(" Py ) Y
1.Classification INPE-COM.4/RFE 2.Period 4 Distribution )
C.D.U. 533.9 Criterion
\ y
[ B
3.Key Words (selected by the author) internal
PARTTCLE INTERACTIONS
BOLTZMANK EQUATION external [ *
L FOKEER-PLANCK EQUATION A
5.Report N¢ 6.Date 7.Revised by —w
INPE-1606-RPE/082 October, 1978 ’
\ V. V. J. H. Eirbhhoff J
>

o

8. Title and Sub-title 9.Authorized by

THE BOLTZMANN AND THE FOKKER-PLANCK FQUATIONS % |
L Nelson Jesusg Parada
( 4‘\ Director .
10.Sector pop Code [ 11.80 of Copies 10 )
\__ w
(12.Authorship J. A. Bittencourt WL -

. ",
14 .NQ of Pages 69 ]

*

15.Price

___A

L13.Signature of the responsible ’%;if%bvuu@ué;]f::;
.

16.Summary/Hotes

A

This chapter presents a derivation of the Boltzmann
collision integral, which applies to the case of binary collisions in a
dilute gas, and of the Fokker-Planck collision term, which applies to the
case of multiple Coulomb interactions in a plasma. The assumptions involved
in the derivation of the Boltzmanm collision integral, and its {rreversible
character, are discussed im detail. An analysis of Boltamann's H theorem
and a derivation of the equilibrium Maxwell-Boltamann distribution function,
based on a maximum entropy approach, are also presented, An aproximate
eapresaion for the Boltszmann colliston term, valid for a weakly Tonized
plasma, is obtained through a sphertical harmonic expansion of the
digtribution function. Next, the Fokker-Planck equation is derived,
stavting from the Poltamann collision integral. Finally, the Fokker—Planck
coefficients are caleulated for the Coulomb interaction and applied to the
eqse of electron=-ion collisions.

\
>

A

17.Remarks

_ _J




List of Figures

1. Introduction

INDEX

CHAPTER 21

THE BOLTZMANN AND THE FOKKER-PLANCK EQUATIONS

2. The

Boltzmann Equation

2.1
2.2
2.3

2.4

3. The

Boltzmann's H Function

---------------------------------

---------------------------------

-----------------------

------------------

------------------

------------------

Derivation of the Boltzmann collision integral ...........

Jacobian of the transformation ......... :

------------------

Assumptions in the derivation of the Boltzmann collision

integral ... .o i

oooooooooooooooooo

Rate of change of a physical quantity as a result of

COTTISTONS vttt it r e ennenensnnnnnnn

3.1
3.2
3.3

3.4

Boltzmann's H theorem .......cvviiinennn

Analysis of Boltzmann's H theorem ......

------------------

oooooooooooooooooo

------------------

oooooooooooooooooo

Maximum entropy or minimum H approach for deriving the

equilibrium distribution function ......

Mixture of various species of particles

- i1 -

------------------

------------------

12

15

17

19

22

26
29



4. Boltzmann Collision Term for a Weakly Ionized Plasma ...........

4.1 - Spherical harmonic expansion of the distribution function.

4.2 - Approximate expression for the Boltzmann collision term ..

4.3 - Rate of change of momentum due to collisions .............
5. The Fokker-Planck equation .....c.uieeereerininnnisisnnannnnnn.
5.1 - Derivation of the Fokker-Planck collision term ...........

5.2 - The Fokker-Planck coefficients for Coulomb interactions ..

5.3 - Application to electron-ion collisions ....vvvvevenennnns,

L a0 o =1 S

_Z.U_

30
31
33
37

39
39
46
55

57



Fig. 1 -

Fig. 2 -

Fig. 3 -

Fig. 4 -

Fig. 5 -

LIST OF FIGURES

The volume element of height g dt and cross sectional area
b db de, with sides lying between b and b + db, and

between € and € + de v ivi ittt e e e e

When the gas satisfies the condition of molecular chaos,
the function H(t) is at a Tocal maximum, indicated here by

the point denoted (2) ...ovviiiiiiiiiiii i i

The time evolution of H(t) for a gas initially not in an
equilibrium state s indicated by the solid curve. The
dashed curve is the time variation of H{t) predicted by
the Boltzmann equation. The dots indicate some of the

instants when the condition of molecular chaos is satisfied

Spherical coordinates (v, 6, ¢) in velocity space ........

I1lustrating the processes of dynamical friction and

diffusion in velocity sSpace ...vvvviirririiiiienverennn.

—U—.

25

26



CHAPTER 21

THE BOLTZMANN AND THE FOKKER-PLANCK EQUATIONS

1. INTRODUCTION

When the Boltzmann equation was first introduced in Chapter
3, the effects of collisions were incorporated in its right-hand side
[see Eq. (5.5.27)] through a general collision term (6F /6t) o112
still to be specified. We present now a derivation of the Boltzmann
collision term, which takes into account only binary collisions. This
collision term involves integrals over the particle velocities, so that
the Boltzmann equation turns out to be an ‘ntegro-differential
equation. The fact that the Boltzmann collision integral takes into
account only binary collisions limits considerably its applicability
for a plasma, where each charged particle interacts simultaneously with
a large number of neighboring charged particles. Although these
multiple Coulomb collisions are very important for a plasma, there are

some cases, however, as in weakly ionized plasmas, where the binary

charged-neutral collisions play a dominant role.

The collision term originally proposed by Boltzmann
applies to a gas of Tow density, in which only binary elastic collisions
are important. These binary collisions may involve neutral atoms or
molecules 1in a dilute das, or charged and neutral
particles in a plasma. We have seen that in a

plasma these are not the only particle interactions of importance. The
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multiple Coulomb interactions need to be taken into account and in most
cases are much more important than the binary collisions. Nevertheless,
the Boltzmann collision term can 1in some cases be used for & plasma,
but the results obtained have to be interpreted cautiocusly.  Further-
more, the Fokker-Planck collision term, which applies to charged
particle interactions, can be derived from the Boltzmann collision term
by considering the charged particle encounters as a series of

consecutive weak (small deflection angle) binary collisions.

2. THE BOLTZMANN EQUATION

2.1 - Derivation of the Boltzmann collision integral

The collision term, (6fa/6t)co]1, represents the rate of
change of the distribution function, f&(f, v, t), as a result of
collisions between the particles. Some of the particles of type o
originally situated inside the volume element d°r d®v at (r, v) in
phase space may leave this volume element, whereas some particies of
type o originally outside the volume element may enter it, as a result
of coliisions during the time interval dt. Let ANu denote this net gain

or Toss of particles of type o in d°r d®v at (r, v) during dt, that is,

&F
AN = (—2)  dPr div dt (2.1)
“ &t

coll

It is convenient to separate AN(1 into two parts



AN, = N7 - N (2.2)

where AN; represents the gain term due to collisions in which a particle
of type o situated inside d3r about r has, after collision, a velocity
lying within d°v at v, and AN; represents the Toss term due to collisions
in which a particle of type o situated inside d3r about r has, before

collision, a velocity lying within d3v at v.

We proceed now to determine ANQ, defined in Eq. (2.1), by

calculating initially AN& and afterwards AN;.

To calculate AN& we consider the particles of type o
situated within the volume element d3r at r, whose velocities 1ie
within d® about v, and which are scattered out of this velocity range
as a result of collisions with particles of some type 8 {which may or
may not be type o particles) 1lying in the same volume element d3r at
r, and having scme velocity within d3v, about vi.Let us focus attention
on a single particle of type o situated within the volume element of
phase space d*r d°v at the coordinates (r, v). The particles of type B
inside d°r d®, at (r, v,) may be viewed asconstituting a particle
flux incident on this particle of type a. Noting that fB(g, vi, t) dvy
is the number of type g particles per unit volume, with velocities

within d3v, about Vi, the flux of this incident beam can be written as

I.B = fB(r’ Vi, t) d3V1 !!1 - !| = fs(rs Vis t) d3V1 g (2'3)
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Consider the type B particles which approach with an impact parameter
between b and b + db, in a collision plane lying between the angles ¢
and € + de. The average number of interactions of this part of the type
B particles with the type o particle, occurring in the time interval
dt, is equal to the number of particles crossing the element of area b
db de during dt. This number can be obtained by multiplying the flux of
type B particles, given in (2.3), by the element of area b db de and by

the time interval dt,

Tg b db de dt = f(r, vi, t) d°v, g b db de dt (2.4)

This expression is just the number of particles of type B with
velocities within d’v, about v,, lying inside the elementary
cylindrical volume of length g dt and cross sectional area b db de,
shown in Fig. 1, and whose volume is g b db de dt. It is assumed here
that dt is large compared to the time of interaction between the
colliding particles. To determine the number of collisions between the
indicated part of the type B particles with all the type o particles
lying within d°r d® at (r, v), during dt, we multiply Eq. (2.4) by

f (r. v, t) d°r d®v, the number of particles of type a lying within the

ot~ ~

volume element of phase space d°r d’v at (r, v},

f(r, v, t) d’r d’v f

o r, vi, t) d°v; g b db de dt (2.5)

gl



o \ . "l‘“' .bds

w i

Fig. 1 - The volume element of height g dt and cross
sectional area b db de, with sides l1ying between
b and b + db, and between ¢ and £ + de

In deducing this expression it has been assumed that the
number of particles of the types « and R, with velocities in d3v about
v, and d®v; about Vi, respectively, Tying in the same volume element

d® about r, is proportional to the product fu(f’ v, t) fB([, vi, t).

However, in a system of interacting particles the existence of a
particle within a given volume element d®r at r, with a given velocity
v, affects the probability that another particle be found with a
specified velocity vi in the same volume element d®r, at the same
instant of time. Thus, in expression (2.5) we are neglecting any
possible correlation that may exist between the velocity of a particle
and its position. This approximation, known as the molecular chaos
assumption, is introduced as a mathematical convenience, but although it
may represent a possible condition for a system of particles, it is not

a general condition.



The total number of particles of type o in d3r about r
that are scattered out of the velocity space element d3v about v,
during dt, is obtained integrating expression (2.5) over all possible

values of b, e and v,, and summing over all species g

AN& = f(r. v, t) d’r d%v dt ) J J J fB(g, vi, t) dvig b db de (2.6)

8
vi b =

where the triple integral over vy 1s represented again by a single

integral sign.

To determine the gain term, AN;, we proceed in a way
similar to the determination of AN&, by considering the <nverse
collision, in which a particle of type o with initial velocity in d3v'
about v' collides with a particle of type B having initial velocity in
d®v) about Vi, resulting in the particle of type o scattered into the
velocity element d®v about v, the event occurring inside the volume
element d°r about r. The average number of interactions between a
single particie of type o, inside the volume element of phase space d3r
d®v' at (r, v'), with the particles of type 8 inside d°r d3v) at
(r, vi), which approach with an impact parameter between b and b + db,
and with the collision plane oriented between the angles ¢ and ¢ + de,

is given by

f(r, vi, t) d®v{ g' b db de dt (2.7)



To take into account all collisions occurring within d°r at r, during
the time interval dt, between the particles of type o and type B8

which scatter the particles of type o into the volume element d®v
about v, we must multiply (2.7} by the number of particles of type o
which 1ie initially dinside d°r d®v' at (r, v'), that is fu(r, v, t)
d®r d®', integrate the result over all possible values of b, € and v;,

and sum over all species B,

AN; = f (r. v', t) d°r dPv' dt J J falrs vi, t) d*vig'b db de
B

vi b ¢
(2.8)

We have seen that g' = g = |v; - v|, and from the theory of Jacobians
div'd®vy = [J] d3v ddv, (2.9)

It is shown in the following subsection that for this transformation of

velocities we have |J| = 1, so that
dv'd3vy = d% div, (2.10)
and Eq. (2.8) becomes

AN; = foz.(,r:’ !l, t) d3r d¥v dt ): J J J fB(E, !'1, ‘t) d3V1 g b db de

(2.11)
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If we now combine the expressions for AN& and AN;, and
substitute b db de = ¢ () d2, we obtain the following expression for

the Boitzmann collision integral

+ -
Sfa _ AN& - ANa

3 3
8t col] d*r d°vdt

= 7 J [ (f, fa, = fy Tg,) V2 go(@) do (2.12)

B
v, @

where we have used the notation

In explicit form, the Boltzmann equation can finally be written as

81) d*vygo(f) do

af
_a. +vevf +a-v f = 7§ J J (f& fé1 - f& f
g

(2.14)



The Boltzmann equation is therefore an integro-differential equation,
involving integrals and partial derivatives of the distribution
function. The external force, F = mas in the case of a plasma,
includes also the electromagnetic Lorentz force, F = qa(g + v x B}, due

to externally applied fields.

Forasystem consisting of various different species of
particles, there is one equation for each species. For an ionized
gas composed of electrons, one type of positive ions and one type of
neutral particles, for example, we have a system of three
Boltzmann equations coupled through the collision term. In the
Boltzmann equation for the electrons, for example, the collision term
contains the distribution function for the electrons,fe,the distribution
function for the ions,fi, and the distribution function for the neutral
partic]es,fn. Since the collision term involves products of the
distribution functions, the Boltzmann equation is also wuonlinear. Fora
system consisting of only one type of particles the summation over the
type 8 particles disappears, and the collision term involves .only

the product of distribution functions of the same particle species.

2.2 - Jacobian of the transformation

The relation between the velocity elements d®v d3v, and

d' d%) 1is given by

d3v'divy = |J] d3v dPv, (2.15)
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where J is the Jacobian of the transformation from the variables

(!s !1) to (!ls Vi)s

1 1 1 1 ] 1 ] 1
J - oly", vi) _ alvys Vy» V2o Yaxe Viye VIZ) (2.16)
alv, vi1) (v, Vys Var Vi Vo v )
which corresponds to the determinant
1 1 1
BVX va o _Bvlz
avx SVX avx
v av’ av!
J = X y . e 12 (2.17)
av v v
Y N Y
t 1 1
BVx v .. avlz
Bvlz avlz avlz

Using Egs. (20.2.5) and (20.2.6) we can express d®v and

d*v,; in terms of d3c0 and d3g,

d3v dv; = | Je | dc, dg (2.18)
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where JC denotes the Jacobian of the transformation indicated in
Egs. (20.2.5) and (20.2.6). Let us consider initially only the

x-component of (2.18),

o d a(vx, Vo)
v dv _ = dc__ dg (2.19)
X X 0X X
B(Cox’ gx)
From Eqs. (20.2.5) and (20.2.6) we obtain
|1 - wm
dv, dv = de,, 49,
1 u/m,
1 ]
=4 (——+ —) dc, dg
M " 0X 7%
= dc, dg, (2.20)

Taking the product of three such terms, corresponding to the components

X, ¥, Z, gives

d3v d?vi = d3c0 d3g (2.21)

In a similar way, using Eqs. (20.2.8) and (20.2.9}) we
find
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div' d%i = dic) dig’ (2.22)

We have seen that ¢o = So Furthermore, g and g' differ only in

direction, having the same magnitude, and since volume elements are not
changed by a simple rotation of coordinates, we must have d®g = d3g'.

Consequently, (2.21) and (2.22) imply
d®v d3v; = d®v' d3v! (2.23)

2.3 - Assumptions in the derivation of the Boltzmann collision integral

The derivation of the Boltzmann collision integral

involves four basic assumptions:

(a) The distribution function does not vary appreciably over a
distance of the order of the range of the interparticle force
taw, as well as over time scales of the order of the

interaction time.

(b) Effects of the external force, on the magnitude of the

collision cross section, are ignored.
(c) Only binary collisions are taken into account.

(d) The velocities of the interacting particles, before collision,

are assumed to be uncorrelated.

The first assumption is quite reasonable and is
incorporated in the calculationof (8f /8t) q77 When we evaluate all the

distribution functions at the position r and at the instant t.
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The element of volume d°r is considered to be Targe compared to the
range of the interparticle forces, and the time interval dt is taken to
be large compared to the time of interaction. On the other hand, as far
as variations in the distribution functions are concerned, the elements

d®r and dt must be infinitesimally small quantities.

Next, the external force was assumed to have a negligible
effect on the two-body collission problem. This is valid if the
external force is negligibly small compared to the force of interaction
between the particles. When external forces of magnitude comparable to
the short-range interparticle forces are present, the collision process
is modified. The constancy of the relative speed g = lgl - g| is valid

only in the absence of external forces.

The assumption of binary collisions is justified for a
dilute gas, whose molecules interact through short-range forces.
However, it is not strictly valid for a plasma, where the Coulomb force
between the charged particles is a long range force. In a plasma a
charged particle interacts simultaneously with all the charged particles
inside its Debye sphere. Since there is a large number of charged
particles inside a Debye sphere, eachcharged particle in the plasma
does not move freely, as does a neutral particle between collisions, but
is permanently interacting with a large number of charged particles.
Each Tong-range individual interaction, however, results only in a small
deflection in the particle trajectory. Since each individual interaction
is relatively weak, the collective effect of many simultaneous

interactions can be considered as a cumuTative succession of weak binary
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collisions. Thus, in general, the Boltzmann collision term is not
strictly valid for a plasma and the results obtained for the case of
charged-neutral particle interactions in weakly ionized plasmas must

be interpreted cautiously.

Assumption (d) is known as the molecular chaos assumption.

It is justified for a gas in which the density is sufficiently small,
so that the mean free path is much larger than the characteristic
range of the interparticle forces. This is certainly not a general
situation for a plasma, in view of the long-range characteristic of the
Coulomb force. Generally, the joint probability of having, at the
position r and at the instant t, a particle of type o with velocity v
and a particle of type g with velocity vy, is proportional to

flr, v, t) f

(r: !19 t) [T+ ‘{’a (!5 !15 r: t):l (2-24)

g B
where L (vy vi, r, t) is known as the correlation funetion. In the
derivation of the Boltzmann collision integral we have neglected the
correlation effects between the particles and we have taken this joint
probability as being proportional to fq([, v, t) fs(g, Vi, t). The
zrreversible character of the Boltzmann equation, to be discussed in
the next section, is a consequence of the molecular chaos assumption.
In order to avoid this approximation the only alternative is to work
with the reversible equations of the BBGKY (Bogoliubov, Born, Green,
Kirkwood and Yvon) hierarchy. This treatment, however, is beyond the

scope of this text.
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For gaseous systems in which the characteristic
interaction length is much less than the average interparticle distance,
and where temporal and spatial gradients are not very large, the
Boltzmann equation is nevertheless very well verified experimentally
and, in this respect, constitutes one of the basic relations of the

kinetic theory of gases.

2.4 - Rate of change of a physical quantity as a result of collisions

In section 2, of Chapter 8, we have represented the time
rate of change of a physical quantity y(v) per unit volume, for the

particles of type o, due to collisions with the other particles in the

plasma, by

"8 ( )} 5, 3

n.<x?= = X (——) d°v (2.25)
L st © * st coll
coll v
Using the Boltzmann collision integral,
&f
- = 1 1 _ 3
( " ) (fﬁ fB1 fu fBI) g o(R) dg d’v, (2.26)
coll B
v 1

we obtain the following expression for (2.25),
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__(S_(nu<x>a):| =

8t
coll
= ZJ J J (f& fél - fm fBl) X g o(Q) d d3v, dd (2.27)
R
2 Vv, Vv

Recall that for each direct collision there is a
corresponding inverse collision with the same cross section. Hence, the
integrals over v and v; can be replaced by integrals over v' and vi,
respectively, without altering the result. Therefore, the first group

of integrals in (2.27) may be written as

3 J ] J fLf4 X g o(@) da dv; dP =
B
\QV1V

=] J J J fa Ta, X' g o(9) da dv, d% (2.28)
8

where we have replaced d°v' d°v] by d3v d®,. Using this expression,
results in the following alternative form for the collision term in

(2.27),

[.____ (n, <X>) | = 1 J J J ffa, (X' =X go(g) da d’v, d

coll B

8 vy v (2.29)
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Note that the property X(v) is associated with the
particles of type o and that X' denotes X{v'). Note also that only the
quantity X' on the right-hand side of (2.29) is a function of the

after collision velocity v'.

The result just derived applies to the special case
of binary collisions in a dilute plasma (or gas), when processes of
creation and disappearance of particles, as well as radiation losses

are unimportant.

3. THE BOLTZMANN'S H FUNCTION

An important characteristic of the Boltzmann collision
term is that it drives the distribution function towards the
equilibrium state inan<rreversible way. This irreversible character of
the Boltzmann col]is{on term, as mentioned before, is a consequence of
the molecular chaos assumption, which neglects the correlation effects

between the particles.

In order to place in evidence this aspect of the
Boltzmann collision term, we introduce now the Boltzmann's function
H(t). For simplicity, we will consider the particles to be uniformly
distributed in space (having no density gradients) and isolated from
external forces. The distribution function is therefore dindependent
of r and can be denoted f(v, t). We define, according to Boltzmann, the

function H(t) by
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H(t) = J f(v, t) 2n f(v, t) d (3.1)

v

For problems involving spatial gradients the function

H{t), defined in (3.1), is Htota] (t) per unit volume, where

| Y

The function H(t) is proportional to the entropy per

unit volume of the system according to

—— = - kH (3.3)

where S denotes the total entropy, V is the volume of the system and k
is Boltzmann's constant. More generally, for systems in which spatial

gradients are present we have

S = - kHtota1 (3.4)

with H as defined in (3.2).

total
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3.1 - Boltzmann's H theorem

The Boltzmann's

H theorem states that

if f(v, t}

satisfies the Boltzmann equation, that is, if

af(v, t)
e J J[f(y', t) f(vi,
ot
9] Vi1
then
LHtt)_ g 0
at

To prove this theorem

with respect to time, which gives

o] ) 2R gy
at at
Substituting (3.5) into (3.7) gives

‘ (1 + enf) (f' f!

Q vV oV,

t) - f(v, t) f(vi, t)] g o(f) dadiy

(3.5)

(3.6)

let us take the derivate of (3.1)

(3.7)

3
- ff)go() dudiv,dv (3.8)
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where the notation fi = f(vi, t), and so on, has been used. The
variables of integration v and v, are dummy variables, and can be
interchanged in the integrand of (3.8} without changing the value of the
integral, since o(Q) and g = |v, - v| are also invariants. Thus, (3.8)

can be written as

LI LI J J J (1+2n fy) (FI £' - £, £) g o(Q) do d® d, (3.9)

£ v '

Adding Egs. (3.8) and (3.9), and dividing by 2, gives

( J L2+ an (f f)] (F'fl - ff) go() da div, dPv
\

(3.10)

In this equation we can replace the velocities before collision, v and
vi, by the velocities after collision, v' and vi, respectively, without
altering the value of the integral, since for each collision there
exists an inverse collision with the same differential cross section
a(f). We have already seen that d°®v' d%}] = d® d%, and g = g'.

Conseguentiy, (3.10) may be written as

J J [2+ an(f' f1)] (f f, ~ £'f}) g o(Q) do d?v, dP
v

(3.11)
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We now combine Egs. (3.10) and (3.11) to obtain

. J J J [an( =507 (£1%1 - £ £1)q o(0) da dov, dv
4
£ v

(3.12)

In this expression it is clear that +if f'f} > f f,
then an(f f,/f'f]) < 0, and consequently 3H/3t < 0, since all other
factors appearing in the right-hand side of (3.12) are positive. On the
other hand, if f'fi < f f, then 2n (f f,/f'f}) > 0 and, again,
oH/3t < 0. When f'f] = f f;, both factors are zero and 3H/3t = 0.

This proves the H theorem and shows that, when f satifies
the Boltzmann equation, the functional H{t) always decreases
monotonically with time wuntil it reaches a limiting value, which occurs
when there is no further change with time in the system. This Timiting

value is reached only when

so that this condition is necegeary for 3H/ot = 0 and, consequently, it
is also a necessary condition for the equilibrium state. According to
the Boltzmann equation (3.5), the equilibrium distribution function

satifies the following integral equation

J J Cf(v') flvi) - f(v) f(vi) ] g o) da dv, =0 (3.14)
& v,
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so that the condition (3.13) is also a sufficient condition for the

equilibrium state.

It is instructive to note that Eq. {(3.13) can be
considered as an example of the general principle of detailed balance
of statistical mechanics, as discussed in section 1, of Chapter 7, where
it was used to derive the Maxwell-Boltzmann equilibrium distribution
function. An important conclusion that can be drawn from (3.13) is that
the equilibrium distribution function is independent of the differential
collision cross section, o(Q), considered tobe nonzero. The
Maxwell-Boltzmann distribution function is therefore the only
distribution for the equilibrium state that can exist in a uniform gas

in the absence of external forces.

3.2 - Analysis of Boltzmann's H theorem

According to (3.3), the H theorem states that the entropy
of a given isolated system always increases with time until it reaches

the equilibrium state.

Although this <rreversible behavior is compatible with
the laws of thermodynamics it is, nevertheless, in disagreement with
the laws of mechanics, which are reversible. If, at a given instant of
time, the velocities of all the particles in the system were reversed,
the Taws of mechanics predict that each particle would describe, in the
opposite sense, its previous trajectory. However, we have seen that the

Boltzmann collision term leads to a irreversible temporal evolution of
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the distribution function and of the function H. The existence of this
paradox has its origin in the molecular chaos assumption that was

used in the derivation of the Boltzmann collision term.

Recall that the molecular chaos assumption admits that,
if f(r, v, t} {is proportional to the probability of finding in a given
volume element d®r about r a particle with velocity v, at the instant
t, then the Jjoint probability of simultaneously finding 1in the
same volume element d®r about r a particle with velocity v and another
particle with velocity v, , at the instantt, is proportional to
the product f(r, v, t) f(r, v;, t}. Thus, it neglects any possible
correlation that may exist between the particles. Generally, the state
of the gas may or may not satisfy the molecular chaos assumption and,
consequently, the distribution function describing the gas may or may
not satisfy the Boltzmann equation. The distribution function, which
characterizes the state of the gas, will obey the Boltzmann equation
only at the instants of time when the molecular chaos assumption holds
true for the gas. The H theorem, therefore, is also valid only when this

condition is satisfied.

We shallshow now thatat the instants of time when the state
of the gas satisfies the molecular chaos assumption, the function H(t)
is at a local maximum. For this purpose consider a gas not in
equilibrium, which is in the state of molecular chaos at the instant
t = to. The H theorem implies, therefore, that at the instant
t0 + dt we have dH/dt < 0. Consider a second gas which at the

instant t = t| is exactly identical to the first one, except
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that the velocities of all the particles have directions opposite to

the velocities of the first one, has the same function H(t) as the first
one, and is in a state of molecular chaos at t = to’ Consequently, at
the instant t, + dt we must have dH/dt < O, according to the

H theorem. On the other hand, due to the invariance of the equations of
motion under time reversal, the time evolution of the second gas
corresponds to the past of the first. This means that for the first

gas we must have

= t0 + dt (3.15a)
dt
du{t) S at b=ty - dt (3.15b)
dt

which shows that at the instant when the conditign of
molecular chaos is satisfied, the function H(t) is at a local

maximum, This is illustrated in Fig. 2 at the instant t = t, indicated
by the number (2). At the instants when H{t) does not present a
local maximum, as for example at the instants indicated by the numbers
(1) and (3) in Fig. 2, the gas isnotinastate ofmolecular chaos. Note

that dH/dt need not, necessarily, be a continuous function of time

and may change abruptly as a result of collisions.

The time evolution of H(t) is governed by the

collisional interactions between the particles, which occur at random,

and which can establish, as well as destroy the state of molecular
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H(t) 4
(2)

(1) (3)

}
i
l
1
|
to t
Fig. 2 - When the gas satisfies the condition of
molecular chaos, the function H(t) is at

a local maximum, indicated here by the
point denoted (2).

chaos as time passes. Fig. 3 illustrates how H(t) may vary with time.
Some of the instants when the condition of molecular chaos is
satisfied are indicated by dots in the curve of H(t). If the condition
of molecular chaos prevails during most of the time, as in a dilute
gas, for example, H(t) will be at a local maximum most of the time. Due
to the random character of the sequence of collisions, these instants of
molecular chaos will probably be distributed in time in a almost
uniform way. On the other hand, the time variation of H(t) obtained
using the distribution function that satisfies the Boltzmann eguation
is represented by a smocth curve of negative slope which tries to fit,
with a minimum deviation, all the points (instants) of the real curve of
H(t) in which the condition of molecular chaos is satisfied, as shown
by the dashed line in Fig. 3. The state of molecular chaos can
therefore be considered as a convenient mathematical model to describe

a state not in equilibrium.
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bt

Fig. 3 - The time evolution of H(t) for a gas initially
not in an equilibrium state is indicated by the
solid curve. The dashed curve is the time
variation of H{t) predicted by the Boltzmann
equation. The dots indicate some of the instants

when the condition of molecular chaos is satisfied.

The Boltzmann equation, although strictly valid only at
the instants when the gas is in the state of molecular chéos,
can, nevertheless, be considered generally valid in a statistical sense

at any instant. Similarly, the H theorem is also valid only in a

statistical sense.

3.3 - Maximum entropy or minimum H approach for deriving the equilibrium

distribution function

The Maxwell-Boltzmann equilibrium distribution function
can also be derived by performing a variational calculation on the
function H(t). We have seen that at equilibrium H is a minimum, so

that for a one-component uniform gas we must have at equilibrium
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8H = ¢ f onf div = 0 (3.16)

The symbol &, before a given quantity, denotes a variation in that
quantity as a result of a smali change in the distribution function f.

Carrying out the variation indicated in Eq. (3.16) in a formal way, we

have

SH = | (1 + anf) 6f d = 0 (3.17)

J

v

There are, however, certain macroscopic constraints imposed on the
system. When we vary f slightly, we cannot violate the conservation of
mass, momentum and energy for the system as a whole. Therefore, the
variational integral (3.17) is subjected to the constraints that the
total mass, momentum and energy densities of the uniform gas remain
constant under the variation &f. The constancy of the mass density under

a small change 6f in f, requires that

§(p) = m J §f dv = 0 (3.18)

v
Similarly, for the constancy of the momentum density,

8(p <v>) =m [ v 8f d®v = 0 (3.19)
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and for the energy density,

S(—— o <«w?) =1 p J vZ §F d3 = 0 (3.20)
2 2

v

We can now solve the variational integral in (3.17)
subject to the constraints expressed in Eqs. (3.18), (3.19) and (3.20)
by the method of the Lagrange multipliers. Multiplying Eq. (3.18) by the
Lagrange muitiplier a;, the i'th component of Eq. (3.19) by the Lagrange
multiplier az; (for i = x, y, z), Eq. {3.20) by the Lagrange multiplier

a3, and adding the resulting equations together with (3.17), gives

2

m { (T +anf +a; +a; v + 1 asv?) 6f d3v = 0 (3.21)
_____ !
where we used the notation a, + v = apy vy + dzy Vy + 82z Vz. The
variation &f.  is now completely arbitrary, since all the
constraints imposed on the system have been taken into account in Eq.

. (3.21). Thus, this integral canbe equal to zero if and only if

M f=-(1+a, +a+v+——as v2) (3.22)
S

The form of this equation is identical to Eq. (7.1.19),
which we solved in Chapter 7 to obtain the Maxwell-Boltzmann
distribution function. Hence it Teads, in identical fashion, to the

equilibrium distribution functior
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f:n(._._.m__

)*/% exp [- m(v - u)2/2kT ] (3.23)
2mkT -

with V-u-=c. The Maxwellian distribution function, besides being the
equilibriun solution of the Boltzmann equation is, therefore, also the
most probable distribution consistent with the specified macroscopic

parameters n, u and T of the system.

3.4 - Mixture of various species of particles

For the case of a mixture containing different species of
particles, each species having a given number density n,» average
velocity u,> and temperature T,» we can still perform a variational
calculation to determine the most probable distribution subject to the
constraints provided by the set of macroscopic parameters nge Yy Ta,
for each species of particles. Note that this is not an equilibrium
situation, unless the temperatures and mean velocities of all species
are equal. To determine the most probable distribution function for
this nonequilibrium gas mixture (each species having their own number
density, mean velocity and temperature), we independently minimize each
Ha’

H, = [ £, anf ddv (3.24)

v

This also minimizes H for the mixture, since
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H=1H (3.25)

For the species of type a, when Ha is at its minimum, we
must have GHG = 0 for a small variation 6fu in fa. The macroscopic
parameters Ny Yy and Ta must all remain fixed when fu is varied. The
problem is completely analogous to the one we solved in the previous
subsection for a one-component gas, and leads, in identical fashion, to
Eq. (3.23) for each species. Therefore, each particle species has a
Maxwellian distribution function, butwith its own number density, mean
velocity and temperature. Although this is not an equilibrium situation
for the whole gas (unless the mean velocities and temperatures of all
species are the same), it is, nevertheless, the most probable
distribution function for this system subject to the specified

constraints.

4. BOLTZMANN COLLISION TERM FOR A WEAKLY IONIZED PLASMA

In this section we derive from the Boltzmann equation
an approximate expression for the collision term for a weakly jonized
plasma 1in which only the collisions between electrons and
neutral particles are important. The distribution function for the
neutral particies is assumed to be homogeneous and isotropic. The
external forces acting on the electrons are assumed to be small, so
that the electrons are not very far from the equilibrium state.

Consequently, the spatial inhomogeneity
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and the anisotropy of the nonequilibrium distribution function for the
electrons are very small, since the nonequilibrium state is only

slight perturbed from the equilibrium state. In the equilibrium state
the electrons are assumed to have no drift velocity and their

distribution function is isotropic and homogeneous.

4.1 - Spherical harmonic expansion of the distribution function

Let {v, 8, ¢) denote spherical coordinates in
velocity space, as shown in Fig. 4. Since the anisotropy of the
nonequilibrium distribution function 1is very small, the
dependence of f(r, v, t) on 6 and ¢ is very weak. Hence, it is
appropriate to expand f(r, v, t) in terms of the velocity space angular
variables 6 and ¢, and retain only the first few terms of this
expansion. Since ¢ varies between 0 and 2m, we can expand
f(r, vy t) in a Fourier series in ¢. Furthermore, 6 varies between 0 and
m and, consequently, cos(6} varies between + 1 and -1, which means that
we can expand f(r, v, t) in a series of Legendre polynomials in cos (9).
Therefore, we can make a spherical harmonic expansion of the

distribution function as follows

0

flr, v. t) =} § Pﬁ (cos 0)[ ﬂnn(r’ v, t) cos(mg) +
m=0n=0

+g (r, v, t) sin(mg)] (4.1)
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where the functions P? (cos B) represent the associated Legendre
polynomials, and _the functions fmn and pp C2N be considered as

coefficients of the expansion.

Vil

Fig. 4 - Spherical coordinates (v, 8, ¢)
in velocity space.

The first term in the expansion (4.1} corresponds to
m=0, n=0, and since Pg(cos g) =1, it follows that it is given by
foo(r’ v, t). This leading term is the isotropic distribution function
corresponding to the equilibrium state of the electrons. The term
corresponding tom =1, n = 0, vanishes, since Pé(cos 0) = 0. The next
highest order term in (4.1} corresponds tom =0, n =1, and since

P9

(cos &) = cos 8, it is given by fg:(r, v, t) cos 8. Therefore,
retaining only the first two non-zero terms of the spherical harmonic
expansion (4.1), in view of the fact that the anisotropy is assumed to

be small, we obtain
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fOl (r_: v, t) (4'2)

where we have replaced cos 9 by Vo Ez/v (see Fig. 4). The second term
in the right-hand side of (4.2) corresponds to the small anisotropy due

to the spatial inhomogeneity and the external forces on the electrons.

4.2 - Approximate expression for the Boltzmann collision term

The Boltzmann collision integral, given in Eq. (2.12),

can be written for the case of binary electron-neutral collisions as

6 f
( : deol? = J
b

1 i - 3
" J ‘ (fo fn, = fo fn,) 9 b db de d’v, (4.3)
£

Vi

where we have replaced o(R2) dQ by b db de. Here fe represents the
nonequilibrium distribution function for the electrons, and fn is the

isotropic equilibrium distribution function for the neutral particles.

In a first approximation we may assume the neutral
particles to be stationary and not affected by collisions with
electrons, since the mass of a neutral particle is much larger than

that of an electron. Hence, we assume that

¥ =<
1}
i<
1
o

(4.4)
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foo=fr (4.5)

Therefore, (4.3) becomes

[+5)

5 f, ; en |
( ) = f, dvs de | (fi-f,) gbdb (4.6)

Vi a 0

Since the  number density of the neutral particles is given by

n, = J f d3v, (4.7)

Vi

we can write (4.6) as

2T o
5 f,
( ) =gl de | (FL-f) gbdb (4.8)
5t ot J
(o]

Further, from (4.2), the distribution function for the

electrons, before collision, is given by

and, after collision, by
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1 !I * EZ
f € y fe(r, v, t) = fOo(r’ Vi t) v fOl([, vl t)
=follvat) + 2 "3z for(r, v, t) (4.10)
v

In this l1ast equation we have considered v' = v, in view of the fact
that the electrons do not Toose energy on collisions, since the
neutrals are much more massive and considered at rest in a first

approximation. This means that v = g and v'

g' [ see Eq.{4.4)], and

since g = g' [ see Eq. (20.2.16)] we have v

v'. Note, however, that

v # v'. Therefore, from (4.9) and (4.10), we have

fo = fg= — “Z— fo(r, v, t) (4.11)

Without any loss of generality we can choose the V- axis as being
parallel to the initial relative velocity, g, of the electron.

Therefore,

=g cos¥-dg

v (cos X - 1) (4.12)
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where X denotes the scattering angle, that is, the angle between g and

g' (see Fig. 3, of Chapter 20). Substituting (4.12) into (4.11), we

obtain
fo - fo = - (1 - cos %) for(r, v, t) (4.13)
The substitution of (4.13) into (4.8), yields
2n o
6§ Ty
( =-n. 9 for(r, v, t) | de (1 - cos x) b db (4.14)
St coll
Q

Since the momentum transfer cross section, Um’ for collisions between

electrons and neutral particles, is defined by [(see Eq.(20.5.10)]

= J de {1 - cos %} b db (4.15)
o

we can write (4.14) as

( Gte ) =-n g0 fo(r, v, t) (4.16)
coll
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If we substitute fo, (r, v, t} in (4.16) using (4.9), and noting that

1, we obtain

VooV, /v=g-V. /g

§ f

e = -
() =yl - o)

coll

=-v_ (v) (f -Ff_ ) (4.17)

where we have introduced the velocity-dependent relaxation collision

frequency “r(v) =n. Vo, and where f . which characterizes the

n
isotropic equilibrium state of the electrons, has been replaced by foe’
in accordance with the notation used previously. Expression (4.17) is
similar to the relaxation model (or Krook model) for the collision

term introduced in section 6, of Chapter 5, except for the velocity-
dependent collision frequency. Once the force of interaction between
the electrons and the neutral particles has been specified, the

momentum transfer cross section, S and consequently the relaxation

coliision frequency, “r(V)’ can be determined as  functions of velocity.

4.3 - Rate of change of momentum due to collisions

The time rate of change of momentum per unit volume of
the electron gas due to collisions with neutral particles is given,

from (8.4.3), by



[ 6 (p. u) s f
= —— & =m v (—2= div (4.18)
~e e ~
8t St coll
coll v
Substituting (4.17) into (4.18), we obtain
- _ 3 3
ﬂe = - M J vr(v) v fe d°v + Mg [ vr(v) v foe d’v (4.19)

If we assume that the relaxation collision frequency, Vs does not
depend on velocity, and if we consider that the electron gas has no

drift velocity in the equilibrium state, that is,

_ 1 3y =
Upe = —— J v foe d’v =0 (4.20)

e

then (4.19) becomes

=
1
|

= m
~e ne € vF EE

T Pe Vp Y

(4.21)
where Ug is the average velocity of the electrons in the nonequilibrium
state. Eq. (4.21) corresponds to the expression used in the Langevin

equation for the time rate of change of momentum per unit volume as a
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result of collisions, in which a constant collision frequency, Ve

was introduced phenomenologically.

5. THE FOKKER~-PLANCK EQUATION

In this section we present a derivation of the Fokker-
Planck equation, in which the collision term takes into account the
simultaneous Coulomb interactions of a charged particle with the
other charged particles in its Debye sphere. For this purpose we
assume that the large-angle deflection of a charged particle, in a
multiple Coulomb interaction, can be considered as a series of
consecutive weak binary collisions (or grazing collisions), that is, as
a succession of small-angle scatterings. Therefore, the Fokker-Planck
collision term can be derived directly from the
Boltzmann c¢ollision integral, which is valid for binary collisions,
under the assumption that a series of consecutive weak (small-angle
deflection) binary collisions is a good representation for the multiple
Coulomb interaction. Only collisions between species of particles

represented by the indices o and B will be considered.

5.1 - Derivation of the Fokker-Planck collision term

If X(v) is some arbitrary function of velocity,
associated with the particles of type o, then, according to Eqgs. (2.27)
and (2.29), the time rate of change of the quantity X(v) per unit
volume, as a result of collisions between particles of type o and those

of type R, can be expressed as
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&f
J x(v) (—=) dv = J J J (f, fél - T fBI) X g o{Q) do div, d3v

\' 2 vy

= J J J f, Ta, {(x'=- %) g o{n) do d3v, d3

v, v

(5.1)

where X' denotes x(v'). In this last expression only the quantity X' is
a function of the velocity after collision v'. For weak binary

collisions (or grazing collisions), we can write

vl o= v+ Ay (5.2)

Xz X(v') = X(v + Av) (5.3)
we can expand X' in a Taylor series about the velocity v, as

2
X(v + Av) = X(v) + ] 2 a4+ 73X bvy Ao, (5.4)

- - - .| - -
5 9vy 2 §,j 9v; ij

Substituting (5.4) into (5.1), and neglecting higher order terms,

we obtain
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St ( sy
X (—2) div = fo fa (1 Av, o+
1
8t com ) i Y
£ v
1 32X 3 3
+—_ ] — Avi Av.) g o(Q) da div, dPv (5.5)
2 5.5 vy vy J

The next step is to factor out the arbitrary function
X(v) from Eq. (5.5). This can be accomplished by integrating the first
group of integrals involving BX/B&i, in (5.5), by parts once, and the
second group of integrals involving ale(avi avj) by parts twice. For
example, for the x component of the first group of integrals involving

BX/avi, we have

ax(v) 3
J J J —— tv £ (V) fo(vi) g o(q) do dPv, dPv =

For the term within brackets we can take
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ax(v)
dy = —————  dv
X

U= (v - v} fu(g) g (0} da

and perform the integral over Vy by parts to obtain

= - J X{v) -(v' - Vx) fa(!) g o(R) do } dvx

where the integrated term vanishes since f must be zero at * .

Therefore, we find for the integral in (5.6)

aX(v) o
] J J Ty AVx FQ(E) f5(31) g (@) do div; d°v =

(5.7)

(5.8)

(5.9)

oV
X
0 vy v
d | 3 3
= J J J = X(v) av, [ av, f(v) g o(q) do J foly) dvy dov
£ v, v



- 43 -

Performing the other integrals in (5.5) by parts, in a similar way,

yields for the collision term

&f -
X (—2)  div = - XY 9 Lﬂvi f, 9 o{Q) in| f131 di; d’ +
St o Toovy

v 0 vy Vv

1 th 3 3
+J J J__XZ -———[AviAvjfago(ﬂ) dQ]FBId vy d¥v

2 i3 avi BVJ.
Q vy v
= I X ’- ¥ g (f Av, g o(Q) do f, div;) d3v +
- . AV, G ! Bs
J A
\4 Q v,
r 1 e 3 3
+ | X ¥ (f hv, Av, g o(Q) do f_ divy) d
L 2 . . dv. av, o T Ba
Tad 1 J
v £ vy
(5.11)
We now define the quantities
<Ay, > = Av: g o(R) do f, div, (5.12)
T oAy 1 B1

0 v,

and
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- 3
< Av, f_\.vj >av = J J Av, AVJ. g o(Q) do fB1 dv, (5.13)

2 v

which are modified averages over the scattering angle and the velocity

distribution of the scatterers. Using this notation (5.11) becomes

i

ot coll i avi
Y
1 82 3
b o—_ Z —_ (f_ < ,_fw_i Av, > } | d°v
2 ; BV, dv O I av

(5.14)

Since this equation must hold for any arbitrary function

of velocity X(v)., it follows that we must have (taking y = 1)

82
+—— ) e (f < Av, AV, > ) (5.15)
2 . . Bv. av. O‘ Tooday
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This is the Fokker-Planck collision term and the guantities < Avi >y

and < Avi Avj >, are known, respectively, as the Fokker-Planck

av
coefficients of dynamical friction and of diffusion in velocity space.
They give the mean rate at which Avi and Avi Avj, respectively, are

changed due to many consecutive weak Coulomb collisions.

Note that the Fokker-Planck collision term (5.15) has
terms of opposite sign, which may result in no net change in fa as a
result of collisions. A dimensional analysis of Eq. (5.12) shows that
the Fokker-Planck coefficient < Avi > v has dimensions of force per
unit mass, and tends to accelerate or deccelerate the particles until
they reach the average equilibrium velocity. This process is called
dynamical friction. On the other hand, the Fokker-Planck coefficient

< Avi Avj > ., represents diffusion in velocity space, and tends to

av
spread the representative points in velocity space until equilibrium
is reached. Under equilibrium conditions, diffusion in velocity space
is balanced by dynamical friction, and there is no net change in fu as a

result of collisions, so that (6f&/6t)coH = 0. This process is

illustrated schematically in Fig. 5.

In principie, the expansion procedure used to obtain the
Fokker-Planck collision term can be extended to any number of terms.
However, in practice only the first two terms of the expansion, shown
in (5.15), are ever used, so that Eq. (5.15) can be considered as a

resonable approximation to the collision term (Gfafét) when

coll
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Av = v'-v is small for most collisions. This is generally supposed to

be the case for Tong-range forces such as the Coulomb force.

fiv)a
DIFFUSION IN
VELOGITY SPACE
—— DYNAMICAL 4+—-
FRIGCTION
-
0 v

Fig. 5 - ITlustrating the processesof dynamical friction
and diffusion in velocity space.

5.2 - The Fokker-PTanck coefficients for Coulomb interactions

We now evaluate the coefficients of dynamical friction

< Av,i >av and diffusion in velocity < Avi Avj >, which appear in the

av
Fokker-Planck collision term (5.15), for the case of the Coulomb

interaction. It is convenient to perform first the integral over the
solid angle Q, since it does not require a knowledge of the velocity

distribution function fB(gl). For this purpose let us write

— a
<Avy > = J {Avi } f81 d®v, (5.16}

Vi

and
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- 3
< Av, mﬁjﬁv = J {An A%H-f& d®v, (5.17)

Vi

where the curly bracket notation has been introduced to represent the

following integrals over solid angle

{av, b= J Av. g o(Q) do (5.18)
Q2
and
{Avi Avj }o= J Av Avj g a(f) do (5.19)
Q

In order to calculate {Avi } and {Avi AVj}s we recall
first that 1in the center of mass coordinate system we have, from Egs.

(20.2.5) and (20.2.8),

Ve - (—E—) g (5.20)
m +m
o B
Mg
vi=c, - ) g' (5.21)
m +m -
o g

so that
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o= ovi- v o= (—EB ey (g-g") (5.22)

In a Cartesian coordinate system in which the vector g is along the

z axis (see Fig. 3, of Chapter 20), we have

9, = 9 ; 9 =9y = 0 (5.23)
and

g; = g sin X cos ¢ {5.24)

g; = g sin X sin ¢ (5.25)

g, =g cos X (5.26)

In the next sub-sectionwe consider electrons deflected by the field of a
stationary group of positive ions,and 1in this case there is no
difference between the center of mass system and the laboratory system.

Using Eqs. (5.23) to (5.26), in (5.22), gives

Av = (————ii———) g [ (1 - cos X) z - sin X (cos e x + sin e y) }

(5.27)
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The differential scattering cross section for the Coulomb
potential was calculated in section 7,0f Chapter 20,and is given by
2 2
bo bo

o{X) = = (5.28)
4 sin*(x/2) (1 - cos X)2

[ see Egs. (20.7.3) and (20.7.4) ] where b, is defined in Eq. (20.4.9).

Proceeding in the evaluation of {Avi} = {v%-—vi} for
i=x, Yy, 2z, let us first calculate {sz}. From Egs. (5.18), (5.27) and
(5.28), we have

2T m

m .
{av,} = [ av, g o(Q) da = (_____ﬁ____) g? bg I de _SIMX 4
{1~ cosX)
& © Xmin
(5.29)

where the Tower limit of the integral in X was taken to be Xmin’ in
order to avoid the divergence of the integral that would result if we
take Xmin = 0. As we have seen, the charged particles in the plasma
that are separated by distances greater than Ay are

effectively shielded from one another. Therefore, in order to avoid an
infinite result for the integral in (5.29), we take the lower Timit Xmin

to be the value of the scattering angle that corresponds to an impact

parameter equal to Ap:
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With reference to Eq. (20.4.13) let us introduce the new

variable
u= -2 - ot (X (5.30)
b 2
0
from which we obtain
du = - ax (5.31)
(T - cos x)
and
sin X = —2u (5.32)
(1 + u®)

With this change of variables and introducing the cut-off value for the

impact parameter at bC = AD’ that is, at

D
U = —2 = A (5.33)
C p
0]

we obtain for Eq. {5.29),



m A
m +m (1 + u?)
o B8
o]
"8
= om ( ) 9" b2 a0 (1 +47) (5.34)
m.o+m
o B
In general A >> 1, so that an (1 + A*) = 2 an A and Eq. (5.34)
simplifies to
Mg 72 e* on A
{sz} = ) (5.35)
m, + Mg dm €2 u* g*
where we have substituted b0 by the expression given in (20.4.9).
Introducing the notation
2 b
o = Z7 e in A (5.36)
24,2
A €y ¥
we can write {5.35) as
m
{av,} = (—L2—) @2 (5.37)
m, * rnB g

Next let us consider the quantities {Avx} and {Avy}.

From Eqs. (5.18) and (5.27) we see that these quantities involve
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integrals of either cos € or sin e from 0 to 2w, which are clearly equal

to zero. Therefore,

(v} = {av,} = 0 (5.38)

In a similar way, it can be shown from Eqs. (5.19) and (5.27) that

{Avi Avj} =0 for 1 #3 {5.39)

since the integrals over ¢ from 0 to 2w vanish.

To evaluate {av, Av } = {Avg} we use Eqs. (5.19), {5.27)
and (5.28), which give

mB 5 T
{avZ} = 2% (——=—) ¢ b? sin ¥ d¥ (5.40)
z 0
m +m
o B
Xm1'n

Changing variables according to (5.30), we obtain

Q
m 2
(W2} = 2n(—B )7 g3 p2 fu ( - du)
z mo+m 0 (1 + u?)?
a B
A
m 2 2
= 4r (——B ) g3 p2 A (5.41)
m +m ° (1 + 1%
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Since A >> 1, (5.41) simplifies to

2
tav2) =4 (—B ) gopz - (B 2 L' ¢ (5.42)
m_+m m_ o+ m 4 E; u? g

2} = (—2— © (5.43)

In a similar way, we can calculate {Avi} and {Avj} from

Egs. (5.19), (5.27) and (5.28), which give

2T m

m 2 . 3
(av2} = (—B )7 g3 p2 cos? ¢ de SINTX gx (5.44)
X ° (1 - cosx)?
© Xm1'n

21 m
m
2 =2 3
{Avy} = (— o J sin® e de J sin” X dx  (5.45)
(1 - cosX)?
min

1
——

™
e

N
[fu]

w

o
v

C

Therefore, evaluating the integral over £ we find

m

s 3
B )2 g3 b2 sin® X dx (5.46)
0 (1~ cosx)?

min
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If we change variables according to Eq. (5.30), we readily find that

(5.46) can be written as

- A
{AV;} = {AvZ} = 47 ( B )¢ g® b? u’ du
Y m +m 0 242
o B (1+u®)
m 2
= 2m (——B-—)2 g? b; |:2n (1 + A%) -—L?—:l
m, * Mg (14 4%)
(5.47)
Since A >> 1, and replacing bo by (20.4.9), we can write
2 Mg 7% e* gn A
{avil} = {Av;} = )2
m, + mg 4 eé w2 g
m
= (—tB )2 .8 (5.48)
m +m
o B

The next step 1in the evaluation of the Fokker-Planck
coefficients consists in integrating the values of {Avi} and
{av, Avj}, for i, J = x, ¥, z, over the distribution function of
the particles which constitute the scattering centers. Thus, using the

results we have just calculated we find
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m
B Q 3
<AV, > = (—FE—) f, div, (5.49)
Z “av M+ I J g2 B1
(0] 8
Vi
m
<t s (—EB | 8 fo, d°Vs (5.50)
m +m g 2 A !
o B
Vi
m
2 _ 2 _ B 2 o 3
< Avx >y = < Avy >y = { - ) J fBl d v, (5.51)
o B 9
Vi

Al1T other coefficients vanish.

5.3 - Application to electron-ion collisions

Let us calculate the Fokker-Planck coefficients for the
case of electron - ion collisions. For simplicity we assume that the
electronis colliding with a field of heavy stationary positive ions.
This assumption is reasonable,since on the average the electron
velocities are much larger than the ion velocities ( < v% > = 3kTi/m1
while < vé > = 3kT/m, and generally T /m_ >> T./m.). Thus,
assuming that the positive ions are motionless we can set their

velocity distribution function equal to the Dirac  delta function,

Fa, = Mg 8(Vix) 8(viy) 8(vaz) (5.52)
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In addition, because m; >> My, we can take (me + mi) = m, and p = M-

Substituting (5.52) into Egs. (5.49) through (5.51), we

obtain at once

av

n o
<AV_ > = < Av, > = 9
Z av av g2
n 6
- 0
< AvE > = < AvE > = — 9
z ayv av
g n A
2 _ 2 - 2
Avx Zay = S Avy >ay = ¢ Avy >

where, according to (5.36),

(5.53)

(5.54)

(5.55)

(5.56)

Since sz is in the direction of the initial relative velocities, we

have used 1in Eqgs. (5.53) and (5.54) the notation Av, = Av, whereas

in Eq. {5.55) we have used Av, = Avy = Av,, to denote the change in

velocity in the directions parallel and perpendicular to the initial

relative velocities, respectively.



PROBLEMS

21.1 - Consider a system consisting of a mixture of #two types of
particles having masses m and M, and subjected to an external
force F. Denote the corresponding distribution functions by f
and g, respectively, and write down the set of coupled

Boltzmann transport equations for the system.

21.2 - Consider a plasma in which the electrons and ions are

characterized, respectively, by the following distribution

functions:
3/2 m (v -u_)?
f =n_ ( < / exp | - e - = ]
e 0
21TkTe 2k Te
m., (v - u.)?
fio=n ( 1 y3/2 exp [ - Lz =1
2nkT1 2k 'l'_i

: 1 (.
{a) Calculate the difference (fe fil fe fil).

(b) Show that this plasma of electrons and ions are in the
equilibrium state, that is, the difference (Fé f%l-fe fil)

vanishes, if and only if Ug = Yy and Te = Ti.
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Use a Lagrange multiplier technique to show that for a system
characterized by the following modified Maxwell-Boltzmann

distribution,

Flr, v) = n (r) (—R—)3/2 exp (- MV
- 2ukT 2kT

where T is constant, the entropy S defined by

S = -k J J'an f d3v d3r
rv

is a maximum when the density n is a constant, independent of r.
Consider that the system has a total of N particles in a fixed

volume V at a temperature T.

Consider the case of Maxwell molecules, for which the
interparticle force is of the form

F(r) = —

P>

where K is a constant.

(a) Without specifying the form of the distribution functions
fa(!) and fBl(Xl) for the particles of type o and g, show

that the time rate of change of momentum for the particles of



typea per unit volume, due to collisions, is given by

a sP_ of :
(—=—) = |mc ( ) d3v =)Ynmv _(u, -u)
st coll @7 st coll g cxob mB -
- v
_ where Vad is the collision frequency for momentum transfer given

explicitly by

n
v = 2 (Ku)l/2 2 A (s)
T (s}

where A;(5) is a dimensionless number (of order unity) defined

by (with p =5 and 3 = 1)

: _ _ L
Aﬁ(p) = (1 - cos™y) Vs dv0
0

with

© K
o Also,
- n = J'F d3v 5 u =1 ‘Jvf d3y
o a n y
v “ oy
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and (sfa/at)COH denotes the Boltzmann collision term.

(b} For the same case, show that the time rate of change of the
energy for the particles of type a per unit volume, due to

collisions, is given by

8E &f n . m v
o ) = l_m C; ( o ) dav — Z o o of .
st coll 2 © st B (m, +m)

. - - 2
[ 8k (Tg =T +my (uy-u)? ]
where
m 1
T = ——<c2>=—2 | ¢2 f dd
¢ 3k @ 3k n y ¢ @
m m
T = E_cc2 »=-_8 1 cz f_ d3v,
B 3k 81 3k nB v B1 Bl
1

21.5 - Consider a gas mixture of two types of particles (a = 1,2), each

one characterized by a Maxwellian distribution function

md / ma Vi
fov)=n (——)32 exp (- —2); (o =1,2)
“ e * o 2mkT, 2kT

o

with its own mass, density and temperature.
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(a) Make the following trasformation of velocity variables

\
<
b
I
<
'
=
—
fiY=)

where E; is a velocity similar to the center of mass velocity, g
— is the relative velocity between the two species

(g=v; - v;) and

=
I

= (my/T)/ [ (my/Ty) + (my/T,) ]

—

3|
R
|

= (ma/T2)/ |

(my/Ty) + (my/Ty) ]

Show that the Jacobian of this transformation satisfies

3(v.s 9)
o =] —C = _|=1

3(v1s Vo)

so that d3vC d3g = d3v; d3v,.

(b) The relative speed between the two species, g = | Vi - Vo |,
when averaged over both their velocity distribution

functions, is given by

1
n np

<qg > =

J J g f1({vy) falvy) divy d3v,

Vi Vo



21.6 -

- 62 -

Transform the variables of integration v, and v, to YE and g, and

perform the integrals over E& and g, to show that

<49

(c)

S P

T -m']_ m2

If only one kind of particles is present, so that m;=m, =m,

T,=T,=T, and n; = nh; = n, show that

8kT | 1/2

> = ;/-2__<V>=(Tru)

where <v > = (8kT/7 m)1/2 is the average speed and y = m/2 is
the reduced mass. If the mutual scattering cross section is
o, show that the collision frequency in a homogeneous

Maxwellian gas 1is given by

kT | 1/2
)

vw=no<g>=4no(

Consider the following expressions which define the Fokker-Planck

coefficients of dynamical friction and of diffusion in

velocity,
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= 3
< Avi Avj >aV J I Avi Avj 9 O(Q) dﬂ fBl d Vl

Q2 Vi

(a) With reference to Fig. P.21.1, verify that

- _ B :
av, = T g sin X cos ¢
a B
"
AVy=-—ﬁ'——+—n—.r— g s1n X sin g
o g
m
v, =— B g (1 - cos %)
m +m
o B

Fig. P.21.1

For a general inverse-power interparticle force of the form
F(r) = K/rP, where K is a constant and p is a positive integer
number, show that | see Eq. (5.18) ]

{AVX} = {Avy} =0

- 2
{&VZ} ng Om/mu
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where u = m, mB/(ma + m,} is the reduced mass and o is the

g
momentum transfer cross section given by

2/(p-1
0,7 2 (——)*/(P=1) 4, (p)
2
ug
where
A (p) = (1 - cos® X} v, dv
L o o
0

Vo =P (—Eii—)l/(p )

Verify also that | see Eq. (5.19) ]

{Avi Avj} =0 fori#jJ

2q3 K .2 -1
(A V?( = {A V; } = q Umg ( ) /(p ) A2(p)
. - o ]Jg2
243 -1
{av2}=2n “29 ( K2 P2 ag(p) - A ]
1] o ug

For the case of Maxwell molecules (p = 5), where the results

are independent of f__, show that the Fokker-Planck

B1
coefficients are given by



(c)

(d)
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< Ay av vaB <9 >B
< Avi Avj >av = 0 for 1 # 3]

) , Ay (5) ,
< Avx >av = < Avy >av = . ” (5) \)G-B < g ;»B

o 1
Az (5)

(AV2> =_u'—|:2—_'_'_'_'_‘_]\) <gz>

Z av m A(5) af 8

[+

where

Calculate the Fokker-Planck coefficients for the case of
Coulomb interactions (p = 2) using the results of part (a)
and of Problem 20.6, in terms of integrals over fBl, and

compare with the results derived in sub-section 5.2.

Calculate the Fokker-Planck coefficients for electron-
electron interactions, when fBl is the Maxwellian
distribution function. Refer to Egs. (5.49), (5.50), and
{5.51).
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