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CHAPTER 19

WAVES IN HOT MAGNETIZED PLASMAS

1. INTRODUCTION

The analysis of small amplitude waves propagating in a
plasma, presented in the previous chapter, is now extended to
anisotropic plasmas immersed in an externally applied magnetic field.
Emphasis is given to the study of the characteristics of plasma waves
having their propagation vector, k, either parallel or perpendicular

to the externally applied magnetostatic field.

For propagation along the magnetostatic field the
plasma waves separate again into three independent groups. The first
group is the longitudinal plasma wave, and the second and third
groups are the Zeft and the right civeulariypolarized transverse
electromagnetic waves. For propagation across the magnetostatic
field the plasma waves separate into two groups, which are
designated as the TW (Transverse Magnetic) and the TEM (Transverse
Electric-Magnetic) modes. The longitudinal plasma wave does not exist
independently for any orientation of the magnetostatic field other

than paraliel to k.



The mathematical analysis of the problem of wave
propagation at an arbitrary direction relative to the magnetostatic
field is more complicated insofar as the details are concerned, and

will not be presented here.

2. WAVE PROPAGATION ALONG THE MAGNETOSTATIC FIELD IN A HOT PLASMA

In this section. we study the problem of wave
propagation in an unbounded plasma consisting of mobile electrons in a
neutralizing background of stationary ions, immersed in a uniform
magnetostatic field @0. In the equilibrium state, the number density
of the electrons (which is the same as that of the ions) is denoted
by Ny

In the absence of perturbations, the homogeneous

equilibrium distribution function of the electrons has to satisfy the

zero-order Viasov equation

(v x B) -9, f, (v) =0 (2.1)

The presence of the magnetostatic field introduces an anisotropy in
the distribution function, so that the equilibrium distribution
function is denoted by f0 (Vas v_.), where v, and v, represent the
velocity of the electrons in directions parallel and perpendicular

to By, respectively.



2.1 - Linearized Ylasov equation

As before, the perturbed distribution function is
assumed to consist of a small perturbation, f; (r, v, t}, superimposed

on the equilibrium distribution function, fo (vas vi), that is
fr, v, t ) ="Ff (vay vi) + ) (r, v, t) (2.2)

where |f;] << f,- The electric field, E (r, t), and the magnetic field,
B (r, t), related to the charge density and current density inside the
plasma, and which are associated with the first order perturbation

fy (rs vs t), are also first order quantities., Note, however,

that E (r, t) denotes the total electric field inside the plasma,

whereas the total magnetic field §T (r, t) is given by
Br (r, t) =B, +B (r, t) (2.3)

Substituting Eqs. (2.2) and (2.3) 1into the Vlasov equation (18.2.1),
neglecting all second order terms, and noting that the equilibrium
distribution function is homogeneous, results in the following

linearized V1asov equation

e fy s ¥a E) 4 VT (r‘av,t)-—E—(E(r,th!xﬁ(r,t)J.
at - - - - ~ s U

e Y
“ Ty fo (Vs v - me (v xB) v f1(rsvst) =0 (2.4)

e



2.2 - Solution of the Tinearized Ylasov equation

For the purpose of investigating the characteristics of
plane waves propagating along the magnetostatic field, we shall
assume that the space-time dependence of all physical quantities is a

periodic harmonic dependence of the form exp (i ki«r-1wt),thatis,

E{rs t) = Eexp (ik-r - iwt) (2.5)
Broty=Bexp (iker - igt) (2.6)
Fr(rsvs t) =Fp (y)exp (i ker -1 ut) (2.7)

where E, B and f, (v} are phasor amplitudes (which in general may be
complex quantities), independent of space and time. With this space-
time dependence, the differential operators a/3t and v in Eq. (2.4)
are replaced by -iw and ik, respectively, so that the linearized

Vlasov equation (2.4) reduces to

“i(w - kev) f1o(v) -

= (E + VX B) .YV fO (Vn: VJ.) (2.8)

To solve this differential equation for f; (v} in

velocity space, we introduce cylindrical coordinates (Vis ¢s Vi)



with the vector component vy along the magnetostatic field, as shown

in Fig. 1. Therefore, B, = B, z and

Vx = v, COS ¢; vy = v, sin ¢; Vo =V, (2.9)

Also, using these relations, we have

d 1 (v) dv dv dv
i S N/ v S
do d ¢ avy dé avy d¢ avz
Vz

Fig. T - Cylindrical coordinate system (vy, ¢, v.)
in velocity space, with the v, axis along
the magnetostatic field §0 and v, in the

Vo - vy plane normal to §O.



= (- v, —— v =) ()
Y sy X ay
X y
== (yx2) -y, f (V) (2.10)

Substituting this result into Eq. (2.8), we obtain

eB df(v)
~i(w -k ) fy(v) + —2 — = ——(E+v xB) "Ty Fo (Vs Vi)

Mg d ¢ m,

(2.11)

Using the electron cyclotron frequency Weg =€ Bo/me, (2.11) can be

rewritten as

d fi(v) 1 ({w-k-¥) e
- £, (v) = (E+yxB):v, f (Vs vy)

d ¢ Yce My Yee

(2.12)

From Maxwell v x E equation we can express the magnetic field as
B=(k xE)/w (2.13)

Substituting (2.13) into (2.72), and making use of the vector identity

v x (kxE)=(v.E) k-(k.v)E, we obtain for the right-hand side of
(2.12), '

kv
(E+vxB)-v. f = —S& | (1-

M, w m, w 0

)Ey, f +



k (v=+E) 3 f
+ - - O
0 dVy
kv, of af
-—8 __{a- ) |(E cos ¢ + E sin ¢) —2 + E, — | +
m. w w Y v, IV
e (Ce -

+ (X

u

vy

- af
(EX cos ¢ + EyS'in ¢) v, + Ev v, } 0 }

e KV afo kv. 3f0
= (1 - } + ( ) (Excos¢+Eysin¢)+
me mce _ w oV, W vy
af
+ E, —2 (2.14)
BVII

where we have taken k.v = k v and k-9, =k 3/3v,, since we are

considering wave propagation parallel to the magnetic field (k|| B,)-

At this point it is convenient tg express the
component of the electric field vector in the plane perpendicular to
§0 as a linear superposition of two, oppositely directed, circularly
polarized components. Noting that (X + 1y)/vV2' and (X - iyyvz' are
unit complex vectors, the Cartesian components of the electric field

vector

E=xE + § Ey +z E, (2.15)



can be appropriately rewritten as

(X + iy) (x -1y _
E=f — = +E ——> 47§, (2.16)
- V2 2 ~

where the following notation is used

. - .
Ei = E (EX + 'IEy) (2.17)

The first term 1in the right-hand side of (2.16) represents a
circularly polarized field with the electric field vector rotating in
the clockwise direction, whereas the second term represents a
circularly polarized field with the electric field vector rotating in
the counterclockwise direction. For the right (left) circularly
polarized field, with the thumb of the right (left) hand pointing in the
direction of propagation (g), the fingers curl in the direction of
rotation of the electric field vector. Thus, the two linearly polarized
perpendicular components of the electric field in the plane (x, ¥),
normal to 90’ can be recast as a superposition of two circularly
polarized components with opposite directions of rotation. The
advantage of using the two circularly polarized components is that it
permits the final equations, involving the transverse modes of
propagation, to be separated into two independent sets of transverse

fields.

Itisatrivial matter to verify the relation



. _ i -i¢
Ex Cos ¢ + Ey sin ¢ = (E, e’ + E e ™) (2.18)

1
/2"

so that Eq. (2.12} can be rewritten as

d@ w -

d f i (0w = kv kv, af
L) v)fl(v):e_““_v) o
ce me ce

k vy % 1
w AT

Introducing the notation

F, (v) = F, (v, va)e'? (2.20)
Fo(v) = F_ (va, vy) &1 (2.21)
o () = Fu (v, vi) (2.22)
where
L (Va va) = o }1 ) kvy  af Ny kvy ) af, } E,
Mo Yce v Vs . W vz
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kv of kv, af E_
Foo (Vs Vi) = —5 &1- ) ——+ (—) —2
My ¥ea _ w AV, W av,, V2
(2.24)
af
F,oo(v,s vu) = © —2 E, (2.25)
m w av,

Eq. (2.19) becomes

d fl (V) j (w - kV”)
= fr() =F (V) +F_(v) +F, (v)  (2.26)
d¢ Yee

In order to solve this differential equation, let
fl (!) = f1+ (!) + fl_ (!) + flu (!) (2'27)

where fop (V) F_(v) and fl. (v) are the solutions of (2.26)

1=
corresponding, respectively, to F+ (v}, F_ (v)and F (v},
individually, in the right hand side of (2.26). Thus, the differential

equation for f;, (v}, for example, can be written as

d _'E (UJ - kV.;)
— f . (v) exp ¢>J =
d¢ Yee

-t {(w -~ k
= F, (v,s v.) exp o V) ¢+ i ] (2.28)

Im “ce
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Integrating both sides of this equation with respect to ¢, from ¢ =-« toan
arbitrary value of ¢.and noting that the exponential term vanishes at

¢ = - =, since whas avanishingly small positive imaginary part, yields

-i ] -.i(w_kV||)
ce F -

i+ (v) = . (Vus vi)e'® + C, exp
w

- ce

¢J (2.29)

(UJ - kVn "Ll)ce)

The value of (v) must not change if ¢ is increased or decreased by
integral multiples of 2w,since by physical arguments f, {v) must
be a unique function of V. This requirement can be satisfied only if

C+ = 0. Therefore, we obtain

f1e (¥) = Frp (vas vu) €' (2.30)
where
f1e (Vu> vy) = | Cee Fo (Vas Vi) (2.31)
{w=kvy -mce)
In a similar way, we find
f1o (¥) = Fio (vas vy) €710 (2.32)
where
fio (Vu, Vi) = Ve Fo (Vuy Vi) (2.33)
(w-kv..+wce)
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and

1w
fru (¥) = fiu (Vus vi) = —& — F, (v,, v.) (2.34)
- {w = kv,)

Substituting expressions (2.23), (2.24) and (2.25) for F, (Vs Vi)s
F_{v,, v.) and F, (v,, v,), respectively, into Eqgs. (2.31), (2.33) and
(2.34), yields the following explicit expression for the phasor
amplitude f, (v) of the perturbation of the velocity distribution

function, in terms of the equilibrium distribution function of the

electrons,
: - kv, of kv, of .
Fy(v) = 1€ L(]- 4+ (—) 0}/_: e'? 4
- - - w w oV
my (w=kv, wce) vy v 2
. ) kv, of kv, of | E .
N ie (1 - ) o, ( L ) 3 0 - ie
me (w - kv + wce) _ w 3V w Vi | ./?
. of
+ 1€ ° E, (2.35)
M (UJ - kVn) BVIl

e

2.3 - Perturbation current density

Since the space-time dependence of the electromagnetic

fields are of the form exp (i ker-iwt), we expect the current

density to behave also as

J(rst)=Jdexp (i ker - ignt) (2.36)
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where the phasor amplitude of the current density is given by

J = —eJ!fl (v) d3v

v

where the integration is to be performed over all of velocity space.
It is also convenient to separate J into two, oppositely directed,
circularly polarized components, and a longitudinal component along go‘

For this purpose, we express the electron velocity in a form analogous

to (2.16),

(x +iy) (x -iy)
Vv, ———— + V_—————— +ZV, (2.38)
3 /2
where
v, = J%? (vy #1v)) (2.39)

Thus, with this representation for v, we obtain the following corresponding

components for J,

c.
il

L= e J v, f1 (v) d¥v (2.40)
v

J =-e J v_ fy (v) ddv A (2.41)
v
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J =-e [ v, f1 (v) ddv (2.42)
v _

According to Eqs. (2.27), (2.30), (2.32) and (2.34),we can replace
fy (v) by

FLv) = Fre (Vo va) @@ a fo(viava) @ h Fl (v, va) (2.43)

Further, in view of (2.9), we also have

v, = v, e vo= 1y, el (2.44)
V2 /2
so that Egs. (2.40), (2.41) and (2.42) become
_ e -i¢ ¢ -1
J, = - — vV, € fl-l- (Vlt’ Vl) e + fl—(vns V.!.) e +
* vz J [
v
+ f]_n (Vu, VJ.) j| d3v (2-45)
J = - —Ji—-J " gt 1o fie (Vys Vi) ei¢ + fy2 (v, Vy) e"i¢ +
2
v

+ Fin (Vas VL)}dBV (2.46)
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J" F J Va {.F1+ (V"! V;) e1¢ + f1- (Vu! VL) e-i¢ +
v

fiu (V", Va) ] d3v (2.47)

In cylindrical coordinates we have d3v = v, dv, dv,. dé. Evaluating the

integrals with respect to ¢, from ¢ = 0 to ¢ = 2u, yields the following

simple results

o0 + oo
l.]+ = -@enr )/? J ij_ dVL J F1+ (V”: VJ_) dV“ (2-48)
(4] -0
[ 4o
J =-em J?[ v dv, J fi- (Vs vi) dv, (2.49)
0 -0
] + oo
Jy = -emw2 [ v, dv, J Vu f]u (Vns Vl) dv, (2-50)
Jo o
since
em )
J ™ dp =0 ; for n=1,2,3, ... (2.51)
0

1
(s ]

2r 3 for n

From Eqs. (2.31), (2.33) and (2.34), together with Eqs. (2.23), (2.24)

and (2.25), we see that J_, J_and J  depend, respectively, on only
+ - n
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E+, E_and E,. This result justifies the use of the method of
decomposition of the field vectors into the sum of two, oppositely
directed, circularly polarized components in the plane normal to Eo’

and a longitudinal component along §0.

2.4 - Separation into the various modes

From Maxwell equations, and for the snecial case in which

all field vectors vary as exp (ik-r - iuwt), with k = kZ, we have

kExE=uB (2.52)

P kExB=y J-—9E (2.53)

Noting that z x E = ¥ E. - X Ey, Egs. (2.52) and (2.53) can be

rewritten in component form as

@ Bx ==k Ey (2.54)
W ﬁy =k Ex (2.55)
wB, =0 (2.56)
and
-9k By = Uy Jx - :;’ Ex (2.57)
. _ _ e
kB = d, E, (2.58)
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J, - Su_ g (2.59)

B, = — (B, 7 18,) (2.60)

Multiplying (2.54) by 1/V/2, and (2.55) by ¥ i//2, and adding the

resulting expressions, yields
B =%1i—E (2.61)
Note that the signs are coupled, that is, either upper signs or lower

signs are to be used. Similarly, combining Eqs. {2.57) and (2.58),
and noting that

—

J = — (J T 2.62
+ s ( x + 1Jy) ( )
we abtain
- i
T kB ==~y d + cz E, (2.63)

From these equations it is clear that the total
electromagnetic field can be separated into four independent groups,

involving the following quantities:
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]- Jns EIl I:Eq' (2’59)]
2. Bll |:Eq' (2'56)]

3. J_, E_, B_ [Egs. (2.61) and (2.63), lower signs |

4. J,» E.» B, [_Eqs. (2.61) and (2.63), upper signs |

Note that J+, J_and J, depend, respectively, only on E+, E_and E,.
The first group contains an electric field and an electric current in
the direction of k which, in this section, is also the direction of
§0. Further, there is no associated magnetic field. Therefore, it
represents the electrostatic Zongitudinal plasma wave. The second
group does not constitute a mode of propagation but only shows,
through (2.56), that for a wave propagating parallel to go the time-
-varying magnetic field in the parallel direction is zero. The third
and fourth groups represent, respectively, the left eivcularly
polarized and the right cireularly polarized transverse
electromagnetic waves. Thus, we can separately analyse the

characteristics of the longitudinal plasma wave and the two circularly

polarized transverse electromagnetic waves.

2.5 - Longitudinal plasma wave

To deduce the dispersion relation for the longitudinal
plasma wave propagating along the magnetostatic field §0, we

substitute J,, from Eq. (2.50), into Eq. (2.59), obtaining
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=]

+ w
Vy dVJ. J Vi flll (Vub VJ-) dV“ (2'64)

rr

1

+

-
[y

(V]

5
=

i

QO —

From Eqs. (2.34) and (2.25) we can replace f1, (v,, v.) in Eq. (2.64),

to obtain the following dispersion relation

w2 * te v, (3f_ /ovy)
J v, dv, J o dv, (2.65)
0 —

no [#1] (w'kV")

<0

This dispersion relation can be conveniently recasted as

w2 v, (8f /ov,)
] =-_PE ] ° d3y (2.66)
n_w (UJ - kV")
0 v
2w
since in cylindrical coordinates d3v = v, dv, dv, d¢ and J d¢ = 2.
0

This equation is identical to the dispersion equation
(18.4.2), deduced for Tongitudinal waves in an isotropic plasma,

except for the fact that the directions x and z are interchanged (here

5 |! §0 | 2). Thus, the characteristic behavior of the longitudinal
plasma wave, for propagation along the magnetostatic field, is identical
to the case of the plasma with no external magnetostatic field. The
magnetostatic field, therefore, has no influence on the longitudinal
plasma wave. This result is due to the fact that the magnetostatic
field exerts no force on the charged particles moving in the direction

parallel to it, and therefore it does not influence the distribution
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of the electrons in the longitudinal direction. It is the perturbation
in the distribution of the velocities of the electrons in the
longitudinal direction that accounts for the characteristics of the
Tongitudinal plasma wave. Recall that the Tongitudinal plasma wave

separates out as an independent mecde of propagation.

2.6 - Transverse electromagnetic waves

Consider now the two circularly polarized transverse
waves (E normal to the direction of propagation). To deduce the
dispersion relation for both waves, we first eliminate B, from Egs.

(2.61) and {(2.63), and express J, in terms of E, as

J, = O (w2 - k2 c2) E (2.67)

Substituting J_, from Eqs. (2.48) and (2.49), with f1; (v,, v,) and

fi- (vu, v.) given by Eqs. (2.31) and (2.33), respectively, yields

e e F+ (Vus VJ-) €
= (mz - k2 Cz) Ei‘ (2.68)

-eT I/?—wce [ VE dVL dvll =

0 m(w"kVnim

_ w

CE)

If Egs. (2.23) and (2.24) are used to replace F, (vus Vi), we find the

following dispersion relation for the transverse electromagnetic waves

(E, # 0)
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* e (0= kva) (3F /av,) +kvy (aF /ovy)
VE dVJ_ dv,
0

(Uj - kV“ -I_-UJ

0 =00 ce)

(2.69)

where the upper sign refers to the right circularly polarized wave, and

the lower sign to the left circularly polarized wave.

An alternative form of this equation can be obtained by

integrating the right-hand side by parts. First, integrating over v, by

parts, we have

= ok, (3 /va)
VE dv, dv, =
0 —ca (w - kv|| +

Wee)

oo +cn (kz V%) _FO
- - VJ. dV; dV" (2'70)
0

,w® (0.)"' lel 'T' wce)z

and integrating over v, by parts, we have

e (U-‘ = kV;.) dv., =
Vi(of/ov,)dy, =
- oo 0

(w = kva F wce)
ST (e - kva)
= -2 v, dv, dv, (2.71)
0 o (w = kv, " wce)
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2m
Since 2 = J d¢ and d3v = v, dv, dv, d¢, we obtain the following
0

alternative form of the dispersion relation (2.69)

k2 ¢2 = 42 - wée J [ {w - kvu) .
(

V_ w =~ kv, +mce)

(k2 vg)/2

+ J £ ddv (2.72)
((.U - kV" -‘{: wce)z

Let us investigate first the plasma behavior for the
case of an <sotropic equilibrium distribution function. Thus, we choose
fo (v) to be the Maxwell-Boltzmann distribution function (18.4.22).
Note that, in this case, the vector Vy f0 (v) is parallel to v, SO
that the magnetic force term LvxB(r,t)] %, Ty (V)5 in the
linearized Vlasov equation (2.4), vanishes. Consequently, for an
isotropie equilibrium distribution function, the magnetic field B (r, t)
of the wave has no influence on the plasma behavior 1in the linear
approximation. Also, it is easy to verify that, in the isotropic case,
all factors in the numerator of the integrands in Egs. (2.69) and
(2.72), which contain the propagation coefficient k, vanish. The

dispersion equation (2.69) then reduces to

w2 w - e w (3f_/av,)
k2 ¢2 = u2 + P& v dv, 9 dv, (2.73)
o oo (LU - kVu 'T' w

ce)

or, equivalently,
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k2 ¢2 = 2 + d3v (2.74)

Zn

0

wée w Ve (afO/BV;)
v = kVu

(0 ¥ w)

The alternative form of this equation, corresponding to (2.72) for the

isotropic case, is

wz w f
k2 €2 = o2 - _PE ° d3y (2.75)
(UJ - kV..
v

Substituting fo (v) from (18.4.22) and performing the integration over

vy and ¢, the dispersion relation (2.75) becomes

dv, (2.76)

m, )1/2 J+m exp ( -m, vi/2kg T, )

pe 2wk Te (wFuw - kv,

B ce)

where the upper and the lower signs correspond to the right and the

Teft circularly polarized waves, respectively.

At this point it is convenient to introduce the

following dimensionless parameters

o = (@ % uce e (2.77)
(2 ky T/m )

I+

w/k

+

T (2K T /my) 1/2

(2.78)
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The subscripts + and - are used in k to denote that it corresponds

either to the right or to the Teft circularly polarized wave,

respectively. Thus, B, represents the phase velocity of the wave

normalized to the most probable speed of the electrons (2 kBTe/me)l/z.

Setting, as in (18.4.25},

VII

(2 kg To/ mg)2/2

(2.79)

the dispersion relation (2.76) can be rewritten in the following

simplified form
ki 2 =02 + w2 g, I (ui)

where I (a ) denotes the integral

- 0O

This integral is the same as that defined by (18.4.32}, with s

(2.80)

(2.81)

=1,

and has been calculated in section 4, of Chapter 18. Hence, with the

help of (18.4.32) and (18.4.45), (2.80) can be rewritten as
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Oy
kic?=w? + iV w8, exp (-al) - 2wl si[ exp (W - af) du
)

(2.82)

This is the dispersion equation for the »Zght (upper sign) and the

left (lower sign) civeularly polarized transverse electromagnetic waves
propagating along the magnetostatic field in a hot plasma, whose
equilibrium state is characterized by the isotropic Maxwell-Boltzmann

distribution function.

2.7 - Temporal damping of the transverse electromagnetic waves

A careful examination of Eq. (2.82) reveals that, for
k+ real, w has a negative imaginary part, indicating that the amplitude

of the waves are damped with time.

To establish if this temporal damping is significant or
not, let us evaluate the asymptotic series expansion of the integral in
(2.82) for the case when |“i|>>]‘ For this purpose, we expand the
integral in (2.82) in inverse powers of a . According to Eq. (18.4.51),
it is found that, as the first approximation (retaining only the

leading term),

exp (W2 - o2) dW = (2.83)

With this result, and making use of the definitions (2.77) and (2.78),

the dispersion equation (2.82) simplifies to
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k2 C2 _—_mz

-2 — Y+ 2
: mpe ‘IﬂwpeB

exp { -a?) (2.84)
(0 ¥ w

*
ce)

Furthermore, for |a,|>>1 the exponential damping term may be omitted

in the first approximation, so that Eq. (2.84) becomes

k2 €2 = o2 - w2 w (2.85)

This dispersion equation corresponds to the results obtained using the
cold plasma model, with the upper sign for the right circularly
polarized wave and the lower sign for the left circularly polarized
wave. Consequently, it follows that the results of the cold plasma

Model are valid only if [a, [>>1.

In the case of the left eircularly polarized wave, for
a given real propagation coefficient, k_, we find, from Eq. {2.85),

that w 1s real and satisfies the condition

ce o 2
- _— 2.86
w > + ﬁ ) ) + [.upe ( )

The phase velocity (w/k_) of the left circularly polarized wave s
greater than the velocity of Tight, ¢, for all k_ and, therefore, B_
15 a large number of the order of the ratio of ¢ to the thermal
velocity of the electrons. Since o_/8_ = (w + wce)/w is positive and

greater than unit, it follows that o, >>1 for all k_. Consequently,
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the Landau damping of the left circularly polarized wave propagating
along the magnetostatic field in a hot plasma is always negligible,
This result was also obtained for the case of transverse electromagnetic
waves in a hot isotropic plasma. Further, as far as the characteristics
of the left circularly polarized waves are concerned, the cold plasma

model is a very good approximation for all real propagation

coefficients,

In the case of the right cireularly polarized wave, for
a8 given real propagation coefficient, k+, it is seen, from Eq. (2.85),

that w is real and satisfies the conditions

0<uw=< Weq (2.87)
w w 2
w > ;e + /( ;e) +ul (2.88)

An important feature associated with the right circularly polarized
wave 1s the existence of two natural frequency ranges of propagation,
whereas for the Teft circularly polarized wave there is only one
natural frequency range of propagation. However, the results for w, 1N
the range specified in (2.87), do not strictly hold for frequencies of
the order of the ijon plasma frequency and Tower, since at these
frequencies the motion of the ions cannot be neglected. For this
reason we omit, in the following discussion, the very low frequency
region (w < w_:) of (2.87). In the frequency range (2.88), it is found

C1

that the phase velocity (m/k+) of the right circularly polarized wave
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is always greater than the velocity of 1ight c, whereas in the
frequency range (2.87) the phase velocity (w/k,) is less than, but of

the order of c, except in the close neighborhood of Weg Therefore, we

e
see that B, 1s a large number and, since lo /8,1 = [(0 - wce)/wl is of

the order of unity, we conclude that [a,|>>1, except for u close to
e Thus, the temporal damping of the right circularly polarized wave
is also negligibly small and the cold plasma model is a very good

approximation for w not close to Weg®

2.8 - Cyclotron damping of the right circularly polarized transverse

wave

For w in the close neighborhood of Weg the phase
velocity (m/k+) of the right circularly polarized wave is of the order
of the thermal velocity of the electrons or lower, so that B, € 1.
Consequently, since [o /8, | = |(w - weo)/w| is much Tess than unity,
it follows that la | <<1. This implies that the asymptotic series

expansion in inverse powers of o, , Eq. (2.83), valid for |a, |>>1, is

not applicable for w = W.g

As a first approximation to the dispersion relation

(2.82) for the Timiting case of |o | << 1, we can set a, equal to zero

+
in Eq. (2.82), to obtain

(2.89)
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The second term in the left hand side of (2.89) can be omitted in a
first approximation, as compared to the first term, since (m/k+)/c << 1.

Hence, (2.89) simplifies to

g (2kp T _/m ) Y2
( [0 ) — B e l/ze ( ce ) (2.90)
k+ c coT wpe

Solving this equation explicitly for w, gives

w=w, + T, ' (2.91)

where

(2ky T /n1)1/2 1/3
wp = D3k B el el  coce,? (2.92)
2 ¥ nl/2 w
pe
1/2
/3
] (kg Ty /m, ) » ¢ Yce :
wj = - — k+{ RVE c? (—=) (2.93)

Since « has a negative imaginary part, it follows that the right
circularly polarized wave, which is initially set to propagate along
the magnetostatic field, is temporally damped for W, close to wce.This
temporal damping is usually called cyclotron damping and

is similar to the Landau damping of the longitudinal plasma wave.

The cyclotron damping, however, differs from the Landau

damping in some aspects. The most important one is the fact that the
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acceleration is perpendicular to the drift motion of the particles
and, since the perpendicular electric acceleration does not, in the
first approximation, modify the parallel drift velocity, there is no
tendency toward trapping. Therefore, trapping is insignificant in
cyclotron damping. The charged particles moving along lines of force
will feel the oscillations of the perpendicular electric field at a
freguency which differs from the plasma rest-frame frequency by the
Doppler shift. Since the electrons rotate about Eo in the same
direction as the electric field of the right circularly polarized wave
(Fig. 2), some of them will feel the oscillations at their own
cyclotron frequency and they will absorb energy from the field. As a

consequence of this wave-particle interaction at the resonance

Fig. 2 - I1lustrating the resonance which occurs
at v = Weg between the electrons and the
electric field of the right circularly

polarized wave propagating along Eo'
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frequency w = w the electrons absorb energy from the wave electric

ce’
field, causing the plasma wave to damp out with time. In the absence

of resonant particles, there is no energy exchange between the

electric field and the particles, and hence w is real.

As a final point note that, in the limiting case of

Wep -+ 0, that is, in the absence of the magnetostatic field, we have

o, = B, = C and Eq. {2.82) becomes identical to the dispersion

+

relation (18.5.8) for transverse waves in an isotropic plasma.

2.9 - Instabilities in the right circularly polarized transverse wave

We have seen that for an Zsotropic equilibrium
distribution function the rescnance at Wegs between the electrons
and the right circularly polarized wave, leads to a temporal damping
of the wave amplitude. However, depending on the characteristics of
the distribution function, resonance can also lead to instabilities

(which are associated with a positive imaginary part of w)

Recall that for the case of an isotropic velocity
distribution function the magnetic field of the wave has no effect on

the plasma behavior in the Tinear approximation, since y fo (v) is
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parallel to v and, consequently, the magnetic force term

Ly xB(r, t)] - v, fo (v) vanishes. However, when the condition of
velocity isotropy is dropped, the effects that arise from the magnetic
field associated with the wave become important and may lead to
instabilities. Although the wave magnetic field itself does not
exchange energy with the particles, it exerts a force in the parallel
(z) direction on the particles, which destroys the isotropy of the
velocity distribution furiction in the plane perpendicular to Eo' This
effect can lead to instabilities depending on the particle

distribution function.

For the purpose of demonstrating such an instability,
consider the following simple anisotropie equilibrium distribution

function
fo (us Vi) =8 (va) £ (vi) (2.94)

which represents cold electrons in the parallel (z) direction, but
with a Maxwellian velocity distribution function in the plane normal to
EO. Inserting (2.94) into the dispersion relation (2.72) for the right

circularly polarized wave (upper sign}), gives

u_'.2 e (LO - kVu) 8 (V") ? e
kz CZ = wz - —.-...IE. [! qu [ -FO (VJ.) dv.l.[ d¢' +
0

0 -cn (UJ -kV“‘LU 0

ce)

+oo 0
5 (V) : 2
+ ; dv, —— k2 v§ fo (vio) vy dv, d¢ (2.95)
ce) 0

o (m-kV"-(U 2 0
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Using the following property of the Dirac delta function

+ oo
J Fx) s (x-x ) dx = f (x)), (2.96)

substituting fo (v,) by

m m_ v
fo (Vi) =y (———) exp (- —2— (2.97)
2“kB Te 2kB Te

and performing the integrals, yields

. (k2/2) (2ky T, /m)

k2 ¢2 = y2-2 L (2.98)
P L (w-w.) (@ - w_ )2
- ce ce
This equation can be rearranged in the form
2 - 2 .2 -
o2 - wé (w wce) Whe © (w wce) (2.99)
c2 (w- wce)2+ (wée/Z)(Z kB Te/ me)

It is a simple matter to verify that, for large values
of k?, w becomes complex. Thus, in the limit of k2 - =, the denominator
of (2.99) vanishes, and we obtain

2
e (EkB Te/me)

w? - 2w ow+wd o+ =0 (2.100)
2 c?
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The solution of this second degree equation is

2. T /m)"”
w =W iiwpe(Beme)
ce Yo ¢

(2.101)

which shows that growing modes (instabilities) can occur for
Ll)r. = wce.
Choosing an anisotropic equilibrium distribution
function with some velocity spread along the parallel (z) direction,
instead of (2.94), we expect this instability to diminish, while
turning into damping for an isotropic distribution function. The

analysis of this statement is left as an exercise for the reader.

3. WAVE PROPAGATION ACR(OSS THE MAGNETOSTATIC FIELD IN A HOT PLASMA

We consider now the problem of wave propagation in a
direction perpendicular to an externally applied uniform magnetostatic
field, Eo' As before, we choose the z-axis along the magnetostatic
field, that is, Eo = B0 z. The propagation coefficient, k, is normal
to B, and along the x-axis, k = k x (Fig. 3), with k considered to
be real. A1l field quantities are assumed to vary harmanica11y in

space and time, with the phase factor exp (i k-r - iwt). As in the

previous cases, we take

fryvet) = f (v, vi) + f1 (1, v, t) ([fa] << f5) (3.1
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Fig. 3 - Decomposition of the wave electric field
vector into components parallel and
perpendicular to §0, or in components

lTongitudinal and transverse with respect
to k.

where fo {viu, v.} is the equilibrium distribution function of the
electrons . under the presence of the magnetostatic field, satisfying
Eq. (2.1), vu = v, is the velocity component of the electrons in
the direction parallel to Eo’ and v, the velocity component of the

electrons in the plane (x-y) normal to B, For the perturbation

distribution function we have
f1(rs vo t) =f; (v) exp (Tkx-iwt) (3.2)
and for the wave electric and magnetic fields

E(r, t) = E exp (ikx - iwt) (3.3)
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B (r, t) = B exp (ikx - iut) (3.4)

where f, (v), E and B are the phasor amplitudes.

As in the previous section, the purpose is to deduce
the dispersion equation giving the functional relationship between k
and w, and, from an analysis of the dispersion relation, determine the

intrinsic behavior of the plasma for the case under consideration.

3.1 - Soilution of the linearized Vlasov equation

From the linearized Vlasov equation (2.4), replacing
the differential operators 3/3t and v by - iw and ikx, respectively,

and making use of relation (2.10), we obtain

dfy (¥} (w-kev) e
- —="fy (!) = (E+!X§)‘ v fO {Vu, Vi) (3'5)

do UJCE me wce

where, now, k-y = kvx = kv, cos ¢. From Maxwell equation kxE = w B

we have

B = (k/w) (E, Z-E,3) (3.6)

Using this expression for B, we get
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vxB=(k/u) | (v E +v, E)) K-v, E F-v, F ;J (3.7)

Noting that

3 fo af
—— = COS 9 ° (3.8)
3 v, vy
o f af
O - siny 0 (3.9)
I v B vy
3 f 3 f
°o-_2 (3.10)
3V, dvy
we obtain
(E+vxB)-v f = -E + K )y (v, E_ +v_ E) | cos ¢ °To +
= ~"= ~¥ 0 | X N Yy z "z J 39,
kv 2 f kv a f 3 f
+ (1-—X) E_ sin ¢ °+(1-")EZ ° - > (cos ¢ E+
w 3V, w v v,
- o f o f o f
+sin ¢ E ) + (—E—) (v, 9 v, —% ) cos p+—20 1 E, {3.11)
A XA 8 v, BV, -

The linearized Vlasov equation (3.5) becomes, therefore,
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df, (v) (w = kv, cOS 4) of
— - - f1 (v) = 2 D(cos¢Ex+s1‘n¢Ey)+
dé Weg Mo Wea vy
) of of f
+ 0_5_) (v, ° v, %) cos ¢ + ° E, (3.12)
W BV, BV oV,

The integrating factor for this first order

differential equation is found to be

" (* (w - kv, cos ¢)
h (¢) = exp |- i de
- Jo “ce
) kv,
=exp | -1 (—%—) ¢+ 17 { )y sin ¢ (3.13)
Yee “ce

Multiplying both sides of Eq. (3.12) by the integrating factor (3.13), gives

af r af
- __¢® { O(cos¢Ex+sin¢Ey)+(k)(vZ o .
Mo Yce vy

kv,
S G B I ) sin ¢
- Yece Uee

of af
- v, —2) cos 4+ ——11-]EZ }- exp

3VZ SVZ
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The solution for f, (v) is obtained by integrating this equationover ¢,

) sin ¢>"} dg" (3.15)

If the variable of integration is changed to ¢' = ¢ -¢", Eq. (3.15)

becomes

kv i 81:0
i (v) =————exp |-i (/%) sin ¢ —~——[;os (¢ - ¢')EX +
w BVL -

- ce

kv,
exp J-+1 (—2 ) 5"+ 4 ( ! ) sin (¢ - o) ] do' (3.16)

Note that ¢ occurs only as the argument of periodic functions of period
2, which is an agreement with the physical requirement that f; (v) be

a single valued function of ¢.
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3.2 - Current density and the conductivity tensor

The current density is given by

J (r, t) = 9 exp (ikx - iwt) {3.17)

where the phasor amplitude, J, is

J = -e ('fl (v) v d3v (3.18)
J
v
or
@ ew +
J = -e‘[ v, dv, J dd J dvZ fi (!) (v, cos ¢ g +
o] o] b
+ v, sing¢ y+ v, Z) (3.19)

For the purpose of calculating the components of J, it

is appropriate to express J as

J= g-E (3.20)

J =o E + o E + o _E {3.21)

J =0 E + o E + o _E (3.22)
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J.=o E + o E + o _E (3.23)

where ¢ is the conductivity tensor, whose components can be arranged

in matrix form as

.
| ovx Ixy I%z
= 3.24
2 %yx °yy %yz (3.24)
zx T2y 92z |

If f; (v), from Eq. (3.16), is substituted into
Eq. (3.19}, and the resulting expression is compared with Eqs. (3.21)

to (3.23), we identify the components of the conductivity tensor as

w® 2w +oa -
a2 kv,
Opy = = —— vZ dv, cos ¢ dg dv, exp |- ( ysing | .
Me e Jo 0 - o - “ce
a2 cos (6 - 4) exp [91(s") | (3.25)
av, -
0
.2 = 2m 4o - kv,
Opy =~ ——— v dv, cos ¢ d¢ dv, exp |- 1 ) sin ¢ | -
Mo “ce o o » - “ce

® of
: J dg' (—>) sin (6-4') exp ’-91 (¢'>J (3.26)

oV L
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(M

] 21[ +
- a2 2
o, = = ——— vi dvi cos ¢ d¢ dvZ exp
ce ‘o - ce

0

i kv, ]
- ) sin ¢

-0

” af 5f of
1 k 1
'lde [ (=) (v, —= - v, —2) cos (9-¢') + 0}-
o w v, av v

oxp | gy (4) | (3.27)

® 2m +eo
g2 2 . . kv, .
g, = ———— vi dv, sin ¢ d¢ dv_ exp | -1 { ) sin ¢ | .
¥X n W z
e ¢ce ‘o - -

0 o Yee

" of -
] a2 cos (6 - ') exp [ 1 (1) ] (3.28)
o v, -

A

w 2r +oo
e2 .
Tyy = = ——— J v dv. J sin ¢ do J dvz exp
ce 0 - ce

0

i kv, ]
i (——) sin ¢ | -

-

® of -
| Ao (=2 sin (5= ¢) exp [ 1 (81) } (3.29)
0 E)VJ_ -

W

o 2-"' + o«
e? 2 .
= —_— vy dv, sin ¢ d¢ dvZ exp
ce 0 - ce

0]

- kv,
-1 )sinq}]-

-0
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0 -

w BV-L BVZ BVZ

exp [-91 (¢") ] (3.30)
e2 o 2TT +co " kV_L -
UZX R S vV, dVJ_ dfb VZ dVZ exp -1 ( ) 51N ¢ '
e “ce o 0 -e - “ce

EXG (3.31)

® of
<1 det | ) cos (¢ - ¢') exp
0 oV,

o2 i en e ] kVs
oy = - % dv, | do | v, dv, exp |-1i{ ) sing | -
W w
e “ce /o

—-co ce

* of -
. dlt)l ( ) S'in ({b - q)l) exp l 91 (d)l)} (3-32)
o oV, -
. w Z2m - - kv, .
O =" ———— | Vadvp} v dv exp | -3 ( ) sin ¢
Me Yce Jo 0 - “ce B

.qus‘[(—k—)(vz - vy =) cos (¢ - 8') 4 0] '
o - 0 v, av aVZ
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exp | 9, (¢')] (3.33)

where we have used the notation

kv
w L

91 {(¢') =1 (

)¢+ 1|
Wee Yee

) sin (6 - 4') (3.34)

3.3 - Evaluation of the integrals

In simplifying the expression for 0y it is
advantageous to calculate first the integral with respect to ¢'.

From Eq. (3.25) consider, therefore, the integral

<o

Iy =1 d¢' cos (¢ - ¢') exp ‘-91 (¢>'):| (3.35)
o}

Differentiating Eg. (3.34) with respect to ¢', we find

“ . e dg; (4')
cos {¢ - ¢'}) = { ) + 1 ) (3.36)
kv, kv, de'

Thus, Eq. {3.35) becomes

o

I = (——) J d¢' exp
0

91 (¢')W+i(wce)Jd{eXP
J 0

o))

(3.37)

kv, kv,
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since d { exp {.gl (¢') } }-= exp \:gl (¢'i} dg, (¢')/de'. Therefore,

w ) i ., ce -. kv, .
s (<20 | de' exp | gy (8) | -1 (—S2) exp |1 (——) sin g
kVJ_ o - kVJ_ _ UJce _
(3.38)
In order to evaluate the integral in Eq. (3.38), let
kv,
£ = {3.39)
Yee

and express the term exp ‘gl(¢') } in an infinite series expansion 1in

(),

terms of the Bessel functions, Jn

ig sin (¢-¢')] =

exp | i (—2—) ¢'} exp

+
i (=) ¢ } Y J (g) exp |in (¢-¢') } =

= 1 J, (&) exp (ing) exp

i (—*—-n) s } (3.40)
- wce

where Jn (¢) is the Bessel function of the first kind of order n, and

where the factor exp { ig sin (¢~ ¢')} is identified with the so-called
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generating function of the Bessel functions. Substituting (3.40) into

(3.38), gives

oo

+

I, = - —— exp (i £ sin ¢) + - I J, (g) exp (ing) | de'
£ kv, n=-w
0
exp | i {(—2— - n) ¢'] (3.41)
. wce -
. 3 + 1
= - - exp (igsin ¢) + — J, (€) exp (ing)
E kVL ns=-w (UJ/UJCE = n)
(3.42)

As the next step in evaluating Oyy> We calculate the

integral with respect to ¢. Substituting (3.42) into the expression

(3.25) for O s We find the integral with respect to ¢ to be

-—

2n
I, = J d¢ cos ¢
0

C w5 J, (£) exp (ing -1z sin ¢)}

£ kv, (m/wce - n)

- [==]

n=

(3.43)

The first term within the square brackets in this equation integrates
to zero. For the remaining terms note first that we can write
n i d

cos ¢ = + (ing - iesin g) (3.44)
3 £ d¢
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so that the integral I, becomes

2m
I, - 1w 'Em Jn(g) { n J d¢ exp (ing-1i¢& sin ¢) +

o w (w/wc - n) 2

e o

+
o ‘_..
S——
=] ™
=
(=9
] i

exp (ing¢ - 1‘¢sin¢)J } (3.45)

The second integral within brackets in this equation vanishes and the
first integral can be expressed in terms of a Bessel function, according

to the relation,

2n
J d¢ exp (in¢ - i & sin ¢) = 2n Jn () (3.46)
0

which is known as the Bessel integral. Therefore, {3.45) becomes

N
= ——— ] —2 (3.47)

This result can be written in a slightly different form by noting that

+ «
I 92 (g)
£2 np=-w N (w/wc

[, -_2ni n (w/ugg = n+n)
, = -&m1

e~ M
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.t n J2 ()
- 2mi z n ‘Jﬁ (E) + n — (3.48)
& ne-wlk (o/wee = M)

Now, since J—n (g) = (-])n Jy {£), we have

+Zm nJ2 (g) =0 (3.49)

[e+]

n
and the integral (3.48) simplifies to

© 2 12
[ = 2wi * n Jn (£)

E2 Ns-o (w/wce-n)

(3.50)

From Egqs. (3.25), (3.35) and (3.43), we see that the expression for

can itten
Oy be written as

m e aof
2
0y, = - ——— J v2 dv, J dv,, 21, (3.51)
ce 0 -0
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This expression for o is valid for any cylindrically

XX
symmetric equilibrium distribution function fo {vy. vi). However, in
what follows, all the details will be restricted to the the case in
which the equilibrium state is characterized by the isotropic Maxwell-

Boltzmann distribution function fo (v), for simplicity. Thus, we take

| M (it vy) } (3.53)

L 2k T

__...E__._) exp

for the evaluation of the integrals over v, and v, in Eg. (3.52). In

order to perform the integral over V,, it is convenient to introduce

the following parameter

ky T, K2
3 = ——fi-i%;—— (3.54)
Me “Ze

Performing the differentiation afo/avl and using Eq. (3.54), the

expression (3.52) for oy simplifies to

X

in e? + o o2 = _
o, = L o | £.dE J2 (&) exp (-£2/27)
*m w32 n=-w (w/w., - n) f

g ce ce 8]

(3.55)

From the theory of Bessel functions we have the following Weber's

second exponential integral

(at) 3. (bt) t dt =

| o ne e,
0
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exp (- M)
2p? 4p?

I (ab/2p?) (3.56)

where I (x)} is the Bessel function of the second kind, which is
related to the Bessel function of the first kind with an imaginary
argument, J_ {ix), by

I (x) = (-0)" 9 (ix) (3.57)

Substituting (3.56) into (3.55), yields

o,, = ) (3.58)

The components o,_, o

xz* %yz? O and Ozy of the conductivity

ZX
tensor vanish, since the integrands in Eqs. (3.27), (3.30), {3.31) and

{3.32) are found to be odd functions of V- Thus, performing the

integrations with respect to v, first, we find
6., =0 _ =g, =0g. =0 (3.59)

The component 0,5 of the conductivity tensor, for the
case of the isotropic Maxwell-Boltzmann distribution function,

simplifies to

- <} +c + =

. o2 . .

0,, -;r_::&h- ‘ v, dv, [ dé J v, dvz exp (-1 & sin ¢)
ce 0

-0 =]
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” af,, )
{ do' exp |9; (¢')] (3.60)
o _

The integrals appearing here are evaluated as in the case of 9y

x’
vielding the result
in e . te I (V)
o, =—2 V] (3.61)
2z m. w =-o {(w/w. - N)
e “ce ce

The components %y® Iyx and Ty of the conductivity
tensor will not be needed here, in order to investigate the
characteristics of waves propagating across the magnetostatic field
in a hot plasma. Therefore, explicit expressions for these components

of o will not be presented.

3.4 - Separation into the various modes

With the time and space dependence of the fields, as

given by Egs. (3.3) and (3.4), and expressing J as g« E, Maxwell cur]

equations reduce to

kKx x E = wB (3.62)

S R (3.63)
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where

R

denotes the unit dyad and

14 (3.64)

Hm
1]

Haq

is the relative permittivity dyad. In component form, Eqs, (3.62) and

{3.63) become, respectively,

B, =0 (3.65)
E, = - (w/k) B, (3.66)
E, = (u/k) B, (3.67)

and

- {w/ke?) (exX EX + Exy Ey) =0 (3.68)
- (w/ke?) (ny E, + €yy Ey) = -8, (3.69)
- {w/ke?) EZz E, = By (3.70)

From Eqs. (3.64), (3.58) and (3.61), it follows that

w2 -V + n2 I (%)
e, =1-—PE == y n___ (3.71)
XX m J n=-« (w/w -n)
ce ce
w2 - o I (3)
€, = 1 - —E2 eV n (3.72)
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and, from Eq. (3.59),

£ = z = [ = € = 0 (3'73)

The expressions for the other components of ¢ will not be needed in

what follows.

An analysis of Eqs. (3.65) to (3.70) shows that the
waves are transverse magnetic (TM) with respect to the direction (x)
of propagation, since BX = 0. Also, we see that the remaining field
components can be separated into two independent groups, involving the
following variables each:

1. En E B, l Eqs. (3.67), (3.68), (3.69):| (TM mode)

2. Ez’

By { Egs. (3.66) and (3.70) } (TEM mode)

The first group represents the TM (Transverse Magnetic) mode, since
there is no component of the wave magnetic field in the direction of
propagation (x). The second group represents the TEM (Transverse
Electric-Magnetic) mode, since it has no component of either the
electric or the magnetic field in the direction of propagation

(Fig. 3). It is a degenerate case of the TM mode. Since the electric
field 1is in the direction of §0, the TEM mode is called (in magneto-

ionic theory) the ordinary wave, and it is not affected by 50'
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3.5 - Dispersion relations

To deduce the dispersion equation for the TM mode, we

first combine Eqs. (3.68) and {3.69) to eliminate Ex’ obtaining

ke2 Cxy Eyx
B, = -— J- 3} 3.74
w Z (Eyy c ) N ( )
XX
Substituting Ey from (3.67), into (3.74), yields
2 2 € e
LSS {2 S (3.75)
W2 ¥y . z

XX

For a nontrivial solution for BZ, and also for EX and Ey’ the term
within parenthesis in Eq. (3.75) must vanish, which results in the

following dispersion relation for the TM mode,

k2 2 Sxx Syy T Sxy “yx

(3.76)

w Exx

To obtain the dispersion equation for the TEM mode, we

substitute EZ from (3.66), into {3.70), to find

B. =0 (3.77)



- 5§ -

For a nontrivial solution for By, and therefore EZ, we must require

that

k2 ¢2
T = EZZ (378)

which is the dispersion relation for the TEM mode.

3.6 - The guasistatic mode

Since the dispersion relation (3.76), for the T™M mode,
is very complicated, in what follows we shall analyse this dispersion
relation only for the Timiting case of kc/w tending to infinity. This

limiting condition of k¢/w » =« defines the resonance condition.

From Eq. (3.69) we see that, for finite values of Ex
and Ey, BZ must be equal to zero in the limiting case of kc/w equal
to infinity. From Eq. (3.67) it follows, therefore, that Ey vanishes.
Consequently, for a nontrivial solution for Ex’ the dispersion

relation for kc¢/w - = becomes

ery = O (3.79)

This equation is known as the dispersion relation for the quasistatic
wave propagating across the magnetostatic field, since the magnetic
field is negligible and the electric field is essentially in the
direction of propagation. In the Timit k¢/w + =, the longitudinal wave

is already uncoupled from the transverse wave and the dispersion
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relation Syx © 0 refers to the longitudinal wave (EX # 0}. The T™
mode, in the zero-temperature Timit, corresponds to the
extraordinary wave of magnetoionic theory. As a matter of fact, the
dispersion relation (3.79) can be derived directly from the laws of
electrostatics, instead of using Maxwell equations. Thus, since the
magnetic field can be omitted at the outset, Egq. (3.79) is also called
the dispersion relation for the electrostatic wave. Although (3.79) is
strictly correct only for kc/w = », it can be considered to be a

reasonably good approximation for ke/w »> 1.

From Eq. (3.71} the explicit expression for the

dispersion relation (3.79), for the quasistatic wave, is found to be

w2 -V 4w n?2 1 ()
P 2 n =1 (3.80)
W g v n=-°°(w/wce-n)
Since 1_, (V) = I (%), we have,
+ »
InI (3)=0 (3.81)
n=-o |

so that multiplying (3.81) by (mée/mwce) (e7¥/7) and adding it to
(3.80}), we find

<

(3.82)
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This equation was extensively investigated by Bernstein, who showed
that it has solutions for both ¢ and k real. For this reason, these

sotutions are often called the Bernstein modes.

In order to show the absence of complex solutions for
wy let us first write the dispersion equation (3.82) in a more

convenient form. Making use of the expansion

exp {v cos y) = ¥ I (v) exp (iny) (3.83)

1=e '% I (%) (3.84)

w2 ~ += I (V)
1+7% ze e ¥ 7 n (3.85)
mpe n=~o (w-n UJCE)

From Eq. (3.54) it is seen that v is real and positive, and therefore
In {v) is also real and positive. Hence, writing the angular frequency

as

© =W, + 1o (3.86)
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where w, and w; are the real and imaginary parts of w, respectively, we

can separate £q. (3.85) into its real and imaginary parts, as follows:

wd oot ) w.o o tn{w, ~nuw
real part: 1+ v ce . e v z In ('\;) 1 + ce r ce)
wlzge N==-c _ (U.} -nwce)2+w2
(3.87)
o 1w n mce
inaginary part: 0 = -w;oe” ]I (9) (3.88)
! n=-e (wr-nmce)2+m1?

It can be shown that Eq. ({3.88) can be satisfied only if ws = 0. This
result means that the dispersion equation for the quasistatic wave has
only real solutions for w and, therefore, there is neither temporal

damping nor instability of the quasistatic waves.

Next, we obtain explicit real solutions for w, for two
limiting cases. First, we consider the special case 3 << 1 which, as
seen from Eq. (3.54), corresponds to the zero-temperature limit, and
afterwards we analyse the case v >> 1, which corresponds to the high-

temperature Limit.

For v << 1 (zero-temperature 1imit), we have
I,y (3) = %/2, while I, (3) =0 (3"). If w/v.g is MOt close to n
only the terms corresponding to n = +1, in the infinite series on the

right-hand side of (3.83), contribute significantly, whereas the other
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terms are small and can be neglected. Thus, Eq. (3.82) becomes

for v << 1,
w2 I . (V) I} (v)

5 ce - - -1 + (3.89)
wge (w/wce + 1) (m/wce -1

w = (w2 + w?) (3.90)

This is known as the wpper hybrid resomant frequency. This resonant
frequency is also predicted 1in the cold plasma model treatment of
waves propagating across a magnetostatic field. Thus, we find that the
hot plasma theory confirms the results predicted by the cold plasma

model in the zero-temperature limit.

In addition, the hot plasma theory establishes the
existence of other resonant frequencies not predicted by the cold
plasma model. The dispersion equation (3.82) can also be satisfied
by taking w = Nw.g for n x 2, and arranging such that only the nth
term contributes, which it will if w/w =N =0 (Gn']). Hence, in the
zero-temperature 1imit (v << 1), the hot plasma theory predicts
resonant frequencies at each harmonic of the electron cyclotron

frequency,

® = N ns2 {(for v << 1) (3.91)
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These resonant frequencies are not predicted by the cold plasma model.
For the high-temperature case (v >> 1), we have e .
I (%) =0 (37172) and it is found that the dispersion relation {3.82)

is satisfied for

© =N nxi {for v >> 1) (3.92)
Therefore, in the limit v »>> 1, the resonances occur at the fundamental,

as well as at all the harmonics of the electron cyclotron frequency.

To obtain the resonant frequencies for intermediate
values of v, Eq. (3.82) needs to be solved numerically. It is

convenient, for numerical purposes, to rewrite (3.82) in the form

o2 - nz 1 (v)
v—L = F (wfw_ .5 V)3 F (w/w.., v) =2e v n
w2 ce ce n=1 {w/w.)2-n2
pe ce
(3.93)

In Fig. 4 it is plotted the function F (w/mce, v} 1in terms of m/mce,
for v = 0.1. The intersection points of this curve with the horizontal

line corresponding to v (wée/wse) give the resonant frequencies in the

normalized form w/wce.
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Fig. 4 - Dependence of the function F (w/u,> v), given
by (3.93), in terms of m/mce for a fixed value
of v (here v = 0.1), for the quasistatic waves.

In Fig. 5 1t is shown the normalized resonant
frequency, m/mce, as a function of (3)1/2, for a specified value of
(“ce/wpe)' Note, from this figure, that below each resonant frequency
curve, corresponding to frequencies greater than the upper hybrid
resonant frequency, there is a range of « in which resonance does not
occur for any value of v. Also, for v << 1 it is verified, from

Fig. 5, that the first harmonic of the electron cyclotron frequency is

not a solution of the dispersion equation (3.82).

An important difference between the quasistatic waves
treated here, and the longitudinal plasma waves analyzed previously,

is the absence of Landau damping for the quasistatic waves. The
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treatment of propagation of quasistatic waves at an arbitrary

direction with respect to go is left as an exercise for the student.

22
Do A
6
5 et tmge o
a
3
e—o
2
|
i L 1 1 L ~ e
o+ 2 3 & 5 W

Fig. 5 - Curves of resonant frequencies for the quasistatic
waves propagating across the magnetostatic field,
as a function of (9)1/2, when (mce/wpe)2 = 0.2. The
resonant frequency, denoted by X, is the normalized

: = (2 2 y1/2
upper hybrid frequency, X = (wpe + wce) / /“be‘

3.7 - The TEM mode

From Eqs. (3.78) and (3.72), the dispersion relation
for the TEM mode propagating across the magnetostatic field 1in a hot

plasma 1is given explicitly by

e™ 7 N (3.94)
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This equation has to be analyzed numerically. However, some useful
results can be obtained directly, without resorting to numerical work,

for some special limiting cases.

For the limiting case v << 1, only the term corresponding
to n =0 is significant, while all other terms are small and can be

neglected. Therefore, for v << 1, Egq. (3.94) simplifies to

2 ~2 w
ket L ke (3.95)
w? w2

where we have used the relation I0 (0) = 1. This result is the same as
the dispersion relation for the TEM (ordinary) mode deduced from the
cold plasma model. Thus we find that, in the limit of zero-
-temperature, the hot plasma theory agrees with the results of the
cold plasma model, for the characteristics of the TEM mode propagating
across the magnetostatic field.

For the limiting case % >> 1, we have e I, (V) =

0 (6'1/2) and Eq. (3.94) reduces to

=1 (3.96)

which is identical to the dispersion relation for electromagnetic waves
propagating in free space. Note that the condition v >> 1, together

with Eqs. (3.54) and (3.96), is equivalent to
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(3.97)

showing that the frequency must be very high. Hence, for v >> 1, or
equivalently, for very high frequencies, the results of the hot plasma
theory are also in agreement with those predicted by the cold plasma

model.

Furthermore, according to the hot plasma theory, the
TEM mode has resonances at the electron cyclotron frequency and all its
harmonics, since (3.94) shows that kc/w = = for

sl (3.98)

where n is an integer. The cold plasma model does not predict the

existence of these harmonic resonances.

4. SUMMARY

4.1 - Propagation along B, in hot magnetoplasmas

(a) Longitudinal mode:

The dispersion relation is (with B, = B Z; k = k z)

0

Vu af  {visVa)
1-.bpe o ** d3y (2.66)
n_ v (w'kVu) 3Vu
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which is the same result obtained for the isotropic plasma.

(b) Transverse modes:

The dispersion relation, for the two transverse modes,

is
oo +c0
((U-kV”) (B'F /BVJ_) + kVL (B'F /BV")
no o -0 ((.U - kVu .T. \'..Uce)
(2.69)
The upper sign gives the right circularly polarized wave, and the
tower sign gives the left circularly polarized wave. An alternative
form for this dispersion relation is
k2 2 - 2 = - pe_ + - f o (vesva) div
* n (w-kvuFu_) (w-kvy3w. )2 |0
o _ 1] ce n 4+ ce

'
(2.72)

When fo is the isotropic Maxwel1-Boltzmann distribution function,

kZ 2 - p2 = 42
: w mpe

i/7 B, (-a?) - 28, J exp (W2 - a2) de (2.82)
0

In the Timitsof cold and warm plasma models,

K2 ¢2 = (2 -~ o2 W (2.85)
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The Landau (temporal) damping is negligible, since v_,_ > c¢. But the

ph
(

right circularly polarized wave has temporal damping (cyclotron

damping) for w

v Do The cyclotron damping constant (with w =
. + Twy), is

—

(2.93)

4.2 - Propagation across §0 in hot magnetoplasmas

(a) Transverse magnetic (TM) modes:

The lTongitudinal and transverse modes are coupled. The

dispersion relation (with B = B,

Maxwell-Boltzmann distribution function, is

z; k =k X}, when fO is the isotropic

2 9 € > - E >
K= ¢2 _ _xx “yy Xy CyX (3.76)
U.)z EXX
The TM mode corresponds to the extraordinary wave in
magnetoionic theory (cold plasma).
In the limit kc/w + = (resonance condition),
w2 -V tw nz I_ (v)
e .= 1-—FE € n =0 (3.79)
XX W v n=-« (w/w.. - n)
ce ce
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which is called the dispersion relation for the quasistatic mode
(Tongitudinal mode; EX # 0). In the limit kc/w » » the two TM modes
are uncoupled, and the equation €y = 0 applies to the longitudinal

mode. The resonances are given by

w = (mse + w2 )12 5 cold plasma result (3.90)

©w="nw. nz2 forv<<1)Bernstein {3.91)
B modes

w=nNuwes Nzl foryo>>] (3.92)

(b) Transverse electric magnetic (TEM) mode:

It corresponds to the ordinary mode in magnetoionic
theory (cold plasma). The dispersion relation, when fo is the Maxweli-

Boltzmann distribution function, is

) ,
2 o2 w o e I (v

KBCm iy e vy _m (3.94)
w? 0 W, n=-e (m/wce - n)

In the 1imit of cold plasma model (v << 1),
k2 c2 = w2 - w2 {3.95)

pe

In hot plasma theory the resonances are given by

N3l (3.98)



PROBLEMS

19.1 - Show that the first and second terms 1in the right-hand side of
(2.16) represent, respectively, right and left circularly

polarized wave fields.

19.2 - Derive expression (3.61) for o,,s Starting from Eq. (3.60).

19.3 - Consider plane wave disturbances propagating along the
magnetostatic field go in a hot electron gas, whose
equilibrium distribution function is homogeneous and isotropic.
In spherical coordinates in velocity space (v, @, ¢) with
B, = B, z and k Il B (Fig. P 19.1), show that the

Tinearized Vlasov equation reduces to

. df{v) ie
1mC€T+ (UJ"kv.!) fl (!) '-;'— E. YV fO(V)

e

Yerify that this differential equation has the formal solution

¢ ‘ - .
f1 (v) :——e~—-J E. v, f (v) exp|—— (w-,ls-y)(¢>-¢‘)] dg'

MY
m -
e Yce ‘e Yee
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‘\,\\\\

—————

Fig. P 19.1

where v' is the velocity vector with components (v, &, ¢').
Note that v, fo(v) = (v'/v) dfO {v)/dv. Perform the integral

in this expression for f,{v) to obtain

5f  af | 5 of
(A——P—-i—OJ+E {A—-—‘l+1‘——-9]1+
Vv, av YUy v

. T
fi(v) = - 1€ { : LEx y ) X

A2 - 1)

E af
L 0 }
A v,

where A = - (w - k.V)/w

kevifog - From Maxwell equations obtain the

relation
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where Et =k - EZ g is the transverse part of the electric
field E. Using the expression for f;(v) in this equation, show
that we obtain a dispersion relation with three wave solutions:
the usual Landau damped longitudinal waves, and the left and

the right circularly polarized waves (with Ex = %1 Ey).

19.4 - An electron gas, immersed in a uniform magnetostatic field §o,
is characterized by the following modified Maxwellian

distribution function

2 2
m Yi/z ¢ M \ (¢ m_Vy moove
f s Vi) =ny [ —2— —ffexpl -]

2n kg T 2wk, T, 2kgTu  2kgT J

Use this distribution function in the dispersion relation for

the right eircularly polavized transverse wave propagating

along B_ [ Eq.(2.89) I,

w2 m e (= kva) (3F /o, )+ kv, (3F /3v.)
k2c2 = 42+ —PE J' ve dvl[ S O dvs
no o - (u) - kV.. - Luce)

and evaluate the integrals to obtain the following dispersion

relation
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2622 g2 w2 - iJTN,2 - —2
k2c2= g Tl iV wle t(a - B) exp(-a?) +

T - (T /Tu)

-
fl

(w - w

cel/¥
(2 kg Tu/m )1/2

w/{kt )
(2 kg Tu/my)1/2

Analyse this dispersion relation to verify the existence or not
of instabilities (positive imaginary part of w) and/or damping
(negative imaginary part of w) of the wave amplitude
considering the propagation coefficient k = k g to be real.
Determine the cyclotron damping coefficient. Analyze the

results considering the isotropic case for which T, = T..

19.5 - In Problem 19.4 suppose that 1in the equilibrium state the

velocity distribution function of the electrons is given by
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m m
f (v) =n [ —um-g———-]a/zexp {— £ r;f +({v,-u )21}
0 T 2k T L o’ |
e B e

which corresponds to an isotropic distribution but with the
electrons drifting with speed u along §O. Show that, with this
choice of fo(!),the dispersion relation for the right

circularly polarized wave reduces to

w? (w=ku )
K2 c2= 2 - peJ S f_(v)ddv
no v UJ_kv“_wCe

For the limiting case of Te = 0, find the form of the
distribution function fo(g) and show that the dispersion

relation becomes

2 (w=ku
k2 c2 = o2 - wpe(m o )

(m-kuo-w

ce)

For an unbounded homogeneous electron gas, characterized by

the following velocity distribution function
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where a is a constant, show that the dispersion relation for

the right circularly polarized wave, propagating along the

magnetostatic field @D = BO z, is given by

From this result show that the cyclotron damping coefficient

is given approximately by

wes = -

k_ I_a [c “ce ]211/3
2 !_0 _l

W

pe

(a) Show that, starting from the Vlasov equation and the laws
of electrostatics, it is obtained the following dispersion
relation for the gquasistatic wave propagating at an arbitrary

direction with respect to a magnetostatic field §O in a hot

plasma:
e B e [ - exp(=5) T (14 H) 1,(5)
mpe s1n< © me wpe n=-w

where
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= kBTe k2 S'in2 ]
2
Mo “ce
+oo exp(-’\?%)

Hn 2 dvZ — — —

Vo - (VZ + nwce- w)
v _ 'z y =(2kBTe Y172
z v e { . j

e e

w = w/(kcose Ve)

Bce = wce/(kcos ©) Ve)

In {v) is the Bessel function of the second kind, and & is the

angle between k and EO, as jndicated in Fig. P 19.2.

ZA

Fig. P 19.2
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(b) Rewrite this dispersion relation in the form

14+_DB¢ ! k ] -iw J dt exp {1 wt-
(3]

D
=
m
o

- [1- cos(u., t)] k? V2 sin e/2uZ, - k2 VZ t2 cos? 0/4 }

(c) Simplify this expression for the case of a very weak
magnetostatic field to obtain the following approximate

expression for the frequency of oscillation
2 = 2 4 € k2 4,2 gip?
0 w Wea $1n- @

Compare this result with the cold and the warm plasma results

for both the cases of k ||B_ and k | B_

19.8 - Deduce the dispersion relation for small amplitude waves
propagating at an arbitrary direction with respect to an

externally applied magnetostatic field B, =B Z in a hot

0
plasma. Carry through the derivation as far as possible for
an arbitrary value of the strength of the magnetostatic field.
Then, particularize for the special case of a very weak

magnetostatic field. For simplicity, assume the equilibrium
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distribution function to be the isotropic Maxwell-Boltzmann
distribution (you may refer to thearticle "Waves ina Plasma 1ina

Magnetic Field , by Ira B. Bernstein, Physical Review, 109 (1),
10-21, 1958).



	COVER
	INDEX
	List of Figures
	1. Introduction
	2. Wave Propagation Along the Magnetostatic Field in a Hot Plasma
	2.1 - Linearized Vlasov equation
	2.2 - Solution of the linearized Vlasov equation
	2.3 - Perturbation current density
	2.4 - Separation into the various modes
	2.5 - Longitudinal plasma waves
	2.6 - Transverse electromagnetic waves
	2.7 - Temporal damping of the transverse electromagnetic waves

	2.8 - Cyclotron damping of the right circularly polarized transverse wave
	2.9 - Instabilities in the right circularly polarized transverse wave

	3. Wave Propagation Across the Magnetostatic Field in a Hot Plasma
	3.1 - Solution of the linearized Vlasov equation
	3.2 - Current density and the conductivity tensor
	3.3 - Evaluation of the integrals

	3.4 - Separation into the various modes
	3.5 - Dispersion relations
	3.6 - The quasistatic mode
	3.7 - The TEM mode

	4. Summary
	4.1 - Propagation along B~0 in hot magnetoplasma
	4.2 - Propagation across B~0 in hot magnetoplasma

	Problems

