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CHAPTER 22

TRANSPORT PROCESSES IN PLASMAS

1. INTRODUCTION

In this chapter we analyze some basic
transport processes in weakly ionized plasmas using the Boltzmann
equation with the relaxation model for the collision term, considering

a velocity-dependent collision frequency.

Transport phenomena in plasmas can be promoted by
external and internal forces. In a spatially homogeneous plasma under
the influence of external forces, a drifting of the electrons can
occur. This motion induced by external forces is refered to as
mobility. Since the electrons have mass, this drifting impiies in a
transport of mass. Furthermore, since the electrons have electric
charge, their motion implies also in conduction of electricity when
acted upon by an external electric field. On the other hand, in a
spatially inhomogeneous plasma, the collisional interactions cause the
electrons to drift from the high-pressure to the Tow-pressure regions.
The existence of pressure gradients is associated with the existence of
either density gradients or temperature gradients, or both. This motion
of the electrons, induced by internal pressure gradients, is called
diffusion. Since the electrons also have kinetic energy associated with
their randon thermal motion, their drift implies in the transport of

thermal energy and therefore 1in heat conduction. When the plasma is



spatially inhomogeneous and is also acted upon by external forces,
then the particle flux is due to both diffusion and mobility. The
basic transport phenomena which we analyze in this chapter using the
Boltzmann equation with the relaxation model are electric conduction,

particle diffusion and thermal energy flux.

2. ELECTRIC CONDUCTIVITY IN A NONMAGNETIZED PLASMA

Initially we derive an expression for the AC
conductivity of a weakly Zonized plasma, in which only the collisions
between electrons and neutral particles are important. We consider
that the spatial inhomogeneity and the anisotropy of the
nonequilibrium distribution function of the electrons are very small,
so that we can apply the results derived in section 4 of Chapter 21.

Thus, according to Eq. (21.4.17) we have

§f (r, v, t)

= - v v} [f(r,y, t) - f (V)] (2.1)
st
coll



where fo(v) denotes the homogenecus Jsotropic equilibrium
distribution function of the electrons, and vr(v) is a velocity-
dependent relaxation collision frequency. Expression {2.1) assumes that
the neutral particles are stationary and do not recoil as they collide

with electrons, in view of their much larger mass.

2.1 - Solution of Boltzmann equation

We assume  that the electron distribution function
f(r, v, t) deviates only slightly from the equilibrium function fo(v), 50

that

f(f’ v, t) = fO(V) + fi(r, v, t) ] fa | << fo (2.2}
where fi(r, v, t) corresponds to the small anisotropy and spatial
inhomogeneity of the electrons in the nonequilibrium state. Using (2.2)
and the relaxation model (2.1), the collision term in the Boltzmann

equation becomes

§f

v) fi(r, v, t) {2.3)
§t

coll

Substituting (2.2) and (2.3) into the Boltzmann equation,

and neglecting second order quantities, we obtain



2 flr, v, t) + (Ve TR (v, t) - —SE(r, t) - v, f (V) =
ot g - -
= - vr(v) fi(r, v, t) (2.4)

where we have considered the electric field E(r, t} as the only field
externally applied to the plasma. For the purpose of evaluating the
conductivity, the perturbation f,(r, v, t) in the velocity
distribution function canbe assumed to be essentially independent of
the position coordinate r, and therefore denoted by f; (v, t}, since
the main effect associated with a spatial variation is the diffusion of
particles and, at the moment, we are interested primarily in the
charged particle current density induced by an electric field. The
electric field is considered to vary harmonically

in time at a frequency w, according to

E(r, t) = E(r) e ot (2.5)

f(v, t) = f(y) et (2.6)

Consequently, for the phasor amplitudes, the Boltzmann equation (2.4)

simplifies to



- dufi(v) -

E(r) » 9, f{v) = -v.(v) fi(v)
m
e

Using the following identity, given in Eq. (18.3.17},

v d fo(v)
T, folv) =
v dv

we obtain, from (2.7),

fio(y) = -8 At Tolv

~ m, v o +iv (v)] dv

2.2 - Electric current density and conductivity

The electric current density is given by

Using Eqs. (2.2), (2.6) and (2.9) we find that

(2.8)

(2.9)

(2.10)

(2.11)



- ° d3v (2.12)

In this result we have assumed that the electrons have no average flow

velocity in the equilibrium state, that is,

- Sy =
_U.vo = T [ ! 'FO(V) d’v = 0 (2.]3)
v
In spherical coordinates (v, 8, ¢) in velocity space (Fig. 1), we
have d®v = v? dv sin6 do d¢, so that Eq. (2.12) can be rewritten as
2T
P df (v) ("
J(r)=--1% v dv 9 de sine | v[E(r)-v] d¢
me [m-+1vr(v)] dv
0 0 0
(2.14)

Using the followingorthogonality relation

T 27
J J vivysine dodo = I v2 s, (2.15)

0 0



Vx

Fig. 1 - Spherical coordinates (v, &, ¢) in
velocity space.

with i, J = X, ¥, z, we find that
T 2T
J do sin# J do¢ v(E-v) = e g
JAETY 3 L
o 0
Consequently, Eq. (2.14) becomes
. 2 ® 3 df (V)
J(E) _ idme E (r) J V 0 dv
3m, [0+ 1vr(v)1 dv

(2.16)

(2.17)



From the relation J = o we identify the following expression for the

electric  conductivity

L ” ] df _(v)
g=-_dd4re J v 0 dv (2.18)
9]

3m Du+ivr(vﬂ dv

An alternative expression for the electric  conductivity

can be obtained by integrating (2.18) by parts,
3f |
i 4y @2 { Vi) } |
g = - = - +
3me Lm-k1vr(v)] |

iamez [ d v?
ddme” ¢ dv (2.19
' 3m, J o) { [w+ivr(V)]} 1

The integrated out term on the right-hand side of this expression
vanishes, since fo goes to zero faster than v?® goes to infinity, as v
approaches infinity. In general the isotropic equilibrium

distribution function, fo(v), decreases exponentially as v goes to

infinity.

The integrals which appear in expressions (2.18) and
(2.19) can be calculated explicitly only after specifying fo(v) and
ur(v). The functional dependence of V. On v is generally determined

experimentally from cross section measurements.



If we assume that V.. is independent of v, then we

obtain, from (2.19}, for any fo(v),

: 2
g = 4m e ‘ j f(v) 3v2 dv
3 m, (w + v.)
0
: 2
_ in e
m_ {(w + v )
von_ e? wn_e?
= 2 + o (2.20)
2
me(w + vr) me(w + ur)

where o denotes the electron number density at equilibrium,

n, = 4w [ f_(v) v® dv (2.21)
0]

The result (2.20) is identical to the one obtained in section 5, of

Chapter 10 [ see Eq. (10.5.5)], for the longitudinal conductivity.

2.3 - Conductivity for Maxwellian distribution function

Let us consider that fo(v) is given by the Maxwellian

distribution function,
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m
fo(v) = ny (—2—)/2 exp (- —&—) (2.22)
2nkT 2kT

Defining a dimensionless variable by

m
£ = (-Eﬁ-)lf2 v (2.23)

it can be verified that

dfo(v) 2 n

v? B dv = - 3/2 Y exp (- £%) d& (2.24)
v n

Substituting this expression into (2.18) and rationalizing, we find

C8nger [ (T v (E) £ exp (-8 )
T e
e - r
0]
£" exp(- &%)
+ i de (2.25)
o vi(i) + u?

This equation can be used to calculate the electric conductivity of a
weakly ionized plasma when the equilibrium distribution function of
the electrons is the Maxwell-Boltzmann distribution, for any dependence
of the collision frequency V. on speed v. In particular, if Vi, is

independent of v, then (2.25) reduces directly to the result (2.20).
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3. ELECTRIC  CONDUCTIVITY IN A MAGNETIZED PLASMA

We consider now a weakly ionized plasma immersed in an
externally applied magnetostatic field, Eo' As in the previous section,
we assume that the distribution function of the electrons in the
nonequilibrium state 1is only slightly perturbed from the equilibrium
value. For purposes of calculating the conductivity, it can also be
assumed that the plasma is homogeneous in space. Therefore, we can

write
f(l‘{: t) = f (V) + fl(!: t) (3'1)

0

where |f,| << f,- Suppose that an AC electric field is

applied to the plasma, having a harmonic time dependence according to
E(r, t) = E(r) exp (-iwt) (3.2}
Consequently, we also have
fi{v, t) = fi(v) exp (-iwt) (3.3)

The total magnetic field will be denoted by
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where B is the externally applied field and B(r, t) is a first
order quantity which has the same harmonic time dependence as the

electric field.

3.1 - Solution of Boltzmann equation

The Boltzmann equation satisfied by the homogeneous
distribution function of the electrons, and with the relaxation model

(2.3) for the collision term, can be written as

0 1:]. (!’ t)

ot m V-0

= - v (v) iy, t) (3.5)

From the identity (2.8) we see that the term (vx Et) © Y fo(v)
vanishes, since it invelves the dot product of two mutually orthogonal
vector functions. Neglecting second order terms, the Boltzmann equation

for the phasor amplitudes becomes

[vr(v)-iw] f1{v) -

i E -7, f(v) (3.6)
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In cylindrical coordinates (v., ¢, v.) in velocity space

{Fig. 2), with the v, vector along the magnetostatic field B, we

have, from Eq. (19.2.10),

_ df.(v)
(v x By = v, fuly) = - T (3.7)

Vx

Fig. 2 - Cylindrical coordinates (vy, ¢, Vu)
in velocity space.

Substituting (3.7) into {3.6) and using the identity (2.8), we obtain

+ L, (v) = —& .= 0 (3.8)
do W - m.w v dv
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- where we have used the notation Wee = € Bo/me, which represents the

electron cyclotron frequency. Notice that the speed v does not depend

on ¢, since v = v + vi,

It is convenjent to decompose the electric field vector
- into right circularly polarized (E+), left circularly polarized (E )

and Tongitudinal (E,) components, that is,

(x + 1y) (x - 1Y) _
E = E+ ——— + . ———— ¢+ E,Z (3.9)
2 v -
where
..... _ '[ - .
Et = . (Ex + 1Ey) (3.10)

(x + 1iy) (x = 1y} -
Vo= v, = — + oV e+ Wy 2 (3.11)
V2 r)
where
1 - .
_ vV, = — (Vv 4+ iV )

:l_' / > 1 X

= __1_/_1_-'_ Ve exp(+ ig) (3.12)



since v = v, cos¢, Vy = Ve sing and exp (+ i¢) = cos¢ + ising.

Thus, using (3.9) and (3.11),

Eev = E v, + E_v_  + Euv,
Y i -4
=——— (E,e” + E_e V) + E.vy (3.13)
7 2

- Substituting this expression into the Boltzmann equation

(3.8), we obtain

dfy (v) v (V) - iw
L + fi(v) = € [ L (E, e'® 4
d “ce ) M Yce v2
. df (v)
+ E e+ E, v..} ! 0 (3.14)
v dv

As in subsection 2.2, of Chapter 19, we now introduce the notation

o df (v)
Fv) = —&— g 5 8 0 (3.15)
- My Weg v Y o dv
L it df (V)
F(v) = S AU 0 (3.16)
N m v v 2 dv



Fu(v) = 2 E, — of (3.17)

which allows (3.14) to be written as

df, (v) v (v) - iw

v) + F_(v) + Fu{v) (3.18)
dd w

This differential equation is similar to Eq. (19.2.26), replacing the
term -kv, by ivr(v). Therefore, its solution can be obtained by
inspection of the corresponding results contained in subsection 2.2, of

Chapter 19. Hence, using Egqs. (19.2.27) to (19.2.34), we obtain

iw 1'Luce
fi(v) = Fo(v) + F(v) +
- w + 1vr(v) + w

ce

+ Fa(V) (3.19)
w + ivr(v)

or, substituting (3.15}), (3.16) and (3.17), into (3.19),

: df (v) LT E el?
iy - & L 90 { ’ { + +

m v dv v 2 w o+ ivr(v) " Weg
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E e?
+ - + — Yo Eu } (3.20)

w + 1vr(v) W, w + 1vr(v)

3.2 - Electric current density and conductivity

Assuming that the electron gas has no average flow
velocity in the equilibrium state (go = 0), we can write for the

electric current density,

J=-e| vfi(y) div (3.21)

As in Eqs. (3.9) to (3.12), we can also decompose the current

density into three components, according to

J,= -e J v, fi(v) d3v (3.22)
v

J_= -e J v_fi{v) d°v (3.23)
v

Jy= -e J v, fi(v) dv (3.24)
v
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For purposes of calculating the conductivity, it is convenient to use
spherical coordinates (v, 6, ¢) in velocity space (Fig. 1), so
that v. = v sin6, v, = v cos® and d’v = v3dv sin@ de dé. Plugging
fi{v}), from (3.20), into the expressions for J,» J_ and Ju, given in
(3.22), (3.23) and (3.24), respectively, transforming to spherical
coordinates, and performing the integrals over ¢ [making use of

Eq. (19.2.51)], we find

T o
. 2 3 df (V)
N Etj sin’e d@J Y 0 dv
M, ) 5 w + 1vr(v) T Oce dv
(3.25)
™ =]
. 2 3 df (V)
Ju = - _l_g"jr"e— Eu l C0529 5in 9 dd J V. 0
Mg, w+ Fv.(v) dv
o} o}
(3.26)

Note that, in {3.25), either upper sians or lower signs are to be used.
Carring out the integrations over & in these last two equations,

yields

3 dfo(‘-’)
dv (3.27)
3m w + ivr(v) I Yee dv




- 19 -

dv (3.28)

The advantage of using the right and left circularly
polarized components in the plane normal to Eo is that the
corresponding equations for J+ and J_ are uncoupled, so that Js depends
only on E+, whereas J_ depends only on E_. Therefore, writing J = g - E,

where ¢ 1is the conductivity tensor, we obtain, from (3.27) and

(3.28),
( A [ 3 ( 3
J+ o, 0 0 E+
J_ = 0 o_ 0 E_ {3.29)
'JII 0 0 UII EII
L L J \ J

with the following expressions for the elements of the conductivity

tensor
. . m s df _(v)
g, = -— e J v 0 dv  (3.30)
- 3m, ] w+ v (V) 7 Wea dv
. 2 @ 3 df (V)
o = - —LAme v o " 4y (3.31)
3me w+ v (v) dv
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Note that the longitudinal conductivity o, is the same as that for the

case of a nonmagnetized plasma, deduced in the previous section.

The elements of the conductivity tensor, in Cartesian
coordinates, can be obtained as follows. From Egs. (3.9) and (3.10) we

can write 1in matrix form

. ¢ i 3
E 1 o 0 E
+ . X
'z V2
E | = 1 i 0 Ey (3.32)
"y Vo
EII 0 0 E
L L ] J Lz

Using a relation analogous to (3.32) for the current density J, and

inverting it, we obtain

( ( ) [ \
Iy 1__ _1___ 0 J,
v 2 V2
Jy = i _ i 0 J_ (3.33)
Ty x:
L]Z J 0 0 1 J,,
L L ) )
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Substituting (3.29) into (3.33), and combining the resulting expression

with (3.32), we find that

JX oL - Oy 0 EX
J, = oy oL 0 E, (3.34)
J 0 0 Cu E
L Z) \ ;)L Z)
where
o, = —— (o, + o) (3.35)
2
i _
oy = —E— (o, - o) (3.36)

with a,» 0_and o as given in Egqs. (3.30) and (3.31).

The integrals over v can only be evaluated after
specifying the dependence of v, on v. In general, when Vi, is an
arbitrary function of v, the elements of the conductivity tensor have
to be determined by a numerical procedure. In cases when v, can be
expressed as a polynominal in v, it is possible to obtain simple
expressions for the conductivities in the 1imiting cases of very high
and very low collision frequencies. In particular, for the special case
when v s independent of v, the integrals over v 1in Egs. (3.30) and

y
{3.31) can be explicitly evaluated, yielding
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1n0e
ot = (3.37)
m {w+ iv, - wce)
1'n0e2
On = (3.38)

If these expressions are substituted into (3.35) and (3.36), we obtain
the following results for the Cartesian components o, and oy of the

conductivity tensor:

in_e? {(w+ iv.)
oL = 0 r (3.39)

. 2 _ .2
My [(“er) Weg

n_ ey
- o~ “ce (3.40)

cov2_ 2
m, [(m+wr_) Wia

Y

These are the same results deduced in section 5, of Chapter 10, which
were calculated using the macroscopic transport equations with a

constant collision frequency.

4. FREE DIFFUSION

In this section we derive an expression for the free
diffusion coefficient of a weakly ionized plasma, considering

that the relaxation collision frequency is a function of the
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speed of the electrons. For the analysis of diffusion phenomena

we must consider specifically a spatial inhomogeneity in the electron
density. Hence, we assume that the equilibrium velocity distribution
function of the electrons has a spatial inhomogeneity, but is isotropic
in velocity space, and will be denoted as fo([, v). Since we are
interested in calculating the electron flux due to diffusion only, we
also assume that there are no external electromagnetic fields applied
to the plasma. Furthermore, we study the free diffusion problem only
under steady state conditions, in which all physical parameters are

time-independent .

4.1 - Perturbation distribution function

We assume that, under diffusion, the actual distribution
function of the electrons, f(r, v), deviates only slightly from the

equilibrium value fo(r, v), so that we can write

f(r, v) = f (r,v) + f (r, v) (4.1)

where fi{r, v) is a first order quantity, |fi| << foo
Under steady state conditions, in the absence of external forces, and
using the relaxation model for the collision term, the Boltzmann

equation simplifies to

v vFrs v) o= - v(v) fufrs v) (4.2)
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where only the first order terms have been retained. Thus, we obtain

directly for the perturbation distribution function,

filr, ¥) = - ———— v - Vf(r, V) (4.3)

4.2 - Particle flux

The expression for the particle current density (or flux)

for the electrons, considering u, = g, is

= - J 1 v v o gfo([, v)] div (4.5)
Yr

In spherical coordinates in velocity space (v, 8, ¢) we have
d® = v? sing dv do dd, and using the result contained in Eq. (2.16)

we obtain

m 2T
[ dg sin 6 J dp v [v » vf (rs v)] = LS v (r,v) (4.6)

3 ~ ~
o O
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Therefore, the electron flux vector (4.5) can be written as

4.3 - Free diffusion coefficient

The distribution function fo(r, v} is in general a
function of the electron number density N> the electron speed v, and
the electron temperature Te’ so that it can generally be written in

the form

fa{rs v) = n, F(v, T,) (4.8)

since the number density appears only as a result of normalization
of the distribution function. The function fo(f’ v) could be, for

example, a local Maxwellian distribution.

For the purpose of calculating the free electron
diffusion coefficient, we assume that the electron temperature has no

spatial variation, so that
yfo(f, v) = vn_ {r) F{v, Te) (4.9)

vne(r

or, using (4.8),
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folrs v)
Vi {rs v) = vn (r) = (4.10)
) ng (1)
Substituting (4.10) into (4.7), we obtain
vn_(r)} ® 4
LI — o (r, v) dv (4.11)
- 3 N (r) vr(v) -

Defining the free electron diffusion coefficient, De’ by the relation

I, = - D Tng(r) (4.12)

we deduce the following expression for De’ by inspection of (4.11),

Ay v
b, = —F f (r, d 4.13
¢ 3 n.(r) J vr(v) O(E vy ( )

0

Note that this expression for D, is constant, independent of r and v,

in view of Eqs. (4.8) and (4.9).

If we consider fo(g, v) as being a modified (or local)

Maxwellian distribution function given by

Fr V) = N () (—E—)3/% exp (- —E) (4.14)
ZWkTe

then {4.13) becomes
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Furthermore, if the relaxation collision frequency v, is taken to be
constant, independent of v, then the integral in (4.15) can be

explicitly evaluated | see Eq. (7.4.22)7, which gives
k T

B = e (4.16)

This 1s the same result obtained in section 8, of Chapter 10 [ see Eg.
(10.8.9)], which was deduced using the macroscopic transport equations

with a constant collision frequency.

5. DIFFUSION IN A MAGNETIC FIELD

In this section we want to include the effects of an
externally applied magnetostatic field, §0, on the problem of electron
diffusion in a weakly ionized plasma. We consider the same assumptions
made in the previous section, except for the inclusion of the external

magnetic field.
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5.1 - Solution of Boltzmann equation

Retaining only the first order terms, the linearized

Boltzmann equation is now

Note that in view of the isotropy of fo(g, V) we can use the identity

(2.8), so that

(v xB) + 7, f(rsv) = 0 (5.2)

In cylindrical coordinates (v,, ¢, v,) in velocity space

(Fig. 2) we have, from (3.7),

(v xBy) - 7, fu(r, ¥) = - —— (5.3)

Choosing the unit vector g along the magnetic field Eo’ we can write

8 + ¥V, Sin¢"“a—' + v, _a'") .FO (E’ V)

gX 3y 0z

Ve on(f’ v} = (v, cos¢

(5.4)

Substituting (5.4) and (5.3) into (5.1), and rearranging, yields
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v (V)
]: d + r :t f1 (r.v) = - 1 (v, cos¢ 9 +
d¢ Wee Yea X
+ v, sing + v, —jl—) fo(r, V) (5.5)
By £¥4 -

In order to solve this Tinear differential equation Tlet

fi(r,v) = Fi(r, v) + Fa(r, v) + Fs(r,v) (5.6)

where F;, F, and F; are the solutions of (5.5) corresponding
respectively, to only the first, the second and the third terms within

parenthesis in the right-hand side of (5.5), that is,

v {v) of (r, v)
{ d , T J Fi (r, v) = - Loy, cos ¢ —227 °
d Weg Wee 3 X
(5.7)
{ o = } Falls ¥) o v, 5in ¢ Tole V)
d¢ Weg Wea oy

(5.8)
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v (v) of (r, v)
d + r Fs(r, v) = -~ ! Vi 0~
d¢ Weg -7 Weq 2z
To solve (5.7) Tlet us first rewrite it in the form
v (V) v.(v)
dé “ce Cee S

af (r, v) v (v)
e exp . ¢]
Yce i I “ce
¢ v (V)
. cos ¢' exp ' de'
C Yee
of (r: V) [\)r(v) cos ¢ + w . sin ¢ ]

ax

[v2 (v) + w,

2
e

]

(5.11)
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Notice that F,(r, v) is a periodic function of ¢, with period 2m.

In a similar way, the solutions of (5.8) and (5.9) are

given, respectively, by

s 1) = - v af (1, V) [vr(v) sing - w., cos %] (5.12)
ay [vi (v) +wl,]
af s
Fa(rs ¥) = - v, ol ¥ ‘ (5.13)
8z vr(v)

Adding (5.11), (5.12) and (5.13), gives the solution for fi(r, v) in

terms of fo([, v) and v (v).

5.2 - Particle flux and diffusion coefficients

From (4.4), the expression for the x component of the

electron flux vector is found to be

= 3
Ty = | Yy Talrs v) v (5.14)

In cylindrical coordinates (Fig. 2) we haved®v = v, dv, dv, do

and Ve = Vu COS b. Therefore,
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o0 2m +
Fex = J dv, J d¢ J dv, Vi cos¢ fi(rs v) (5.15)

O o -

Using Egs. (5.6}, (5.11}, (5.12) and (5.13), and performing the

integration over ¢, we obtain

@ te vi [vplv) of (s v)/0x - w., 8f (r, v)/3y]
FEX = -7 dV; qu N 0
o} -
(5.16)
To perform the integrals in (5.16) it is convenient to use spherical

coordinates (v, 8, ¢) in velocity space (Fig. 1}. Transforming to

spherical coordinates, Eq. (5.16) becomes

. v sin®e [y (v} of (r, v)/ox - w9 (r, v)/ay] (5.17)

2 2
[ur(v) + wly

Carrying out the integration over &, we obtain

viu  (v) 8f (r, v)
r = .. A r 0~ dy -
3 X
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T vy of (r, v)
_ A J : ce2 0 dyv (5.18)
3 vr(v) + Weg dy
Q
This equation can be written in the form
r, = - —— [o,n(r] - —2— -, n(r) (5.19)
ex e~ = "H e~ )
X ay

where the electron diffusion coefficients D, and DH are given by

vt (v)
D, = — T ‘ r £.(r v) dv (5.20)
3ne {(r) . vi(v) + wée
AR TEI
D, = _ Am J . ce — folrs v) dv (5.21)
Bng () ) vi) + o

Along similar lines, we obtain for the y component of

the electron flux vector,

3 )
Toy = - » [D, n(r)] - —g;f' [D. ng(r)] (5.22)

and for the z-component,
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3
L, = - - [ D. ne(g)] (5.23)
where
Dy = ——T__ J —-f—-—fo(r, v) dv (5.24)
3ne {r) v.(V) -
o]

Eqs. (5.19), (5.22) and (5.23) can be written in a

succint vector form as
= -V - [Dn (r)] (5.25)

where D denotes the dyadic coefficient for electron diffusion in a

magnetic field, given in matrix form by

D. D, O

D= (D, D O (5.26)
0 0 Du
\ /

The diffusion coefficient D, is the same as that obtained
in the absence of a magnetostatic field (D, = De)' Therefore, the
diffusion of particles along the magnetic field is the same as if there
were no field present, whereas the diffusion in the perpendicular
direction is inhibited by the magnetic field since D, < D,, as can be

verified from Eqs. (5.20) and (5.24).
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For the special case in which fo(z, v) is given by a
Tocal Maxwellian distribution function, as in (4.14), and V. is
independent of v, the integrals in Egs. (5.20), (5.21) and (5.24) can

be evaluated directly, yielding

y
D, =-—?—-'12— D, (5.27)
v +mce
VoW
D, = ——=5_ D (5.28)
H v+ 2 €
r ce
kT,
Dy =D, = —— (5.29)
me UY‘

which are the same results obtained in section 9, of Chapter 10,
deduced from the macroscopic transport equations- [ see Egs. {10.9.4)

to (10.9.7) 7.

6. HEAT FLOW

We shali now derive expressions for the heat flow vector,
Qg5 and for the thermal conductivity, Ke,due'h)the randommotion of the
electrons in a weakly ionized plasma. As in the previous sections, we
shall determine the nonequilibrium distribution function f(r, v},
under steady state conditions, by applyving a perturbation technique to

the Boltzmann equation, using the relaxation model for the collision
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term. To simplify matters we assume that there are no externally

applied electromagnetic fields.

Using (4.1), we find that the Boltzmann equation, for
this case, is the same as that given by (4.2). Therefore, as in

subsection 4.1,

Filrs ¥) = - v - WE (1, ) (6.1)

6.1 - General expression for the heat flow vector

The expression for the heat flow vector due to the thermal

motion of the electrons, and considering u, =0, is

q, = — m J vZ v fi(r, v) dd (6.2)

[y-9f (rsv) ] di (6.3)

1O
(]
n
1
LH
=
49}
—_—
-
M~
=

0

In spherical coordinates in velocity space and using (4.6), we obtain,

from (6.3),
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9 = - _._._é.i_ _\;—(—;5_ vE (r, v) dv (6.4}

This expression gives the electron heat flow vector, e > in terms of
the distribution function fo(r, v} and the relaxation collision

frequency vr(v).

6.2 - Thermal conductivity for a constant kinetic pressure

Next, we evaluate (6.4) for the case when fo(f’ v) is

given by a local Maxwellian distribution function,

3/2

m m_ v?
fo(rs v) = ng(r) [*-——e—-—} exp {——e——} (6.5)
20kT (1) 2KT (1)

in which both Ne and Te may have a spatial variation, but such that the

electron kinetic pressure stays constant, that is,

P = ne([) k Te([) = constant. (6.6)
From (6.6) we have

k To{r) Un,(r) = - n,(r) k vT (r) (6.7)

and calculating the gradient of (6.5) we find
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5 M, v vT_(r)
Ve (rs v) = |-+ ——— ol v) (6.8)
2 ZKTe(f) Te(f)
Substituting (6.8) into (6.4) gives
2rm VT _(r) ® ¢ m v?
ge = - e -~ E - J V [_ 5 + e i| 'FO(_Y:, V) dV
3 Te(r) A v.(v) 2 2kTe([)
(6.9)
This equation can be written in the form
9 = - KeYTe (r) (6.10)
where Ke is the thermal conductivity coefficient given by
2rm ® 6 m_v?
Ky = e v 2, :lfo(r, v) dv (6.11)
3Te(r) va(V) 2 2kTe(r) -

In the special case when Vi is independent of v we can

write (6.11) as
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m 00
o vP folr, v) dv (6.12)
2KT_(r)
e.-...
Q
Now,
i 15k T,(r) p
ve f(ry v) dv = € S (6.13)
- Ar m; :
6]
® 105 k2 T2(r) p
Ve F(r, v) dv = €~ ¢ (6.14)
- 4r mé
o

so that, substituting (6.13) and (6.14) into (6.12) and simplifying,
we obtain the following expression for the thermal conductivity, when

vr = constant,

« . 5 _KPe (6.15)

6.3 - Thermal conductivity for the adiabatic case

We consider now the case when the electron kinetic

pressure is not constant, but follows the adiabatic law

Pa(r) DéY(f) = constant (6.16)
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where vy is the adiabatic constant, defined as the ratio of the specific
heats at constant pressure and at constant volume, which may be

expressed as

vy = 2+ N (6.17)

where N denotes the number of degrees of freedom. Eq. (6.16) can also

be written as

n,(r) T.(r} ) = constant (6.18)

Taking the gradient of the local Maxwellian distribution function

(6.5), and making use of (6.18), we obtain

f {(r, v) (6.19)

1 3 meV2 } YTe(r)
o'~

Efo(r, v) = { - +
vy -1 2 2k Te(g) Te([)

Now we substitute (6.19) into (6.4), which gives for the heat flow

vector
0 = - 2m me VTE(E) [ vB [ 1 ) ___é___ .
-e 3 T (r) ) v (V) ¥ -1 2
my v?
o —— fo(rs v) dv (6.20)
2kTo(r) -
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With reference to Eq. (6.10), we identify the following expression for

the thermal conductivity

(6.21)

For the special case in which Vi, does not depend on v,

we can use the results given in (6.13) and (6.14), so that (6.21)

simplifies to

S

K, = —_—
2 m. v v-1

e

) (6.22)

If three degrees of freedom corresponding to the three-dimensional

translational motion are considered, wehave vy = 5/3, so that

.- (6.23)

When the plasma is immersed in an externally applied
magnetostatic field B,» an anisotropy is introduced in the thermal
energy flux, so that the thermal conductivity coefficient is replaced
by a thermal conductivity dyad K. Expressions for the components of the
thermal conductivity dyad can be deduced along lines similar to the

calculations presented in section 5 for the diffusion coefficient dyad.
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The derivation of explicit expressions for the components of K in a

magnetized plasma will be left as an exercise for the reader.



PROBLEMS

22.1 - In Cartesian coordinates in velocity space (refer to Fig. 1),

with the components expressed in spherical coordinates (v,e,s),
we have

v=vi=yv(sinog cosq@x + sineg sin¢§y + cosey_z)
(a) Show that the dyad v v can be written in matrix form as
((sin2e cos2¢) (sin%e sing cosé) {sine coso cos¢)

v v =v2(sine sing cosy) (sin2e sinZg)  (sino coso sing)

(sine cose cos¢) (sine cose sing) (cos?p)
(b) Prove the following orthogonality relations

T 2%
J J sine do d¢ = 4w
Q

Q

e -

! . sing do d¢ = 0

I \.f1 Sing 4dg d4

o] (o]

(T ¢2m .

J I V. V. sine do d¢ = —— v2 §..
T 3 3 1J

o] Q

rn' 21
J J Vs vj Vi sine do dp =0
Q

e}
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with i, j, k = X, ¥, z, and where aij is the Kronecker delta.

Using the Maxweli-Boltzmann distribution function (2.22) and

the definition (2.23), verify Eq. (2.24)

Show that, when v, is independent of v, (2.25) reduces to

(2.20).

Consider Eq. (2.25), which gives the AC electric
conductivity of a weakly ionized plasma for a velocity-

-dependent collision frequency vr(v).

(a} Show that 1in the high-frequency limit, w? >> v%, we have

n e
g = =2 (v + iw)
m, w2
where
v =8 jmv (g) €% exp(-¢&2) dg
c 3ﬂ1/2 r
Q

(b) Show that in the Tow-frequency limit, w? << u%, we have
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where

Jm 1 g% exp(-£2) de
v ()

1 8[‘”1

(w2 3n/2 ) (g)2

g% exp(-22) de

(c) For intermediate frequencies, show that

n ez
G = ° (\)C Kl + :ILIJK2)

Ma
where

w - oy (£)2 v (E)H

Ky = —2 1 J 1--7 + L

311'1/2 \)C LDZ - UJ2 ml\‘
+ ...}vr (£) g% exp(-£2) de

oy ()2 v (E)H

K, = —2 _l__[ 1 - L + T +...}g“exp(-52)déj

3rl/2 2 - w? w*

o]
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and where v, 15 the same quantity defined in part (a) for the
high freguency 1imit.

If we define an effective collision frequency, veff(w), such

that the longitudinal electric conductivity is given by

in e?
(o]
0’:

mg [w+ %veff(w)]

then, by comparison with Eq. (2.18), we find that

L]

_ 3 df (v)
Tot i vger (0) 1-1- - il v 0
3n é Cotiv(v)] dv

o]

dv

(a) Show that in the low-frequency Timit, w << veff(w), we

have
] = - 4T|' Jw V3 d1:0 (V) dV
Vgt 3nO " ur(v) dv

(b) Show that in the high-frequency limit, w >> ueff(m), we

have

_ 4o (7 3 0
\)e_f_-f.— - T J AR (V) —————— dV
o]

Thus, in both Timits is independent of w.

Veff
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22.6 - In the expression deduced for Vaff in part (b) of the previous

problem (high-frequency 1imit), consider that f0 is the

a

Maxwell-Boltzmann distribution function and that vr(v)= vcvn

where v, is a constant and n is an integer.

(a) Show that in this case we have

4v

w =0 [gg_]n/2I,[n+5)
eff 311.1/2 L m 2

where r(z) is the gamma function defined by

r(z) = jmt(z'” et dt

o

(b) Calculate the average value of the collision frequency,

< v (v) > using the Maxwell-Boltzmann distribution function,

o
and show that

22.7 - Derive Eq. (3.34), from Egs. (3.29) to (3.33).
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22.8 - Show that Eqs. (3.30) and (3.31) yield, respectively, Egs.
(3.37) and (3.38), when Vi is independent of v for any fo(v).

22.9 - Deduce Egs. (5.22} and (5.23). starting from the definition of
the electron flux vector, and the expression for fi(r, v)

given by Eqs. (5.6), (5.11), (5.12) and (5.13).

22.10 - Analyze the problem of heat flow in a weakly ionized plasma
immersed in an externally applied magnetostatic field, @O, and
derive expressions for the heat flow vector, Qo> and for the
components of the thermal conductivity dyad, K, considering a
velocity-dependent collision frequency, Vr(V)' Analyze the
problem for the adiabatic case and for the case of a constant

kinetic pressure.
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APPENDIX I

USEFUL VECTOR RELATIONS

=AB +AB + AZBZ
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(18) v x(7xA) = 9(7.A) - (v.7) A

o s

t
(e ]

(15) v. (7xA)
(16} vx (79} = 0

(17) (v.v) ¢ = 9%

If r Js the radius vector, of magnitude r, drawn from the origin

to & general point X,y,Z, then

n
L

(18) v.r

(19) vxr

[t}
o

(20) vr = r/r
(21) v(1/r) = - r/r3
(22) v.(r/r3) = -v2(1/r) = 4x §(r)
In the following integral relations, V is the volume bounded by

the closed surface S and n is a unit normal vector drawn outwardly

to the closed surface S:

(23) §oies = [(mo) v
S

(24) } A.nds-= J (v.A) dV (Gauss' theorem)
S v

(25)

VI—a—

() a5 = | (o) av
v
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(26) § ¢ (V) .
S

13}

ds = J [¢v2¢ + (6) . (Vo) ] dv  (Green's first
) identity)

(27) § (69¢ - ¥7¢). n dS = I (o092 - yv2¢) dV (Green's second identity
S or Green's theorem)

(28) [ Bx(vxA) - Ax(vxB) ] .n dS =

N—a—

=J{ A. [vx(vxB) ] - B.[ vx(vxA) J} dV (Vector version of Green's
theorem)

If S 1is an open surface bounded by the contour C, of which the

Tine element is dg, then

J (7xA) . n dS (Stoke's theorem)
S

—_—
w
=)

—

P

1
a.

o
It

If T 1is a tensor, then

(31) v. (¢T)

!

1]
=
—
1<
4
e
+
o~
1 <1
-
—
-

(32) §1.8d5- [ @D a
5
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USEFUL RELATIONS IN CARTESIAN AND IN CURVILINEAR COORDINATES

1. CARTESIAN COORDINATES (x,y,z)

Orthogonal unit vectors:

1K}
~

Wb
»

1IN

Orthogonal line elements:

dx, dy, dz

Components of gradient:

3
(W) = 5
—
C}
(W), = =1
Divergence:
=2 8 3
VA =g At 3y Ay toar A

Components of curl:

- d 3
(©8), = Gy A==z )

= (8 -8
(Exﬁ)y = 57 Px X Az)

= (2 S
(vxa), = X Ay 3y Agd



- I1.2 -

Laplacian:

2y, 8%y, 3%

Vi =
ax2 ay2 az?

Components of divergence of a tensor:

(Y'l)x B gx Txx ¥ ‘%y— Tyx * gz Tax
(E'E)y=%— Ty ¥ gy Tyy # T T2y
(z'l)z N _%i_ sz N gy Tyz ¥ _%E_ Tzz
2. CYLINDRICAL COORDINATES ({(¢,¢,2Z)
Orthogonal unit vectors:
0s ¢ 2
Orthogonal Tine elements:
do, pde, dz
Components of gradient:
(1), = =
(W)= 5 S
(%)= —
Divergence:
TAT o (R e Ayt Ay



- I,,Io

3-

Components of curl:
- 1 3 )
(WA, = —(— 3 A A
_ 3 3
(B = =5 A - o A
S B N R
(TxR); = == =55 (PRy) - e
Laplacian:
2 2
P 3p dp pZ B¢ 572
Components of divergence of a tensor:
1 3 1 3 3
(-1 = 5 5 Pl = =5 () + 57 Ty
R 0 g
Ty = w3 Pl * 5 5 Tos ¥ 37 T
(D), . 1 3 1 N
TzE s o P (prZ) ¥ 0 3¢ T¢z b2 ZZ

3. SPHERICAL COORDINATES (r.6,%)

Orthogonal unit vectors:

=)
w

V<)

j5=J

Orthogonal

dr, rds,

line elements:

r sing

d¢
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Components of gradient:
- _oy
(Yw)r T ar
o1
(T)g = + s
(o), = —0— -
r sina 34
Divergence
1 2 2 1 0 .
vV.A= — (r2AL) + (Ae sing} +
r< ar rsine e
+ 1 : A
rsine 3¢ ¢
Components of curl:
L e p— © (A sing) - —1 2
=" ysine as ¢ rsine 34
i 3 1 3
{vxA), = A - — —— (rA)
~ =8 rsine 3¢ r r ar b
1 3 ] d
(Yx5)¢ Ty Tar (r Ay) r roala
Laplacian:
vy = ! 2 (r2 2% 4 ! 5 (sine
rZ  ar ar r? sin o 30
2
+ 1 3 g
rZ sin? o 392
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Components of divergence of a tensor:

1 3 1 3 .
(v.T),. = = (r2T_) + (T... sing) +
- =r r2 ar rr rsine 2o or
1 3 1
+ T..- (T.. +T )
r sinsg LY or r 69 o0
(@.7) =——2 (2T ) +— 2_ (1, sine) +
=g rZ  ar r sin 6 38
1 3 1
+ T, +—— (T, -cots T, )
r sing 39 98 r or b
(v.T), = 18 {r2 T 1 3 (T9 sing) +
=9 rZ  sr ¢ r sin @ 39 ¢
1 d 1
+ T + — (T, +coteT )
r sin 9 39 b9 r or 6



APPENDIX I1I

PHYSICAL CONSTANTS (MKSA)

Speed of light in vacuum 2.998 x 108 m/sec
Permittivity of vacuum 8.854 x 10-12 farad/m
Permeability of vacuum 4r x10-7 henry/m
Planck's constant 6.626 x 10-3% joule. sec
Boltzmann's constant 1.381 x 10-23 joule/K
Gravitational constant 6.671 x 1011 Nm? / kg2
Charge of proton 1.602 x 10-12 coul
Rest mass of proton 1.673 x 1027 kg

Rest mass of electron 9,109 x 10-3% kg

Rest mass of neutron 1.675 x 10-27 kg
Proton/electron mass ratio 1.836 x 103

Unified atomic mass unit 1.661 x 10-27 kg

Bohr radius 5.292 x 10-!1 m
Classical electron radius 2.818 x 10-15 m
Avogadro's number 6.022 x 1023 mol1-1
Loschmidt's number 2.687 = 1025 p~3

Molar volume at STP 22.4 = 10-3 m3/mol

Gas constant (NAk) 8.314 joule/(K mol)

Standard acceleration of gravity 9.807 m/sec?



Charge:
Current:
Potential

Electric field:

Magnetic induction:

Resistance :
Conductivity:
Capacitance:
Maghetic flux:
Magnetic field:
Force:

Energy:

Power:

Pressure:

1
1

APPENDIX IV

CONVERSION FACTORS FOR UNITS

2.998 x 10° statcoulomb

coulomb

ampere 1 coul/sec =

volt = {2.998 x 102)~! statvolt
volt/m = (2.998 x 10%)-1 statvolt/cm
weber/m? = 1 tesla = 10% gauss
ohm = (2.998)-2 = 10-11 sec/cm

mho/m= (2.998)2 x 109 sec™?

farad = (2.998)2 x 10!1 ¢m

weber = 109 gauss . cm? (or maxwells)
ampere-turn/m = 47 x 10-3 oersted
newton = 105 dyne
joule = 107 erg

electron volt (ev) = 1.602 x 10-1% joule

ev = kT, where k is Boltzmann's constant, for

T =1.160 x 10* K
Rydberg = 13.61 ev
watt = 1 joule/sec = 102 erg/sec
newton/m? = 10 dyne/cm?

atm = 760 mm Hg = 1.013 x 105 newton/m2

torr = 1 mm Hg

2.998 x 107 statampere



APPENDIX V

SOME IMPORTANT PLASMA PARAMETERS

. Electron plasma frequency:

n 82 1/2
€ ] 2 56.5 nEl/2 rad/sec (n_ in m-3)

E
=
11
|
—
=
[43
—

. Ion plasma frequency:

[ ni 72 g2 ]1/2

m. e
1 0

. Debye length:

€ kT—\l 2 1/2
)\D={O J/=69.0(L]/m
n_e? n
e e

(T in degrees K and ng in m=3)
. Electron cyclotron frequency:

Weg = €8~ 1.76 x 10118 rad/sec (B in tesla)
m

e
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. Ion cyclotron frequency:

. Particle magnetic moment:

mvZ/2
B
B2

w.l.
m=-— B-=-
m .

. Electron cyclotron radius:

Vie m, Vie

-
1l
I

w e B

. Number of electrons in Debye sphere:

3/2
s X w3 = 1.37 x 108 1

D D e 1/2
3 ne

(T in degrees K and N in m=3)
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1.

12.

13.

14,

15.

- V.3 -

- Alfven velocity:

B
~ 1/2
(u, ¢)
DC conductivity :
N, e?
UO =
Mg Ve

Ambipolar diffusion coefficient:

k(Te + Ti)

m + m. .
e Yen T M Vip

Magnetic pressure:
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16. Magnetic Reynolds number:

17. Coulomb cutoff parameter:

-
|

= 3 =
12 7 ng A5 9 ND

T3/2
1/2
n, /

1.23 x 107

(T in degrees K and n_ in m=3)

18. Electron collision frequencies for momentum transfer:

<
1

-6 =-3/2 -1
o 3.62 x 10 n, Te /2 gnn sec

<
n

b2 1/2 -1
en 2.60 x 10 * ¢ ny Te /2 sec
(T in degrees K, n;  in m-3; o is the sum of the radii of the
colliding particles and is of the order of 10710 m, and gzn A is

typically about 10).



APPENDIX VI

APPROXIMATE MAGNITUDES IN SOME TYPICAL PLASMAS

PLASMA TYPE "o ! “pe "D n A3
(m=3) | (ev) | (sec”!) (m)

Interstellar gas 106 10-1 | 6 x 10% 1 106
Interplanetary gas 108 1 6 x 105 1 108
Solar corona 1012 102 6 x 107 101 109
Solar atmosphere 1020 1 6 x 1011 10-6 102
Ionosphere 1012 1071 | 6 x 107 10-3 104
Gas discharge 1020 1 6 x 1011 10-6 102
Hot plasma 1020 102 6 x 1011 10-5 10°
Diffuse hot plasma 1018 102 6 x 1010 10-4 106
Dense hot plasma 1022 102 6 x 1012 10-6 104
Thermonuclear plasma | 1022 10% 6 x 1012 10 -5 107
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