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THE PROBLEM OF TRANSFER ORBITS FROM ONE BODY BACK TO
THE SAME BODY

Antonio F. B. A. Prade’
Roger A. Broucke'*

The problem of transfer orbits from one body back to the same body (the Moon
of a planet) is formulated as a Lambert's problem and solved by Gooding's
Lamben routines. We consider elliptic as well as circular orbits for the Moon or
a planet and any kind of orbit (elliptic, parabolic or hyperbolic) for the
spacecraft. The solutions are plotted in terms of the true anomaly (instead of the
eccentric anomaly) for several cases. We show that the use of the true anomaly
simplifies the solutions in several ways. We also solved the problem of transfers
from this body to the corresponding L, and Ls points, After that, the same
problem is studied in terms of the AV and the time required for the transfer,
Among all the possible transfer orbits. 8 small family with almost zero aV was
found. The properties of these orbits are shown in details.

INTRODUCTION

The problem of transfer orbits from one body back to the same body (the Moon or a planet) is under
investigation for a long time. Hénon' originally developed a iming condition in the eccentric anomaly for
orbits that allows a spacecraft to leave the massless body M, (the Moon or a planet in our case), goes 10 an
orbit around the other primary M, (the Earth or the Sun in our case) and meet M, again, after a certain
time. Onginally this problem was studied as the problem of consecutive collision orbits in the restricted
three body problem. After this paper, several authors worked on improvements of this problem, Hitzl® and
Hitzl and Hénon®* studied stability and critical orbits Perko® derived a proof of existence and a timing
condition for what was shown later (o be a special case of Hénon's work, Results for the perturbed case u >
0 (where M, is"assumed 1o have mass different of zero and cause perturbation on the orbit of M, around
M,) also appeared in the literature. Some examples are the papers published by Gomez and Ollé*’ and
Bruno®. Howell>'° excended Hénon's results for the case where the orbit of M, is elliptic.

In this paper we formulate the problem as an orbit transfer problem, which can be solved with the
Gooding's implementation of the Lambert's problem''. We gave the solution in terms of the true anomaly,
instead of the eccentric anomaly, as has always been done by previcus authors. This reveals to be an
interesting approach. Both cases, with the target body (Moon or planet) in a circular orbit or in an elliptic
orbit are being considered in the present paper. All possible kinds of orbits for the spacecraft M, are
considered: elliptic, parabolic and hyperbolic, At the same time a new problem has been solved: the
transfer of the spacecrafi from M; to the corresponding L4 or Ls points, assumed to be on the same
circular orbit as M, either 60 degrees ahead of il or 60 degrees behind of it. The implementation
developed is genetic with respect to this angle and allows us to study a transfer from M, to any point in
the same circular orbit (not only 60 degrees ahead or behind it). After that, these transfer orbits are
studied in terms of the AV and the time required for the transfer. The AVs are plotted against the transfer
ume for several cases and a family of transfer orbits with very small AV (in the order of 0.001 in
canonical units) is shown to exist in almost all cases studied. These orbits are study in details. They
consist of a family of slight different orbits (when compared to the orbit of M,} that meet all the
requirements to provide the transfer desired.

* University of Texas at Austin and Instituto Nacional de Pesquisas Espaciais (INPE-Brazil).
" Department of Aerospace Engineering and Engineering Mechanics, University of Texas at Austin.



FORMULATION OF THE PROBLEM

Let M, and M; be the two primaries with masses (1-41) and p respectively. M, is in a circular {in the
original version of the problem studied by Hénon) or elliptic (in the extension made by Howeli*'%) orbit
around M;. The massless spacecraft M, leaves M, from a point P (t = -1), follows an orbit around M, and
meets again with M; at a point Q {t = 7). Since only the limiting case u = 0 is considered, the thres-body
problem is reduced to the two-body problem and basic equations from Celestial Mechanics do apply. The
units are chosen such that the distance between the two primaries and the angular velocity of the system is
unit, [t is also assumed that all the three bodies involved are points of mass and there are no perturbations

from other bodies.
The solution to be found is the coordinate of the point P as a function of the transfer time. The solution

is not unique, and a graph including many solutions was published by Hénon'. He plotted n/m (where 1 is
the redefined “eccentric anomaly” of the point P, as defined by Eq. (1)) against v (1 is half of the wransfer
time). For the case where the orbit of M; is hyperbolic, the solutions were plotted in a separate graph® with
the eccentric anomaly replaced by the analogous hyperbolic eccentric anomaly. Another problem that we
consider in the present paper is to calculate the AV and the time required for each of these transfers, in a
search for uansfer orbits with small AV. The solution consists of plots of the AV against the time required
for the transfer (both in canonical units). A detailed study of the wransfer orbits with small AV is included,
with pictures and nurneric parameters listed.

Possible applications for this work are: interplanetary research of the Solar System; a basis for a
transportation system berween Earth (M) and Moon (M,) that requires no nominal orbit correction; etc.

HENON'S APPROACH
The mathematical formulation used by Hénon to solve this problem is explained in the Appendix A.

To express his solutions for this problem, Hénon soived it for a large number of cases and plotted (/%)
against (v/r), where 1) is the redefined "eccentric anomaly”, assumed to be;

1 =7 if M3 pass by the perigee att=0 )

Iy = n=r if M3 pass by the apogee at t=0

Each point in his graph is a Keplerian orbit leaving a point P with eccentric anomaly -1, making an

orbit around M, and meeting again M, at a point Q with eccentric anomaly 1), after a time 2. Hénon did
not include hyperbolic orbits for M, in his famous graph', since he was not interested in this kind of orbit,
but he had them caiculated in a table.

LAMBERT'S PROBLEM FORMULATION
A different approach used in this paper is to formulate Hénon's problem as a Lambert’s probiem. The

Lambert’s probiem can be defined as'!:
"An (unperturbed) orbit, about a given inverse-square-law center of force is to be found connecting two

given points. P and P,, with a flight time At (= t+t;) that has been specified. The problem must always
have at least one solution and the actual number, which we denote by N, depends on the geometry of the
problem - it is assumed, for convenience and with no loss of generality. that t > 0."

So, in our formulation, Hénon's problem will be: Find an unperturbed orbit for M, around M,, that
makes it leave the point P at t = -t and goes to point Q at t = 1. Since M, is assumed to have zero mass, we
do not need 10 include it in the equations of motion. It is only use is to relate the time ¢ with the eccentric
anomaly M, in such way that M, has the same position as M, at P and Q in the times t = -tand t = 1,
respectively.

MATHEMATICAL FORMULATION

In terms of mathematical formulation, Hénon's problem formulated as a Lambert's problem can be
described as follows. We have the following information availabie:
L. The position of M; at t = -1 (point P). It can be specified by the radius vector R, and the angle -t We
can relate R, with -t by using the equation R, = a(1-¢2)/(1+ecos(-1)) for the orbit of M,, since M; and M,
occupy the same position at t = -t;



2. The position of M, at t = 1 (point Q). It can be specified by the radius vector R; and the angle 1. We can
relate R, with 1 by using the same equation that we used in the above paragraph;

3. The total time for the transfer, At = 27. Remember that the angular velocity of the system is unit, so we
can consider 1 as the time or the angle:

4. The total angle the spacecraft must travel to go from P to Q, that we will call ¢. For the case where the
orbit of M; is elliptic this variable has several possible values. First of all, we have to consider two
possible choices for the transfer: the one that use the sense of the shortest possible angle between P and Q
{that we will call the "short way"), and the one that use the sense of the longest possible angle between
these two points (that we will cail the "long way"). Which one is the shortest or the longest will depend on
the value of 1. After considering these two choices, we also have to consider the possibilities of mulu-
revolution wransfers. In this case, the spacecraft leaves P. makes one or more compiete revolutions around
M,, and then goes to Q. So, by combining these two factors, the possible values for ¢ will be: 21+2mn and
2(n—1y+2mm, where m is an integer that represents the number of complete revolutions during the
transfer. There is no upper limit for m, and our problem has an infinite number of solutions. For the case
where the orbit of M, is parabolic or hyperbolic ¢ has a unique value. The multi-revolution transfer does
not exist anymore {the orbit is not ¢losed), and the only sense of transfer that has a solution is the one that
makes the spacecraft goes in a retrograde orbit passing by the perigee att = 0.

The information that we need (the solution of the Lambert's problem) is the Keplenian orbit that
contains the points P and Q and requires the given transfer time At = 21 for a spacecrafi to travel between
these two poinus. This solution can be specified in several ways. The velocity vectors at P or Q are two
possible choices, sin¢e we have the corresponding position vectors. The Keplerian elements of the transfer
orbit is also another possible set of coordinates to express the solution of our problem. In the
implementation that we made, all three sets of coordinates are obtained, since all of them are useful later.

To obtain the AVs, we followed the steps:

1. Find the radial and transverse velocity components of M, at P and Q. They are also the velogity
components of M; just before the first impulse and just after the second impulse, respectively, since they
match their orbits at these points. They are obtained from the equations'?

Vp= e sin( V) Vi = 1+e cos(v) Q@-3)

Ja(l-¢?) Ja(l-¢%)
where V, and V, are the radial and transverse compenents of the velogity vector, a2 and ¢ are the semi-
major axis and the eccentricity of the transfer orbit and v is the true anomaly of the spacecraft.
2. Find an unperturbed orbit for M, that allows it to leave the poimt P at t = -1 and arrives in point Q at t =
1. We found this orbit by solving the associate Lambert's problem. as better explained in the next section.
Al this point. we have already the total time for this transfer. 21.
3. Find the velocity components at these points (P and Q) in the just found transfer orbit. They are the
velocity components for M, just after the first impulse and just before the second impulse. They are
provided by the Gooding's Lambert routine'’.
4. With the velocity components just after and just before both impulses we can calculate the magnitude of
both impulses (AV, and AV,) and add them together to get the total impulse required (AV) for the
transfer.

GOODING'S IMPLEMENTATION OF THE LAMBERT'S PROBLEM

The solution of the Lambert's problem. as defined in the paragraphs above, is also under investigation
for a long time. The approach to solve this problem is to set up a set of non-linear eguations (from the
two-body problem) and start an iterative process 1o find an orbit that satisfies all the requirements. There
is no closed-form available for the solution of this problem. The major difficulty is to choose the best set of
equations and parameter for iterations to guaranty that convergence will occur in all cases. The routine

used in this paper is due to Gooding''. He chooses x = £+/1-s/2a as the parameter for convergence,
where "a" is the semi-major axis of the transfer orbit and "s" the semi-perimeter of the triangle formed by
P, Q and M,. He also made several substitutions of variables. trying to find the best set of equations to



guaranty convergence. His implementation allows us to find all possible solutions of the Lambert's
problem, including "long way", "short way" and "multi-revolution” transfers. He gave the velocity vectors
at P and Q and the Keplerian elements of the transfer orbit in his solution. The basic equations used by
Gooding are shown in Appendix B, and more details can be found in reference'’.

Including all phases of this paper, Gooding's routine was called about 3 million times with no failure
detected. The average time required to solve one time the Lambert's problem was about 2 milliseconds (in
a compatible [BM-PC 486/33 MHz with 256 K cache memory).

SOLUTION IN TERMS OF THE TRUE ANOMALY

Another new aspect presented in this paper is the modification in the coordinates used to express the
position of the point P (1 = -1} in the solution of the problem. The eccentric anomaly (that was used by all
other authors, since Hénon's first paper') was replaced by the true anomaly. Fig. 1 shows the solutions in
the new coordinate. To keep similarity with the previous authors, we used the redefined true anomaly, that
is:

y=vife'=+]
y=v-rnife"=-
where v is the standard true anomaly.

It is easy to see that they are straight lines inclined by 45 degrees, forming squares. In this much
simple form, the information required to express the solution can be stored as the inclinations and the
extreme points of the segments, instead of the much more complex form given by the use of the eccentric
anomaly. Table 1 shows the extreme points for the segments of the straight lines shown in Fig. 1. The
solutions found for the case where the orbit of M, is hyperbolic is not shown here, to save space, but they
were also easily obtained. A new advantage of the use of the rue anomaly is that the solutions having
hyperbolic or elliptic orbits for M; can be combined in the same graph. since the definition of the true
anomaly remains unchanged for all kinds of orbits. In the other side, when the eccentri¢ and hyperbolic
eccentric anomalies are used, we have to keep them plotted in separate graph, since they are slight
different quantities with different physical meaning and range of values. The parabolic solution is
restricied to only one point, at ¥/nt = 0.16393, that separate the elliptic from the hyperbolic orbits.
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Fig.1 Elliptic Solutions in Terms of True Anomaly.



Table 1
THE EXTREME POINTS FOR THE STRAIGHT LINES SEGMENTS SHOWN IN FIG. 1

-ELLIPTIC CASE

Another improvement made in the original Hénon's work', made by Howell*'?, was to study the case
where M is in an elliptic orbit around M,. The approach that she used was the same one used by Hénon.
Two-body problem equations were written and solved to find the points [(v®).(t/r)]. Two different cases
were studied; the one where M, is at perigee at t = 0 and the one where M; is at apogee att=0.

In the present paper, these same extensions of Hénon's work were studied by using the Lambert's
problem approach. Very few modifications in the implementation developed for the circular case were
necessary. Fig. 2 to Fig. 6 show some of the results obtained in both coordinates (True and Eccentric
anomaly) for several cases studied, inctuding elliptic, parabolic and hyperbolic orbits for M.
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It is noted that the family C;5 (following the standard nomenclature for a family around v/# = 3 and
/n = 5) that appeared in Fig. 4a (and detailed in Fig. 4b) was found when solving the problem by the
Lambert's approach, but it is not present in Howell original paper’. The use of the true anomaly still has a
simpier form, since the solutions are composed of patterns that repeat themselves,

TRANSFERTOL,AND L,

Another improvement made in the present paper was to extend Hénon's problem to the one where the
objective is 1o transfer a spacecraft from M, to the corresponding Lagrangian equilibrium points L4 of Ls.
In this version, the spacecraft M, leaves M, at P, goes to an orbit around M, and rendezvous with L, or Ls
{(instead of M,) at Q. Fig. 7 to Fig. 9 show the results in the true and eccentric anomaly for elliptic,
parabolic and hyperbolic transfer orbits for the transfer to L. Similar results are available for Ls, but they
are omitted in this paper to save space. The use of the true anomaly has the advantages of linear graph,
that are the original ones (transfer from M, to M; again) with a shift of 60 degrees. It is also noted that, in
this case, two families of hyperbolic transfer orbits appeared. The usual one and the one that makes the



spacecraft goes in the direct sense passing by the perigee in a positive abscissa, This is due to the extra 60
degrees involved in the transfer.
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Fig.9 Transfer from M, to L, in Eccentric and True Anomalies for Hyperbolic Transfer Orbits.

THE TRANSFERS WITH MINIMUM AV

In the exploratory phase of this study we made plots of (AV)x(1/x) for thousands of possible transfer
orbits. We choose five orbits for M, around M;:

I-} Circular orbit with semi-major axis equals to one.

2-) Elliptic orbit with eccentricity 0.4 and semi-major axis equals to one, with M, passing by the
perigee att = 0.

3-) Elliptic orbit with eccentricity 0.4 and semi-major axis equals to one, with M, passing by the
apogee at (=0,

4-) Elliptic orbit with eccentricity 0.97 and semi-major axis equals to one, with M, passing by the
perigee at t = 0,

5.) Elliptic orbit with eccentricity 0.97 and semi-major axis equals to one, with M, passing by the
apogee att=0.

The results are shown in Figs. 10 and 11. In the Y-axis we have the total AV in canonical units and in
the X-axis we have vr, where 7 is half of the transfer time. Qnly elliptic transfer orbits are included in



these plots, since the hyperbolic or parabolic transfer orbits are too expensive in terms of AV, In these
figures, VR varies from 0 to i4 and the maximum number of compiete revolutions allowed for M;, while
in its transfer orbit, is also 14.

Looking in those figures we can see the existence of points (orbits) with very small AV, They appear in
several locations in the plot and reveal a whole family of small AV transfer orbits. in all cases studied in
this paper, this family appeared in the "short transfer time" part of the graph (small ). A more detailed
plot of (AVx(vr) is shown in Fig. 12. It includes only the orbits where AV < 0.5 and it is valid for orbit 1
(circular orbit) only. Plots for the other orbits (2 10 5) are very similar and they are omitted in the preseni
paper. We can see that the local minimums increase with time after ¥z = 6. An investigation for vn
varying from zero to 200 and with the maximum number of complete revolution for M; during the
transfer also equals to 200 was done, and no more orbits with AV < 0.1 were found.
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Table 2 shows the main characteristics of the orbits with AV < 0.1 that we found in the circular and
elliptic case. It is interesting to see that these orbits appear in pairs (in parts of the Tabie): one transfer
orbit with the perigee in a positive abscissa and one with the perigee in a negative abscissa, very near each
other position. In this table the orbit of M, is assumed to be elliptic with several values for the eccentricity.
Both cases, M; at perigee at t = 0 and M, at apogee at t = 0 are considered. Fig. 13 shows some of these
orbits.



Table 2
TRANSFER ORBITS WITH AV < 0,1 FOR THE CIRCULAR AND ELLIPTIC CASE

R a e wr yin L P S A AV
1.400 0.993 0.0216 | 1406 | 1400 | 1 1 ] 0.0417
1.410 1.003 0.0103 1.406 1410 1 0 1 0 0.0204
2.440 0.997 0.0167 | 2445 | 2.440 1 0 1 ¢ [ 00331
2.450 1.002 0.0149 | 2445 | 2450 ] 1 1 1 0.0295
e=( 3460 0.99¢% 0.0036 | 3461 | 3.460 1 1 I ] 0.0072
3.470 1.003 0.0279 | 3.461 3.470 | 0 i 9 0.0555
4.460 0.997 0.0310 | 4469 | 4.460 | 0 1 9 0.0618
4.470 1.000 0.0005 | 4469 | 4470 1 l 1 ] 0.0010
3470 0.998 0.0169 | 5475 { 5.470 1 1 1 ] 0.0336
5.480 i.001 00146 | 5475 | 5.480 1 0 1 0 | 00292
6.990 1.108 0.9777 | 5991 | 6990 0 0 | ] 0.0955
1.410 1.4386 1.0023 | 0.1085 | 1.4729 1 0 1 0 00453
2.440 2.4133 | 09979 | 0.1125 | 2.3793 1 0 1 0 ¢+ 00435
e2=0.1 | 3.460 3.4930 | 0.9995 | 0.0962 | 3.5238 | © 0 1 0 | 0.0404
S3=a-1 4470 | 4.4380 i.0002 | 0.0975 | 4.4078 ! 0 l 0 | 0.0398
5.480 5.5072 (0011 | 0.1142 | 55436 | 0 0 1 ¢ [ 0.0500
7.000 6.0000 1.1082 | 0.1879 | 6.0000 | O 0 ] ] 0.0869
1.400 13747 | 09962 [ 0.1132 | 1.3420 1 1 1 ] 0.0411
e2=0.1 |_2.440 24772 | 09970 | 0.0829 | 2.5036 | 0 1 1 ] 0.0503
$3=+1 |_3.460 34203 | 09999 | 0.1009 | 3.3982 1 1 1 ] 0.0389
4470 | 4.5018 1.0000 | 0.1003 | 45337 | ¢ 1 1 1 0.0402
5.470 54435 | 09989 | 0.1148 | 54078 i ! 1 1 0.0479
e2=0.2, | 7.000 6.0000 1.1082 | 0.2782 | 6.0000 | © 0 1 1 0.0793
$3=1
e2=0.2, | 6.000 5.0000 1.1292 | 0.2916 | 5.0000 ] 1 1 0 | 0.0917
S3=i
e2=0.5, | 5.000 | 4.0000 1.1604 | 0.5691 | 4.0000 1 0 1 | 0.0789
§3=1
e2=0.5 | 4.000 3.0000 1.2114 | 0.5873 | 3.0000 l 1 l 0 ) 0.0993
§3=+1 4.000 5.0000 0.8618 | 04198 [ 50000 1 1 1 0 0.0939
£.000 §.0000 1.1292 1 05572 | 5.0000 | 1 ] 1 0 | 0.0653
e2=0.6 | 35.000 4.0000 1.1604 | 0.6553 | 4.0000 1 1.0 ] 1 0.0685
$3=1 7.000 5.0000 1.2515 [ 0.6804 | 5.0000 ] ¢ 1 0 0.0992
e2=0.6 | 4.000 3.0000 1.2114 | 0.6698 [ 3.0000 | 1 1 0 0.0863
$3=+1 ] _4.000 5.0000_ | 08618 ) 0.5358 | 5.0000 | 1 1 1 0_1 00810
6.000 5.0000 1.1292 | 0.6458 | 50000 | 1 1 0 | 0.0568
3.000 2.0000 1.3104 | 07711 | 2.0000 1 0 1 1 0.0985
e2=0.7 | _3.000 | 40000 | 08255 [ 06366 | 4.0000 t 0 | 1 0.0897
§3=1 3.000 | 4.0000 1.1604 | 0.7415 | 4.0000 1 0 1 ] 0.0577
7.000 | 50000 1.2515 [ 0.7603 | 5.0000 | 0 1 0 | 0.0837
4.000 3.0000 1.2114 | 0.7524 | 3.0000 1 1 1 0 | 00728
e2=0.7 [_6.000 4.0000 1.3104 [ 0.7711 | 4.0000 1 1 1 1 0.0985
S3=+1 | 4.000 5.0000 | 0.8618 | 0.6519 | 5.0000 1 1 1 ¢ [ 0.0679
6.000 5.0000 1.1292 | 0.7343 | 5.0000 1 l i ¢ ] 0.0478




where:

1 = Half of the transfer time in canonical units

¥ = Redefined true anomaly

1 = Redefined eccentric anomaly

a = Semi-major axis of the transfer orbit

¢ = Eccentricity of the transfer orbit

L = 1 for "short way" transfer, 0 for "long way" transfer

P = | if perigee is in 3 positive abscissa, 0 if in a negative abscissa
§ = 1 if transfer is direct, 0 if transfer is retrograde

A =1 if Mj; pass by the perigee at t = 0, 0 if it pass by the apogee
AV = Velocity increment in meters/second

Looking in the details of Table 2 and Fig. 13, we can see better the mechanism of the majority of these
transfer orbits. They consist of orbits with slight different semi-tmajor axis and eccentricity (compared
with the orbit of M) that have a pengee coincident with the perigee of the orbit of M,. They have mean
angular velocity (n) such that 21(1-n) = £2x. So, after M; makes m complete revolutions in its transfer
orbit, M, makes m+1 or m-1 complete revolutions in its own orbit and they can meet each other at the
common perigee, after the time 21.
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Fig.13 Some Transfer Orbits with Small AV,
PRACTICAL APPLICATIONS

To show some of the possible applications for these orbits, we applied them in the case of a transfer
from M, (the Moon or a planet) to the corresponding Lagrangian point L, or L. In this case a massless
spacecraft M; has to leave M, at time t = -1, goes to an orbit around M, and meets with LyorLsatt=1.
This problem is of great interest in space flight, because the Lagrangian points are good candidates for
space stations, since they are equilibrium points and require low fuel consumption for station-keeping.
Many trips from the Earth or the Moon to/from the space stations located at the Lagrangian points are
expected to happen in the future.

Fig. 14 shows the graph of (AV)x(w/n) for the transfer from M, to L, for elliptic transfer orbits. Results
for parabolic and hyperbolic transfer orbits were found, but they are omitted here to save space. We can
see the details of these orbits (with AV < 0.1) in Table 3. The 4V in m/s and the transfer time in days are
calculated assuming that the orbital velociry of the Moon around the Earth is V = 1018.31 m/s and that its
orbital period is T = 27.322 days. The mechanism used by these transfers is to insert M, in an elliptic
transfer orbit that have an apogee coincident with the apogee of the orbit of M;. These transfer orbits have
a mean angular velocity (o) greater than 1, such that 2t(n-1) = 1.047 rad (60 degrees). So, in the same
time that M; makes m revolutions in its transfer orbit, M, makes m~(1/6) revolutions in its own orbit and
M; can rendezvous with L, at Q. It is impornant o remember that these maneuvers are optimal for a two-
impulse category of transfer orbits, and it does not mean that a maneuver with more impulses can not be

10



found with a smaller AV. It is also important to emphasize that, in this particular example, the spacecraft
M, spends a long time near the body M,, and the mutual influence of these two bodies can be strong. It
means that these results have to be better checked with numerical integration of the more realistic case M,
# 0. Analogous results for a transfer from M, to Ls exist. but the figures are not shown in this paper to
save space. Table 3 includes some of these transfer orbits (transfer orbits with AV <0.1) to L, and L. The
same comments made in the transfer o L; case do apply. The mechanism used by these transfers is 10
insert M; in an elliptic transfer orbit that have a perigee coincident with the perigee of the orbit of M,
These transfer orbits have a mean angular velocity (n) smailer than |, such that 2¢(1-n) = 1.047 rad (60
degrees). So, in the same time that M; makes m revolutions in its transfer orbit, M, makes m+(1/6)
revolutions in its own orbit and M, can rendezvous with L at Q.
6.00

4.00
3

2.00
0.00 — Py

0.00 4.00 a8.00 12.00

Time (UK)
Fig. 14 (AV)x(t/x) for Transfer 1o L, (Elliptic Transfer Orbits).
Table 3
TRANSFER ORBITS WITH AV < 0,1 FOR THE TRANSFER TO L, AND L;
un e a e VIt L Al AV. AT AV

0.061 { 5000 § 62.1
0.039 | 77.32 | 39.7
0.029 ] 104.64 | 29.5
0,023 | 13196 | 23.4
0.019 |} 159.29 | 193
0.081 | I86.61 | 82.5

1,830 | 20000 | 09437 [ 0.0597 | 2.0000
2.830 | 3.0000 | 09626 | 0.0388 | 3.0000
Lg| 3.830 | 4.0000 | 09720 | 0.0288 | 4.0000
4830 | 50000 [ 05777 [ 00229 [ 50000
5830 | 60000 | 05814 | 0.0190 | 6.0000
6.830 [ 6.0000 L09G6 | 0.0830 | 6.0000

0.095 | 31.69 | 867
0.051 590t ] 519
0.035 86.34 | 35.6
0.027 § 11366 | 27.5
0.022 ) 14098 | 224
0.018 | 16830 | 18.3

1160 | 1.6000 L. 1080 0.0975 1.0000
2.160 [ 2.0000 1.0548 0.051¢9 2.0000
Ls | 3.160 | 3.0000 1.0367 00354 | 3.0000
4.160 | 4.0000 10276 | 00268 [ 4.0000
5.160 § 5.0000 10221 0.0216 | 3.0000
6.160 1 6.0000 10184 | 0.0181 6.0000

S
1
|
|
I
l
1
|
1
l
1
1
|

oo |ojoicle|e e |lo|o]le
X|—|o|—loc—i1cio|l—|el— |
Lol C= Lo T~ 0 ol B3 £l Gl Bl Tl o Food

where:

AV, = Velocity increment in canonical units

AT = Total time for the transfer in days

The others symbols are the same defined in Table 2

CONCLUSIONS

The problem previously called consecutive collision orbits in the three-body problem was formulated
as a problem of transfer orbits from one body (the Moon or a planet) back to the same body. Using this
approach, the Hénon's problem became a special case of the Lambert's problem.

1




The Gooding's implementation of the Lambert's problem'’ was used o solve this problem with great
success. [t was called about 3 million times with no failure detected and solved the problem one time in
about 2 milliseconds,

A new coordinate to express the solution of this problem (the true anomaly) was used and the
solutions showed to be of a much simpler form in this variable, when compared to the solutions given by
the previous authors in terms of the eccentric anomaly. This coordinate also allows us 1o plot hyperbolic,
parabolic and elliptic orbits in a single graph, in the same variable.

Extension to the elliptic case {when the orbit of M; is elliptic) and to transfers from M; to the
corresponding Lagrangian points L, and L¢ were made easily in this new approach. They also showed to
have a much simpler form for the solutions when expressed in terms of the true anomaly. In the transfer to
L4 and Ls, a new family of hyperbolic transfer orbits appeared.

A new family of solutions for one of the elliptic cases (Css in Fig. 4) was found by this approach.

The AVs and the transfer time required for these transfers were calculated. Among a large number of
transfer orbits, a small family was found, such that the AV required for the transfer is very small. These
orbits and its properties were shown in details.

A practical application for these orbits was studied in details: a transfer from the Moon to the
corresponding Lagrangian points L, and L.
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APPENDIX A - HENON'S MATHEMATICAL FORMULATION
To solve this problem Hénon used standard equations for circular and eiliptic two-body problem. For

mass M, in circular orbit (remember that w = I):

X = cos(t)

y = sin(t) A-n
where xy are Cartesian coordinates of M, and t is the time. For M;, in an elliptic orbit with perigee at x >
0, moving in the direct sense (same sense as M,) and passing by the perigee att = 0:

X = a(cos(E)-¢)

y = a sinEn1-<2 (A-2)

t = a%*(E-esin(E)
where x,y are Cartesian coordinates of M, "a" is the semi-major axis of the orbit of M; around M,; "¢" is
the eccentricity of thig orbit; E is the eccentric anomaly; "" is the ime.

To take into account the different possibilities of the orbits of M, around M, (perigee at x < 0,
retrograde orbits and passage by the apogee at t = 0) Hénon defined the quantities:

positive

+1
e= if the perigee is i i
{-l perigee is in a abscissa {negative

+1 direct
e'={ if the sense of the orbit is {
-1 retrograde

+] perigee
gh= if the e at 7=0 (S} is at
{-l passage al (S)isa {apogee

Using these quantities the generic equations for the variables x,y,t for M; is:
X =£2 (€' cos(E)e)

y=ee ay 12 g" sin{E) (A-3)
t=ad/2(E-¢" e sin(E))

12



So, to solve this problem we can write Eqs. {A-1) and (A-3) for t = T and E = 7 and obtain:
cos(t) = € ale' cos(n)-e}
sin(t) = £ €' ay/1-2 ¢" sin() (A4)
1=2a3(n-¢" e sin(n))
If t = -z and E = -1 are used, the equations are the same and there is no extra information available.
Eq. (A-4) constitute a set of 3 equations in 4 unknowns (1,3,¢,n) and it is used to generate the solutions

(LW/R)X(H/R).

APPENDIX B - THE GOODING'S ROUTINE TO SOLVE THE LAMBERT'S PROBLEM
The routine deveioped by Gooding'' is largely based on the equations developed by Lancaster et al'*!*
To summarize the process, let us show the equations used, step by step.

The Transformation of Variables
The original variables required as an input to solve the Lambert's problem are:
R, = the distance from the initial point of the transfer to the center of attraction;
R, = the distance from the final point of the transfer to the center of atiraction;
8 = the angle between the initial and final points of the transfer,
At = the time for the transfer,
p = the gravitational parameter of the main body
This data is transformed in another set of variables, that are more suitable for the iteration process
developed. This new set is constituted by the variables:

¢= R} +R} ~2R,R; cos(q) = the distance berween the two points involved in the transfer:

5= R‘—*,}‘Eﬁ = the semi-perimeter of the triangle formed by the center of the force and the fwo points

involved in the transfer;
8, = the angle 9, restricied to the interval [0,2n],
m = the number of complete revolutions involved in the transfer (8 = 8, + 2rm);

q= —”R;p‘zoos(%] = the parameter used by Lancaster et al'* in the iteration process;
C

1-q° = — , that is calculated from this equation, and not directly from q, to eliminate numerical errors
s

during the computation;

T= J%l-m = a variable that replaces the time for the transfer (At) in the iteration process,
s

x*= l-%, that will be the parameter for iteration, instead of the more popular semi-major axis,

eccentricity or semi-lactus rectum. This choice was made because x is a Lambert's invariant parameter''.
The double possibility for the sign of the square root involved give us the two solutions of the Lambert's
problem. It is also possible 1o identify the type of the transfer orbit by looking at x, because [x| < | for
elliptic orbits, x = | for parabolic orbits and x > 1 for hyperbolic orbits. The possibility x < -1 does not
exdst, because the time for the transfer would be negative,

13



r T
This section describes how to calculate the parameter T, as well as its first three derivatives with
respect to x (T', T, T™), as a function of x and the parameters q and m. The equations come from
Gooding'' and Lancaster et al'*!'*. The basic algorithm works when m > 0, or x < 0 or [u| > 0.4, where

u=l-x? B-1)
We calculate:
y= |l z=yl-g’+q’x!  a=z-qx (B-2), (B-3), (B~4)
A=z+qx B=qz-x B=qz+x (B-5), (B-6), {B-D
f=oy g=xz+qu (B-8), B-9

Also, to avoid rounding errors, we compute 2 directly from the input 1-q° and we use the additional
reiations:

2.2
wA=lq  BB=ONGw)  ge (B-10), B-11), (B-12)

instead of using the other equations provided (B~4 to B-7 and B-9), in 50% of the time.
Now, we can proceed by calculating:

d = mn + arg(g,f) (B-13)
where arg(g,f) is the angle. in the right quadrant, that the point (g,f) makes with the horizontal axis, or:
d = @anh'(f/g),  for the hyperbolic case. (B-14)
Finally, T and its derivatives are given by;
2(9“5] 3T+ 4%,
Ty Te—2 (B-15), (B~16)

u u

3T+5xT‘+4(%)3(1—-q2)

b1
8T'+?xT"-l2x(9~] (1-q%)
T = > ™= z 8-17), (B-18)

u
Now, it is time to explain the variant of the algorithm for the case m =0, x > 0 and Ju| £ 0.4, It is
based on series expansion. The basic expressions are:

T = ¢(u)-q*¢(q?u) ®-19)

where o) = iA,,u“ (B-20)
an)

with A, (20) ®-21)

T (¥ (20 e 3)

This expression is inaccurate for q near 1, and in this case we replace Eq. (B-19) by:

T=3 B’ (B-22)
n=0
where B,=A,b, (B-23)
with b, =1-¢** (B-24)
And, for the derivatives, we can use;
T =-2xT" Y= T + 4xIT T = 12xT” - 8x°T" (B-25), (B-26), (B-27)
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dT
e —
where T"

Some more details are available in reference''

The Starting Value of x (3,}

One of the most important characteristics introduced in this impiementation of the Lambert's problem
is the method of finding a good initial value for x (xo) to start the iteration process. The method is divided
in two parts, depending on the value of m.

a) m = 0 (single revolution transfer)

The first step is to calculate To, that is the function T(q,m.x) for x = 0. We do it, by using the

equations developed in the last section. Then, we divide our study in two cases again:

To({T,~T)

1THTSTy thenxo = AT (B-28)
2. If T > Ty, then we calculate:
X = = [0 W=+ 17 (;_EJ (B-29)(B-30)(B-31)
T-T, +4 T+ ko n
2
and we make:
X = X1 fwz0 (B-32)
1 R
Xo=Xor+ (~W)s(p - %) W <O (®33)

As an additional refinement, to avoid numerical problems, we study separately the case when x is near
-1, In this case we multiply the x, (as given in the previous equations) by A, that is given by the
expression:

A= 140Xy (1# Xgy )=y xE J(14 %) (B-34)
where ¢, =0.5 and ¢, = 0.03

b) m > 0 {one or more revolutions during the (ransfer)
The first step is to calculate the quantity x,,, that is given by:

4

@ Xy g = ——————  if B, = B-35

M X 3n(Zm+1) b=rx (B-33)
8, V4 .

Xy = xm(—;f—J ifg, <m (B-36)
8. V4

XN = Xpix 2-‘(2"——;’) ifg,>n (B-37)

Then, we use the parameter T(q,m,x) to evaluate T for x,;. We call it Ty = T(g,m,Xpg).
At this point, we have three possibilities:

Ty > T = There is no solution for this Lambert's problem

Tam =T = There is a unique solution (x = x,¢)} for this Lambert's problem

Twm < T = There are two solutions for this Lambert's problem. They are given by:
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- T-T,
Xo= Xm * IT "T :;%TM Xo = Xn - T, " MT " (B-38).(B-39)
JJZL‘“([ y '-M“-(T‘TM)T_M T
-XM 2 . 2 To""TM XM

Now that we have a good value for x,, we can make the iterations desired, in the following way:

1. Calcuiate: x =xg, Ty, = Jﬁ'{-m :
§
2. Calculate: T = T(q,m,x) with the equations given in one of the previous sections;

.7
3, Calculate; DT=T-Tandx=x+ ____[3’_1‘“’1;__"_;
1@ DT
2

4. Go back to step 2, until three iterations are performed.
The decision of performing three iterations, instead of including a check of convergence for x, is based

in several simulations, that showed that three iterations are always enough for convergence.

ution
After x is found, we have to transform it back to velocities. Remember that the initial and final
positions for the transfer are given and. if we can find the velocity vectors at those two points, we have a

complete specification of the transfer orbit desired. The equations for the velocities are:

{qz-x)-plqz+x
v&,=7[q )qu )] (B40)
!
where 7=J%. z2=+{1-q* +q¥x*,p= R, :RZ
VR,; = Y[(QZ-K)R*-P(QZ-kx)] VT.I - _}E(_:{._mi)_ (B-‘“), (B_42)
2 \
where & = y1-p? =21/E%{-3~sin(%‘-]

¢

v, = Bzt a) B43)

R,
where the subscripts in the velocity are: T for tangential component, R for radial component, ! for the
initial point and 2 for the final point in the transfer.
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