) (6.16)

_ _ 2 2y1/2
R k (1 mce/m wpe/w )
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Thus, the RCP wave propagates in two frequency ranges: 0<(u<<nce and

Wez <w<e; 1t 15 evanescent for w__ <w<wgz.

ce

The group velocity for the LCP and RCP waves in the

propagation bands are given, respectively, by

2c(w + w_ ) [w(w? +ww._-w2 )] /2
(vg)L= (—-2%) - ce ce pe (6.17)
2 . 2
L 2w + mce) Weg wpe
2¢{w - w )37 [w(w? + wo_ ~ w2 )] /2
(Vg)R = { ai ) = ce ce pe (6.18)
d - 2 2
R 20{w wce) ., Woe

A plot of phase velocity and group velocity as a
function of freguency for these two transverse modes of propagation
is shown in Fig. 9. The same dispersion relations (6.7) and (6.9) are
plotted, in a different form, inFigs. 10 and 11, respectively, where it
is shown the frequency, w, as a function of the real part of the wave
number, k. The frequency bands for which there is no wave propagation

are indicated.

The RCP waves in the lower branch which have w < ©eq
are commonly known as electron cyeclotron waves. Similarly, when ion
motion is taken into account, the LCP mode has also a lower branch
of propagation for 0 < w < W 5 with a resonance at We i The LCP

waves having w s w.j are commonly known as ion cyclotron waves.
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Fig. 9 - Phase velocity and group velocity as a function of
frequency for the transverse RCP and LCP waves
propagating along the magnetostatic field (k [|§0).
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Fig. 10 - Dispersion plot for the RCP wave propagating along

the magnetostatic field (k || B,)-
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Fig. 11 - Dispersion plot for the LCP wave propagating
along the magnetostatic field (k |l B,)-



- 41 -

7. PROPAGATION PERPENDICULAR TO §0

We consider now wave propagation in the direction

perpendicular to B, (k | B ). For o = 90°, (5.25) simplifies to

( Yoo
S -ib 0 Ex
2,2
iD (s- K€ 0 E | =0 (7.1
w? M
20,2
0 0 (- L g,
wZ
L A )

Again , for a non-trivial solution (E # 0) the determinant of the 3x3
matrix in (7.1) must vanish. Direct calculation of this determinant

yields the following two independent modes of propagation:

(£ = (Eu # 0) (7.2)
@ 0
e - & (E, £ 0) (7.3)
w
X

The indices 0 and X refer to the ordinary and extraordinary modes,

respectively, as will be explained shortly.

From (7.2), and using (5.24), we obtain the dispersion
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relation

=1 -2 (7.4)
or using (5.14) and (5.16), neglecting collisions (v = 0),

( kZc? ) . mpe

2 2
(3] 0 W

(7.5)

This relation is identical to that in (4.12) for transverse waves

in an isotropic plasma. Hence, this mode of propagation is not
affected by the presence of the magnetic field B and, for this reason,
it is called an ordinary wave. For this mode propagating perpendicular
to 50’ the electric field of the wave (E. # 0) is paraliel to go, 50
that it involves electron velocities solely in the direction of Eo'
Consequently, the magnetic force term u x §0 is zero and the wave
propagates as if §0 were zero. The ordinary mode is also called a TEM
(Transverse Electric-Magnetic) mode, since both the electric and the
magnetic fields are transverse to the direction of propagation

(Ew | ks B ] k; see Fig. 12). The electric field is Iinearly polarized

in the direction of the Eo field.

The other mode of propagation (E, # 0) is called the
extraordinary mode, since it depends on the B, field, with the

dispersion relation given by (7.3),
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z
By
y
E, #
k
—

NO ROTATION
OF E,

Fig. 12 - Vector diagram for the ordinary wave propagating
perpendicular to Eo (6 = n/2).

Wy $ [ 1-XU/(U2-Y2)] U2 - y2 Uz - y?2

or, using (5.14), (5.15) and (5.16), after neglecting collisions

2

2 - 2 _ -
( (22 | {w U0 W.g mpe) (w ww., mpe)
2 2 2_,.2 _. .2
w? oy w* (w Wea wpe)

(w? - whi) (0 - wi2)

2 2

w? (w? - wUH)
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where wg and wgy are given by (6.13) and (6.14), respectively, and

where Wy denotes the upper hybrid frequency, defined by
Wy = (w;e + mée)l/z (7.8)
For the extraordinary mode, the electric field (E, # 0} of the wave

has 1in general a longitudinal component {along k) and a transverse

component {normal to k}, as shown in Fig. 13. Hence, these waves are

k X

~/aom-nou OF

E, IN EITHER
DIREGTION

Fig. 13 - Vector diagram for the extraordinary wave
propagating perpendicular to @0 {(8=m/2).

partially longitudinal and partially transverse. From (7.1}, the

polarization of the extraordinary mode is determined by
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so that this mode is 1in general elldptically polarized. The
extraordinary mode is also called a T (Transverse Magnetic) mode,
since the magnetic field of this wave is transverse to the direction

of propagation ( Fig. 13}.

From (7.5) it is clear that the ordinary wave has a

veflection point (Vph + o or kc/w = 0) at w = Wog and no resonances

(vph = 0 or kc/w + «). For the extraordinary wave, (7.7) indicates a

1" (e + i o

reflection points at wp and we (when ion motion is included it

resonance at the upper hybrid frequency w

turns out that the extraordinary wave has also a resonance at the
lower hybrid frequency, given approximatelly by wiH = w.o Wei)- The
dispersion plot for the ordinary wave is the same as that presented

in Fig. 3 for the transverse wave inanisotropic plasma. For the
extraordinary mode, the dispersion plot shown in Fig. 14 (in terms of
w as a functionof the real part of k) indicates that there is wave
propagation only for w > we, and for w in a band of frequencies

between wg and Wy’ for other frequencies k is imaginary and the

phase velocity is infinite.

The phase velocities of the ordinary and extraordinary

waves are obtained from (7.5) and (7.7), respectively, as

Vop) o () = : ; {w>o
Wonly = G (1=l /w?) ;

oe) (7-10)
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Fig. 14 - Dispersion relation for the extraordinary wave

(k2¢c%/w? = RL/S) propagating perpendicular to
the magnetostatic field (k l_§0).
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w?{w? - wj,) /2
UH

(Vph) =(w) - ¢ |— 2 _ .2 2 _ .2 :| : (w>w°2;wm<w<wUH)
X k X - (0® - o) (w° - wiz)

(7.11)

Expressions for the group velocities of these two modes

can be derived with the help of (7.5) and (7.7),

(v.) = (<) = c(1-w? /u?)l/?

: A2
Y pe (12> 6pe) (7-12)
0
2 _ .2 y2
(Vg) —(aw) ) Y 2 ;(wszH)u 2 .2 4
X ak X w [ w* - 2w (wce+wpe)+wce+3wcempe+mpe

[ (w? - wd) (w? - wh)

1/z

] 5 (w>woz 3 @or <w <wyyy)
2 2

(w* - wUH)

(7.13)

The plot of phase velocity and qroup velocity vs. frequency for the

extraordinary (TM) mode has the form depicted in Fig. 15. A similar

plot for the ordinary (TEM) mode is shown in Fig. 2 (the same one for

the transverse wave in an isotropic plasma).
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2¢c

Fig. 15 - Phase velocity and group velocity as a function of
frequency for the extraordinary (TM) mode
propagating perpendicular to the magnetic field

(k | Bg)-
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8. PROPAGATION AT ARBITRARY DIRECTIONS

8.1 - Resonances and reflection points

Going back now to Eq. (5.26), we shall first determine
the resonances (vph = 0 or ke/w + =) and the reflection points
(Vph +» or kc/w = 0) for arbitrary angles of propagation with

respect to QO. From (5.33) and (5.30) it is seen that resonance occurs

when

Ssin®6 + Pcos?9 =0 (8.1)
or

tan?e = - —-Z-—- (8.2)

Using (5.22) and (5.24), and neglecting collisions (v = 0),
(8.2) yields

1 - X = Y31 - X cos”0) (8.3)
or, using (5.15) and {5.16),
I

w'o- mz(mée + mge) + m;eméecosze =0 (8.4)

Thus, the resonance frequencies as functions of 8 are given by
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2 2 2 2
w- ot w wo_ tw /2
2 _ pe ce pe ce 2 _ .2 2 2
W - + [(———-7;-——~—) Upe Uce cos B] (8.5)

These two resonance frequencies are plotted against the

angle 8 in Fig. 16. From (8.5) it is clear that the sum of the

2 2 :

+ w is always equal t
o+ o-) 15 always eq 0
2

(m;e + wZ,) for any angle 6. From Fig. 16 we see that the high-

square of these two frequencies (w

frequency resonance increases with increasing 8, from the larger of

mpe and Weg? at ¢ = 00, to the upper hybrid resonance frequency,

(w;e + mée)lfz, at 8 = 90°. The Tow-frequency resonance decreases

correspondingly from the frequency which is the smaller between wpe

0 and

and Wegs at 8 = 09, to zero, at @ = 90%. The resonances at 6 = 0
8 = 90° are called the principal resonances. At 6 = 0° the principal
resonances are given by S = o and P = 0 {Eq.8.2); at 6 = 90° the

principal resonance is given by S = 0.

The reflection points are seen, from (5.26), to be

given by
PRL = O (8.6)

This equation is satisfied whenever P =0, or R =0, or L = 0.

0

However, for 8 = 0° (5.26) simplify to

2.2
(kz‘;z )2-25(“2 ) +RL = 0 (8.7)
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Fig. 16 - Resonance frequencies as functions of the angle 6
between B and the direction of wave propagation in

a cold electron plasma, for (a) wce‘<wpe and (b)

>W_ .
Yee 7 “pe
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so that P = 0 is no longer a reflection point for e = 09 . Thus, for
propagation exactly along the B field the reflection points are
given by R=0and L = 0 . But for & # 09, irrespective of how
small & is, P = 0 also corresponds to a reflection point. Note that
these cut-off frequencies are, otherwise, independent of e. Therefore,
as we have seen in section 6, they aregiven by (neglecting

collisions) w = (P=0;8 #00, uw= wy, LL =0; see Eq.(6.13) ]

wpe
and v = w,, [ R=0; see Eq. (6.14) ]. The cut-off frequencies

and the principal resonances are summarized in Table 1.

Expressions for the phase velocity and group
velocity for arbitrary angles of propagation can be obtained
from the dispersion relation (5.26) or (5.36). Since this involves
considerable algebra, they will not be presented here. For this
case, the curves of Kk, Vph , and vg , as functions of w,must lie
somewhere between the corresponding curves for 8 = 09 ( see
Figs. 9, 10 and 11) and for 68 = 90° { see Figs. 2, 3, 14 and 15). If
the angle 8 is continuously changed from 0° to 90°,then the curves

for 8 = 0° must change continuously into those for 8 = 90°.
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TABLE 1

CUT-OFFS AND PRINCIPAL RESONANCES FOR WAVES

IN A COLD ELECTRON PLASMA

Cut-offs Principal Resonances
o = 0° e = 90°
P=0(e £0°) [P =0 5=0
R:O R:oa
S =
L=20 L =

Fig. 17 shows w as a function of the real part of k,
while Fig. 18 shows Vph and vg as functions of w, for the two modes
of propagation at an angle 6=45%with respect to §0 . It s

interesting to note that the branch of mode 2, that propagates for

Gop <@ < W, and the branch of moede 1, that propagates for
w > wpe’ are transformed, as & goes to zero, into the LCP wave and the

electron plasma oscillations at Gpa This 1is indicated in Fig. 19.

Fig. 20 is a plot of the phase velocity versus
frequency illustrating how the two modes of wave propagation when

o = o° {left circularly polarized wave and right circularly polarized
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Fig. 17 - Dispersion relation for the two modes of propagation

at an angle 8§ = 45% with respect to the

magnetostatic field 1in a cold electron plasma.
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Fig. 18 - Phase velocity (Vph) and group velocity (vg) as a
function of frequency for the two modes of propagation
at an angle@ = 45° with respect to the magnetostatic
field 1in a cold electron plasma.
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and the branch w:>wpe of mode 1, for 6> 00, are

related to the LCP wave and the electron plasma
oscillations when 8 =0°,
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Fig. 20 - Phase velocity versus frequency for waves 1in a cold
electron plasma, illustrating how the two modes of
propagation for @ = 0° (LCP and RCP) evolute into the
two modes for & = 90° (0 and X}.



- 58 -

wave) evolve into the two modes of wave propagation when © = 90°

(ordinary wave and extraordinary wave).

8.2 - Wave normal surfaces

The wave normal surface, also known as the normalized
phase velocity surface, is a polar plot of vph/c as a function of 6.
Because of the symmetry in the azimuthal angle ¢, it is a surface of
revolution about go' For any direction of propagation, the "length"
(properly normalized) of the line drawn from the origin to intersect
this surface is vph/c. This surface is, therefore, the loci of points
of constant phase emitted from the origin. The shape of the wave
normal surface is, generally, not the same as the shape of a wave
front. A typical wave normal surface is presented in Fig. 21, in which

the velocity of light is shown as a dashed circle. The two solutions

VELOGITY
OF LIGHT

Fig. 21 - Typical wave normal surface, or phase velocity surface.
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Tine Y* = T-X. The loci of the refiection points, as determined from
(8.6), can be shown to be the curves Y?=(1-X)? for any angle &, and
X=1 for any angie except 6= 0°. The two reflection point curves and
the two principal resonance curves divide the (X, Y?) plane into eight
regions. In each of these regions, a polar plot of the normalized
phase velocity (vph/c) as a function of 6 (wave normal surface) is

presented for each mode of propagation.

Fig. 22 shows the CMA diagram for wave propagation in a
cold electron plasma. The dashed Tines are the loci of the reflection
points and the solid Tines are the loci of the principal resonances (the
dotted line indicates the loci of the resonances when 6= 300). The
dashed circles represent the wave normal surface corresponding to the
velocity of light. The "slow" and "fast" wave notation, used in Fig.21,
becomes now apparent. The labels R {right-hand polarization) and L
(left-hand polarization) appear on the phase velocity surface only
along the magnetic field axis (up in the diagram). The labels 0
(ordinary) and X {extraordinary)appear only at 90% with respect to the

magnetic field axis.

In some regions of the CMA diagram certain modes
are present and others are not. As the boundaries of these regions are
crossed, the wave normal surfaces for the modes change shape, and a
given mode may appear or disappear. For instance, in region I both
modes are present, but when we move to region I the fast wave
disappears. Similarly, if the parameters are changed so as to move

along a path that goes from region VII to VI {decreasing electron
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Fig, 22 - The CMA diagram for waves in a cold electron gas. The solid

lines represent the principal resonances, and the dashed

lines the reflection points.
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density), the fast wave appears as the boundary L=0 is crossed,

and so on. Note that the same frequency may appear in the modes of
different regions, depending upon the values of electron density and
magnetic field. Note also that, although the characteristic shapes of
the wave normal surfaces remain the same inside each bounded region,
their magnitudes may change. A detailed examination of the CMA diagram
shows that it providesavery broad picture of the nature of the waves that

propagate in a cold electron plasma.

9, SOME SPECIAL WAVE PHENOMENA IN COLD PLASMAS

9.1 - Atmospheric whistlers

The propagation of whistlers 1is a naturally occurring
phenomenon which can be originated by a lightning flash in the
atmosphere. During thunderstorms and lightning, a pulse of
electromagnetic radiation energy is produced which is rich in very low
frequency components. This pulse, or wave packet, propagates through
the ionosphere, being guided by ducts along the Earth's magnetic
field to a distant point at the Earth's surface (the magnetic
conjugate point), where itmay be detected ( Fig. 23). When the
whistler is detected at this point it is called a short whistler.
However, the electromagnetic signal may be reflected at the Earth's
surface and guided back along the Earth's magnetic field to a
point close to where it originated; if the whistler is detected at this

point it is calied a long whistler.
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Fig. 23 - Atmospheric whistler propagation, illustrating the detection
of a short whistler and a long whistler,

As the wave packet, rich in low frequencies, propagates
through the ionosphere along the Earth's magnetic field, it gets
dispersed in course of time in such a way that the higher frequencies
move faster than the lower ones. The frequencies in a whistler are in
the audio range, usually between about 100 HZ and 10 kHz' Thus, at the
point of detection, the high frequencies arrive at the receiver sooner
than the low ones, and if the receiver is attached to a Toudspeaker
we hear a discending pitch whistle. These frequencies are much smaller
than the electron cyclotron frequency Un<<tnce) in the Earth's

ionosphere.

At various locations on the Earth there are stations
that continuously record sonograns of whistler activity. A sonogram
is a spectrum of the frequency versus time of arrival, as illustrated
in Fig. 24. These sonograms are used as an effective diagnostic tool

for studying the ionosphere conditions.
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Fig. 24 - Typical sonogram of a whistler.

The phenomenon of atmospheric whistler propagation can be
explained in terms of the very low frequency (“J<<‘”ce) region of
propagation of the right eireularly polarized wave (see Fig. 20). For
a simplified analysis of this phenomenon, consider the Appleton-
Hartree equation (5.36), neglecting collisions (U=1). For propagation

nearly along the magnetic field lines, and for w<<w and¢u<<(upe, we

ce
have Ycos 8 >> Y2sin?e/ [2(1-X)], so that (5.36) simplifies to

(using the "minus" sign),

2
SR X (9.1)
w? (1-Y cos6)

This equation is often referred to as the dispersion relation for the

quast — longitudinal mode. For Ycosg >> 1 (i.e.,ua<<eucecose), (9.1) becomes
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w Y cosé

and considering, further, that X>>Y (i.e., m;e>>¢uwce),we obtain

W Y cosé

The phase velocity is found directly from (9.3),

Y cosh
Voh = == = < yi/2 (9.4)
k X
- ) - _ 2 2
or, substituting Y-wce/m and X-—mpe/m s
(uuu_)ce«'.058)1/2
vph =C (9.5)
W
pe
Also, from (9.3) we obtain the group velocity as
(wa._ cosp)l/?
Vv = _..BL'U.,_ = 2(: ce (9 6)
g
ak w

pe

Thus, the group velocity is proportional to the square root of the

frequency and, consequently, the higher frequencies arrive at the
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receiver slightlyahead of the lower frequencies, producing a
descending pitch whistle when received with a simple antenna and

Toudspeaker.

The characteristics of atmospheric whistler
propagation are such that they are situated in region VII of the CMA
diagram. In this region, the wave normal diagram for the RCP wave is a

lemniscate, as shown in Fig. 25. This wave normal surface has a

By

Fig. 25 - Wave normal surface for whistlers and helicons.

resonant cone, which gives the maximum value that the angle 8 may have.
The angle between the direction of propagation of the wave packet and
the magnetic field also has a maximum value, which specifies the
maximum angular deviation, from the magnetic field, of the direction
in which a wave packet can propagate. It can be shown that the

maximum value of this angle is about 19.50.Therefore,thewavepacket1s

confined toa beam of Tess than 20° about the magnetic field lines.
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Experiments carried out on whistlers have verified the
resuits presented here. In addition, when the frequency is near {but
smaller than) the electroncyclotronfrequency, it is possible tohave the
frequency increasing with the time of arrival, and these have been
called ascending frequensy whistlers. The whistlers in the frequency
regime where they change from the ascending to the descending tone are
known as the nose whistlers. These types of whistlers have also been

observed experimentally.

9.2 - Helicons

The experimentally observed helicon waves, in a solid
state plasma, is also a phenomenon related with the very low
frequency propagation of the right circularly polarized wave. The
reason for the name helicons comes from the fact the tip of the wave

§ vector traces a helix.

Consider a solid state plasma slab of thickness d, the
other two dimensions being very large, oriented perpendicularly to an
externally applied B field, as indicated in Fig. 26. Suppose that a low

frequency (w=<<w right circularly polarized wave 1is Tlaunched in

ce)
the direction of the B field.

From the dispersion relation (6.7) for the RCP wave we

obtain, approximately, for W< Wy
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Fig. 26 - Geometrical arrangement for the detection
of helicon waves.

W
k = —PB€ (—2yr/2 ; (w<<w (9.7)

ce)

Denoting the propagation coefficient of the electromagnetic wave in
the medium external to the plasma slab by kV the magnitude of the
reflection coefficient, at the plasma boundary, is given by

(kv' k)/(kv+-k) = 1, since W< g Consequently, the reflection of the
waves, at the plasma boundary, is nearly complete. Therefore, the wave
will be successively reflected at the boundaries of the plasma slab

and will form a standing wave, whose resonances are given

approximately by

nia/2 = d (9.8)
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where A is the wavelength inside the slab of thickness d and n is an

integer.

Since x=2m/k, we can combine {9.7) and (9.8) to obtain

W
2T (€& y1/2 - ¢ (9.9)
5} v

pe

This is the condition for resonance of the standing waves. It is
appropriate to add the subscript n to w, in order to identify the
resonance frequency with the corresponding value of n which gives
the number of the standing -wave pattern is the slab. Thus,

(9.9) can be rearranged in the following convenient form

=(n1rc )21.0

mpe d

e (9.10)

In some experiments carried out on helicons, the
frequency, w, of the wave excited along the B field in the plasma is
continuously varied,maintainingconstanttheva]uestﬂ’wpe,mceandri.At
the frequencies where W= given by (9.10), there are standing wave
resonances inside the plasma slab, resulting in large wave amplitudes,
which can be measured. A plot of wave amplitude 1inside the plasma
slab, versus frequency, permits the identification of the resonant

frequencies W -
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In sodium, which contains about 10%% electrons/m®, the first (n = 1)
standing-wave resonant frequency is of the order of 100 Hz' Note that
w, is proporcional to n?.

In some other experimental investigations, the
parameters d, Ype> and w are kept fixed, and the B field is varied.

Then, the standing-wave resonant frequencies occur for those values

of the B field for which

w. . d
= (22 )2, (9.11)
nme

“ce ~ (mpe)n

9.3 - Faraday rotation

We consider now a phenomenon, known as Faraday
rotation, Which occurs in the range of frequencies where both the
right (RCP} and the left circularly polarized (LCP) waves propagate.
When a plane polarized wave is sent along the magnetic field in a
plasma, the plane of polarization of the wave gets rotated as
it propagates in the plasma . Since a plane polarized wave can be
considered as a superposition of RCP and LCP waves (Fig. 27), which
propagate independently , this phenomenon can be understood in

terms of the difference in phase veloeity of the RCP and LCP waves.
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Fig. 27 - A plane polarized wave as a superposition of left and
right circularly polarized waves, £ = E

EL +Ep-

If we take a Took at Fig. 9, we see that the RCP wave
(for frequencies greater than w,») propagates faster than the LCP wave.
After travelling a given distance, in which the RCP wave has undergone
N cycles, the LCP wave (which travels more slowly) will have undergone
N+ e (with € > 0) cycles. Obviously, both waves are considered to be
at the same frequency. Therefore, the plane of polarization of the
plane wave is rotated counterclockwise (looking along B), as shown in

Fig. 28.

In order to obtain an expression for the angle of
rotation bp, as the plane wave propagates a given distance in the
plasma, let us consider a Cartesian coordinate system in which the wave
propagates along the z-axis (also the direction of the magnetostatic

field), and such that, at z=0, the electric field has only the
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Fig. 28 - After travelling a given distance in the plasma, the plane of
polarization of the planewaveis rotated, since the LCP wave
moves slower than the RCP wave.

X-component, as indicated in Fig. 27. Therefore, without loss of

generality, we take

E(z=0,t) = Eog exp( - iwt) (9.12)

This equation can be rewritten as

:
E(z=0, t) =[ 20 (% + i7) +

(x - 1y) ] exp (- iwt) (9.13)

where the first and the second terms in the right-hand side are,
respectively, the RCP and the LCP components. These two components
propagate independently, so that, for any z>0, the electric field

vector is given by
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rk, - Es . .
E(z, t) =L 20 (x +1iy) exp(ikRz) + 20 (x-1y) exp(ikLz)} exp( - iwt)

(9.14)

where ky and k, ~denote the wave number vectors for the RCP and LCP

L
waves, respectively, propagating along the z-direction. Eq. (9.14) can

be rearranged as follows

E
E(z, t)= 20 exp[i(kR+ kL)z/Z] {(%+ 1';_7) exp[L-i(kR-kL)z/Z:l +

+(x - iy) exp]:- 'i(kR - kL)z/Z]}exp (- iwt)

E

0 exp[i(kR + kL)z/Z] {g cos[(kR—kL)z/z] -
2

- ¥ sin [(kR—kL)z/Z]} exp { - iwt) (9.15)

Eq. (9.12) represents a linearly polarized wave in thex
direction at z=0, and Eq. (9.15) is also a linearly polarized wave,
but with the polarization direction rotated in the counterclockwise

direction (looking along B) by the angle
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_ -

Therefore, the angle of rotation per unit distance, eF/z, depends on
the difference between the propagation coefficients of the RCP and
LCP waves. Expressions for ko and k, are given in Eqs. (6.6) and (6.8},

respectively.

The measurement of Faraday rotation is a useful tool in
plasma diagnostic, and it has been widely used in the investigation of
jonospheric properties. A Tinearly polarized wave, emitted by an
orbiting satellite, has its plane of polarization rotated as it
traverses the fonospheric plasma. A measurement of the rotation angle,
BF’ after the wave has traversed the plasma, provides information on

the total electron content along the wave path.



PROBLEMS

16.1 - Consider a plane electromagnetic wave fincident
normally on a semi-infinite plasma occupying the semi-space
X z 0, with vacuum for x < 0 ( Fig.P 16.1) . Denote the

incident, reflected and transmitted waves, respectively, by

E; = y exp (i kg X = iut)
E. =Y Er exp(-ik0 X - iwt)
Et = ¥ E; exp(ik, x - iut)

t

b

e

SN

(ko)

,-,
=
S

_._._._._.;.k
K, <—ro t
oV~ _
L
-
e

Fig. P 16.1
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(a) Show that the associated magnetic fields are given by

k
= 3 0 . .

Ry = 2 exp (i kO X - jut)

wuo
- ko

H.o=-12 Er exp(-1 k0 X = jwt)
Wi
kq ]

H =z Ey exp(i k; X - iwt)
wuo

(b} From the continuity of Ey and HZ at the boundary x = 0,

show that
e k0 -k _ - 2k0
r ? t
ko + ky kO + ki

(c) Prove that the ratio of the transmitted average power to

the incident average power, at the boundary x = 0, is

* ¥
- Re {Et X Ht} _ E,L E

Re {E.i X ﬂ?}

*x=0 ©

where k0 is real and B8 = Re {k;}. Show that T = 0 both at a

reflection point and a resonance.
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Consider a plane electromagnetic wave incident normally on an
infinite plane plasma slab occupying the space Osxs<l, with
vacuum for x < 0Oand x> L (Fig. P 16.2). Use the

following representation for the wave electric field vector, as

indicated in Fig. P 16.2:

E; = y exp(i k, x - iwt) (incident wave)
E. = y E. exp(-1 k, x - iat) (reflected wave)
Ee = y Bz exp(i ky x - jut) (forward wave)

E, = y E, exp(-1 k; x - iwt) (backward wave)

Ey = ¥ Ey exp[i ko(x-L} - iwt]  (transmitted wave)

> X

(ié%éé%é;%%l.

Fig. P 16.2
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{a) Calculate the corresponding expressions for the associated

magnetic fields.

(b) Calculate the amplitudes Er’ Ef, Eb and Et by applying
the condition of continuity of Ey and HZ at the boundarijes

Xx =0 and x = L.

(c) Show that the ratio of the average power transmitted out

of the plasma slab to the incident average power is given by

Re {E, x H*}
- ~t T ~Ux=l *
T Et Et
+
Re {E; x ﬂi}x=0

where

-1
ikl T
£y = 4 [ (2rkg/ly + karky) €Iy (2o ki) eTt

(d) For w<mpe, where k; = ja, with o real, show that

-1

m
1]

4 [4 cosh(al) + 2i{a/k, - k /o) sinh{al)]

—
n

[cosh?(al) + (a/k, - k /a)2 sinh?(al)/4] ~*

This result shows that some power is transmitted through the
slab, even with B8 = Re{k;} = 0. This effect is known as the

tunneling effect.
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16.3 - Derive expressions for the phase velocity, Vph’ and the group
velocity, Vg’ from the dispersion relation (5.26), for wave

propagation at arbitrary angles in a cold magnetoplasma.

16.4 - Use the dispersion relation (4.10), for the transverse mode of
propagation in a cold isotropic electron gas (with go =0) to
calculate the damping factor o = Im{k}. Show that, when
w >> Wne? the damping factor is given approximately by

v/w)

2
wpe(

a’_“

2uc [1+{v/0)2]

16.5 - Consider the propagation of high-frequency waves in a solid
state plasma with equal number of electrons and holes

(considering m, = m and Vo T vh), immersed in a magnetostatic

field Eo' Let k = kx and 50 =B (cos 8 X + sin 8 ¥).

0
Use the Langevin equations for electrons and holes, and

Maxwell equations, to show that

1
o

(-2UX - Y2 sinZp + U2) u, + (Y2 sing cose) u

H
o

(Y2 sine coss) u, + (-2U4 - Y2 cos?e + U?2) u,

(=206 - Y2+ U2) u, =0
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where U=y, - Uy and

U = T+ i(v/w)
— 2 2

X = wpe/w

Y = wce/w

o = X/(1 - k2c2/u?)

From these component equations derive the following dispersion

relations
N
s = U _ YZcos?8 _ Y sin?e cos®e
2 2U 2U(-2UX - Y2sinZ%g + U?)
2
d} = .._..U_ - Y
2 2U

Obtain expressions for the reflection points and the resonances.
In particular, for the collisionless case (v=0; U=1) show that

the conditions for resonance are

1 2 /2
2 - 1 2 2 2 2 - 2 2 2
w? = , { wZgt 2wpe + [ ﬁnce+2mpe) Swpe wey COS 6‘] }

and the reflection points are given by
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2 - )2 4 ay? s 2
v 7 (e + hupe £ uge)
2 = 2 4 22
w Wea pre

16.6 - Use Eqs. (6.17) and (6.18) for the group velocities of the
left and the right circularly polarized waves, respectively,
propagating along Eo’ to show that the group velocity

vanishes at the resonances and reflection points.

16,7 - Consider the problem of wave propagation at an arbitrary
direction in a cold magnetoplasma, but including the motion of

the ions (one type only).

(a) Show that the dispersion relation is obtained from an
equation identical to (5.25), except that now we have

(neglecting collisions, v = 0)

S = 1 - Xe _ %
- y2 - y2
1 Ya 1 -
X, Y X, Y
D = e e + i
1-Y¥2 1 - Y2
e i

o
[}

1-X, - X,
3
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where (with o = e,i)

= 2 2
Xu wpu/w
YOL - wCa/w

(b) Obtain the dispersion relation and show that it can be

written in the form

tanZe P(k2c2/w? - R)(k2c2/w? - L)

(S k2¢2/w? - RL)(K2c2/w2 - P)

where 8 is the angle between k and §0,

R=5+D and L =858 -0,

(c) Determine and plot the resonances and reflection points as

a function of o.

(d) Analyse the various modes of propagation for the particular
cases when 6 =0 and o = w/2. Compare the results with
those for a cold electron gas. Make a plot analogous to the

one presented in Fig. 20.

From Eq. (5.25) show that the polarization of the waves
propagating at an angle 6 with respect to QO is determined

by
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it k2c2/w? - S

From this result verify that for o =0 the waves are left
and right circularly polarized, whereas for 6 = v/2 the

polarization is given by (for the extraordinary mode)

so that this mode is 1in general elliptically polarized.

16.9 - For a helicon wave, show that the tip of the wave magnetic field

vector traces out a helix.

16.10- Make a plot analegous to Fig. 20 for wave propagation in a cold
magnetoplasma, but in terms of w as a function of the real part

of k.
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