MINISTÉRIO DA CIÊNCIA E TECNOLOGIA INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS

INPE-8485-MAN/20

ANÁLISE DE FERRO EM HIDRAZINA SEGUNDO A NORMA MIL-P-26536E

Turíbio Gomes Soares Neto Jorge Benedito Freire Jofre

INPE São José dos Campos 2001

RESUMO

Este documento tem como principal objetivo estabelecer um procedimento padrão para análise de ferro no propelente hidrazina (N₂H₄) utilizado nos propulsores a mono e bipropelentes desenvolvidos e/ou testados no Laboratório Associado de Combustão e Propulsão (LCP/CES/INPE), a fim de se verificar sua conformidade com as especificações expressas na Norma MIL - P - 26536E editada em 27/09/97.

IRON ANALYSIS IN HIDRAZINE IN AGREEMENT WITH THE MIL - P - 2653E NORM

ABSTRACT

The main objective of this document is to establish a standard procedure for iron concentration analysis in hydrazine propellant used in the monopropellant and bipropellant thrusters developed and/or tested in the Combustion and Propulsion Associated Laboratory (LCP/CES/INPE), in order to verify its accordance with the specifications of the MIL-P-26536E norm that was published in September 1997.

SUMÁRIO

LISTA DE FIGURAS LISTA DE TABELAS LISTA DE SÍMBOLOS E SIGLAS

1 - OBJETIVO E CAMPO DE APLICAÇÃO	7
2 - GRAUS DE PUREZA DA HIDRAZINA	7
3 - CONSIDERAÇÕES SOBRE NORMAS DE SEGURANÇA	7
4 - ANÁLISE DE FERRO	9
4.1 - Introdução	9
4.2 - Equipamentos e Acessórios	10
4.3 - Cálculos	10
4.3.1 - Utilizando Resíduos não Voláteis	10
4.3.2 - Utilizando Hidrazina Diluída	11
4.4 - Análise em Passos	11
4.4.1 - Preparação da Solução de Calibração	11
4.4.2 - Preparação da Solução de Dosagem	12
4.4.3 - Operação do Espectrômetro de Absorção Atômica	12
5 - MODELO DE RELATÓRIO DE ANÁLISE	19
6 - LISTA DE CHECAGEM DOS PROCEDIMENTOS DE ANÁLISE	21
REFERÊNCIAS BIBLIOGRÁFICAS	24

LISTA DE FIGURAS

	Pág.
1 - Opções do menu; seleção do método; tela 01	13
2 - Opções dos métodos existentes.	14
3 - Parâmetros de configuração para análise de ferro	14
4 - Campos de identificação para "equation, units & replicates"	15
5 - Campos de identificação dos padrões e respectivas	
concentrações.	15
6 - Campos de configuração para o "Report".	16
7 - Arquivo ferro.flm.	16
8 - "Workspace" para a análise de ferro	17
9 - Identificação das amostras	17
10 - Identificação do "Result Name"	18
11 - Configuração final da "workspace" para análise de ferro	19
12 - Modelo de relatório de análise	21

LISTA DE TABELAS

1 - Propriedades físicas e químicas dos três graus de pureza da hidrazina 8

LISTA DE SÍMBOLOS E SIGLAS

- Fe⁰ Átomo de ferro em seu estado fundamental
- F⁺³ Cátion férrico
- EPI Equipamento de proteção individual
- MMH Monometilhidrazina
- RNV Resíduos não voláteis
- UDMH Dimetilhidrazina assimétrica

1. OBJETIVO E CAMPO DE APLICAÇÃO

Este documento tem como principal objetivo estabelecer um procedimento padrão para análise de ferro no propelente hidrazina (N_2H_4) utilizada nos propulsores a mono e bipropelentes desenvolvidos e/ou testados no Laboratório Associado de Combustão e Propulsão (LCP/CES/INPE), a fim de se verificar sua conformidade com as especificações expressas na Norma MIL –P – 26536E editada em 27/09/97.

2. GRAUS DE PUREZA DA HIDRAZINA

A hidrazina pode ser dividida em três graus de pureza (tabela 1):

- a) <u>Grau de Pureza Padrão</u>: Produção e controle de qualidade convencional desejável para a maioria dos usos;
- b) <u>Grau de Pureza Monopropelente</u>: Produção convencional e com controle de qualidade específico de contaminantes. Utilizada em Sistemas Micropropulsivos de Satélites, onde o micropropulsor é carregado com catalisadores de Ir/Al₂O₃, Ir-Ru/Al₂O₃ ou carbetos de metais de transição desenvolvidos no Laboratório Associado de Combustão e Propulsão (LCP/CES/INPE);
- <u>Grau de Alta Pureza</u>: Produção e controle de qualidade de impurezas especiais.

3. CONSIDERAÇÕES SOBRE NORMAS DE SEGURANÇA

É extremamente importante lembrar dos riscos que são inerentes a manipulação de produtos químicos muito tóxicos e instáveis, os quais formam pares hipergólicos, como é o caso da hidrazina.

TABELA 1 - PROPRIEDADES FÍSICAS E QUÍMICAS DOS TRÊS GRAUS DE PUREZA DA HIDRAZINA

PROPRIEDADES	GRAUS DE PUREZA - LIMITES		
	PADRÃO	MONOPROPELENTE	ALTA PUREZA
N_2H_4 (% em peso)	≥ 98	≥ 98,5	≥ 99,0
H ₂ O (% em peso)	≤ 1,5	≤ 1,0	$0,5 \le H_2 O \le 1,0$
NH ₃ (% em peso)	-	-	≤ 0,3
Carga de particulados (mg/l)	≤ 10	≤ 1,0	≤ 1,0
Cloretos (% em peso)	-	≤ 0,0005 (5 ppm)	≤ 0,0005 (5 ppm)
Anilina (% em peso)	-	≤ 0,5	≤ 0,003 (30 ppm)
Ferro (% em peso)	-	≤ 0,002 (20 ppm)	≤ 0,0004 (4 ppm)
Resíduos não voláteis (% em	-	≤ 0,005 (50 ppm)	≤ 0,001 (10 ppm)
peso)			
CO ₂ (% em peso)	-	≤ 0,003 (30 ppm)	≤ 0,003 (30 ppm)
Material carbonáceo volátil,	-	≤ 0,02 (200 ppm)	≤ 0,005 (5 ppm)
como: MMH, UDMH, álcool			
(% em peso)			

A adoção das seguintes precauções é indispensável para que a análise seja efetuada com a melhor segurança possível:

- As amostras de propelentes devem ser armazenadas e/ou transportadas sob baixa temperatura, preferencialmente armazenadas em frezzer e transportadas em banho de gelo;
- Colocar cartaz na entrada do laboratório indicando que está sendo manipulado produtos tóxicos;
- 3) Manipulação dos produtos químicos em capela;
- 4) Usar EPI como avental, óculos de proteção, luvas e máscara facial;

- Os equipamentos de segurança do Laboratório Químico devem estar em bom estado: chuveiro, lava olhos, extintores de água;
- 6) Não colocar ou manipular substâncias oxidantes nas proximidades;
- Colocar sistema de exaustão na saída do cromatógrafo e em outros equipamentos;
- 8) Utilização obrigatória do detector de hidrazina;
- 9) Munir-se da Lista de Checagem descrita no item: 6. LISTA DE CHECAGEM DOS PROCEDIMENTOS DE ANÁLISE.

Gostaríamos de salientar que existem algumas publicações internas do INPE, relativo à segurança, manuseio e análise de hidrazina (Calegão et al. (1995); Bressan et al. (1996)).

4. ANÁLISE DE FERRO

4.1. Introdução

A determinação do teor de ferro é efetuada por análise de absorção atômica, utilizando-se um espectrômetro de absorção atômica com chama. A solução contendo ferro a ser dosada é preparada a partir dos resíduos obtidos na Análise de Resíduos não Voláteis (RNV) ou da hidrazina diluída. A curva de calibração absorbância versus concentração de ferro (em ppm) é obtida a partir das medidas de absorbância de Fe⁰ em soluções de Fe⁺³ preparadas a partir de uma solução padrão de FeCl₃, com certificado de análise, ou preparada no próprio Laboratório.

O desenvolvimento deste procedimento para a determinação do teor de ferro se baseou no relatório de atividades do Sr. Ch. Blondeau (Blondeau, 1999), em visita ao INPE no período de 11 a 30 de outubro de 1999.

4.2. Equipamentos e Acessórios

- Balança Analítica de Precisão com cinco casas decimais, marca Mettler Toledo, modelo AT261Delta Range;

- Estufa do tipo estática operando a 110°C ± 5 °C;

 Espectrômetro de Absorção Atômica, modelo ANALYST 300 da PERKIN ELMER;

Água destilada isenta de Fe para preparação de soluções;

Soluções de H₂SO₄ 0,1N, 5N e 6N;

- Solução padrão de Fe com certificado de análise;
- Placa de aquecimento com agitação;
- Agitador magnético;
- Beckers de 30 ml e 100 ml;
- Balões volumétricos de 1000, 200 e 100 ml;
- Vidro de relógio;
- Fe em pó ou arame;

4.3. Cálculos

4.3.1. Utilizando Resíduos não Voláteis

Para todos os graus de pureza:

% Fe =
$$\frac{(ppm Fe) x (V_d)}{(V_h) x (D) x (1 x 10^4)}$$
 (1)

Onde:

ppm Fe = concentração em Fe na solução obtida dos resíduos não voláteis;

V_d = volume final da solução obtida dos resíduos não voláteis em ml;

V_h = volume da amostra de hidrazina usada na análise de resíduos não voláteis;

D = Densidade da hidrazina (1,01 g/ml)

4.3.2. Utilizando Hidrazina Diluída

Para todos os graus de pureza:

% Fe =
$$\frac{(ppm Fe) x (DF)}{(D) x (1 x 10^4)}$$
 (2)

Onde:

ppm Fe = concentração em Fe na solução obtida na diluição da hidrazina;

DF= Fator de diluição usado para diluir a hidrazina;

D = Densidade da hidrazina (1,01 g/ml).

4.4. Análise em Passos

4.4.1. Preparação da Solução de Calibração

OBS: Caso esteja disponível a solução padrão de 1000 ppm desconsiderar os itens de 1 a 4 e executar este procedimento a partir do item 5.

- Secar cerca de 1,000 g de ferro em estufa a 110 °C por 1h. Após esfriar em dessecador;
- 2) Pesar o mais preciso possível 1,000 g de Fe.
- Dissolver em 50 ml de solução de H₂SO₄ 6N sob aquecimento evitando que o condensado escape;
- Transferir quantitativamente a solução resultante para balão volumétrico de 1000 ml com solução de H₂SO₄ 0,1N. Completar o volume com solução de H₂SO₄ 0,1N (solução padrão com 1000 ppm de Fe);
- 5) Pipetar 1, 2, 3 e 5 ml da solução padrão de Fe (poderá ser utilizada solução padrão comercial) para balão volumétrico de 200 ml. Completar o volume com solução de H₂SO₄ 0,1N e homogeneizar. A concentração de Fe dessas soluções será respectivamente 5, 10, 15 e 25 ppm;

- Preparar um balão volumétrico com solução de H₂SO₄ 0,1N para o teste em branco.
- 7) Construir a curva de calibração na forma de absorbância versus concentração de Fe em ppm. Começar as leituras pelo teste em branco e após pelas soluções, tomando o cuidado de ajustar o zero de absorbância para a solução de H₂SO₄ 0,1N. Todas as leituras devem ser efetuadas no comprimento de onda de 2480 Angstrons.

4.4.2. Preparação da Solução de Dosagem

- 1) Dissolver o resíduo seco proveniente da análise de resíduos não voláteis (RNV) com 5 ml de H₂SO₄ 5N. Aquecer com agitação, não permitindo que o condensado escape. Manter em ebulição de 3 a 5 minutos. Deixar esfriar a solução e transferir quantitativamente para balão volumétrico de 100 ml. Lavar o recipiente pelo menos 3 vezes com cerca de 5 ml de solução de H₂SO₄ 0,1N, sempre transferindo quantitativamente para o mesmo balão. Após a transferência quantitativa do resíduo, completar o volume do balão com solução de H₂SO₄ 0,1N.
- 2) A hidrazina também pode ser diluída diretamente na proporção de 2:1 para a dosagem no equipamento de Absorção Atômica. Neste caso, a solução para o teste em branco (zero de absorbância) será preparada somente com a mesma água de diluição.

4.4.3. Operação do Equipamento

- 1) Ligar o Aanalyst 300 no interruptor lateral e carregar no microcomputador o programa **AA WINLAB ANALYST**.
- Após a verificação da conexão entre o equipamento e a workstation aparecerá a tela 01 (fig. 1).

3) Clicar em METHOD na barra de ferramentas.

Fig. 1 - Opções do menu; seleção do método - tela 01.

- Aparecerá uma lista com as opções dos métodos existentes, como na fig. 2.
- 5) Selecione o método ferro em hidrazina. Seguir as páginas de configuração para o método "Fe em hidrazina", modificando o conteúdo dos campos quando necessário. Os parâmetros de configuração são automaticamente atribuídos pelo software em condições normais de operação para análise de Fe, conforme mostrado na figura 3.
- Preencha os campos de configuração correspondentes a "Equation, Units & Replicates", conforme a figura 4.

7) Preencha os campos de identificação dos padrões (ID) e suas respectivas concentrações (Conc) de acordo com as concentrações dos padrões preparados no item 4.4.1, conforme a figura 5.

ame methods prary location: hod name:	C:\AAUSER\MI Fe em hidrazina	THODS	
Name	Elements	Description	-
re em hidrazina		Ferro em Hidrazina	
Sort by: @ Nar	ne CDate		-

Fig. 2 - Opções dos métodos existentes.

Method Desc.: Ferro em Hidrazina	Element: Fe New Method
Spectrometer Wavelength Slit Width 0.20 Modified Settings . Image: No image: Set	Timing Read Time (sec) 5,00 🖨 Read Delay (sec) . 2,0 🖨
Signal Type Atomic Absorption 🗾 Measurement Time Average 🗾	Flame Type Oxid Flow (L/min.) 10,00 \$ Fuel Flow (L/min.)

Fig. 3 - Parâmetros de configuração para análise de ferro.

Max. Decimal Places: 2 Max. Significant Figures: 4	
	Standard Concs.
Units	
Calibration mg/L	
Sample mg/L 🗾	

Fig. 4 - Campos de configuração para "equation, units & replicates".

Standard Con	centrations			7	Equation, Units &
	ID	Conc	A/S Loc.		Replicate
Calib. Blank	Calib Blank			_	Standard
Reslope Std.	Reslope	Ĩ	N		Concs.
Reagent Blank	Reagent Blank				
Standard 1	P1= 05 ppm	5.00			
Standard 2	P2= 10 ppm	10.00			
Standard 3	P3= 20 ppm	20.00			
Standard 4					

Fig. 5 - Campos de identificação dos padrões e respectivas concentrações.

- Preencha os campos de configuração correspondentes ao "Report", conforme mostrado na figura 6.
- 9) Caso sejam efetuadas alterações nos parâmetros de configuração, salvar o método ferro em hidrazina e fechar o método editor.

Results Display /	Printed Log Custom Set	
Peaks to Save		
C All replicates	C First replicate for each solution	
None	C Last replicate for each solution	
Remarks		
		<u>^</u>

Fig. 6 - Campos de configuração para o "Report".

- Para iniciar a análise, clicar em "workspace" na barra de ferramentas. Aparecerá uma lista com as "workpaces" existentes, como mostra a figura 7. Selecione o arquivo ferro.flm e clique "OK".
- 11) A figura 8 mostra a "workspace" para a análise de ferro.

File <u>n</u> ame: faces film	Folders:	OK
ferro.flm auto.flm ferro.flm manual.flm	C: \ C: \ C: \ C: \ C: \ C: \ C: \ C: \	Cancel
	<u></u>	<u>_</u>
List files of <u>t</u> ype:	Dri <u>v</u> es:	
Flame Lab Proc (*.flm)	▼ 🗇 c:	-

Fig. 7 - Arquivo ferro.flm.

Manual Analysis	- - ×	Flame Control
SpectrometerWavelength .248.3Energy .0Slit0.20SignalAACurrent StatusIdle	Flame Oxid Fuel	Gas F C2H2 10.0
Analyze O Blank Standard Conc: 5.00	Analyze O Sample	0.2 Flow 2,0
Sample Num: 0 Sample ID:	Open	Safety Interlocks
Results Data Set Name: During Analysis: ┌┌ Save Data ┌┌ Print L	Open .og	

Fig. 8 - "Workspace" para a análise de ferro.

- 12) Preencha os campos "Sample ID e Results Data Set Name", da seguinte maneira:
 - a) Identificação das amostras: Coloque o número da amostra no contador em ordem crescente com a respectiva identificação da mesma, conforme figura 9. O campo destinado a "Sample Information File" não deverá ser preenchido, pois se destina apenas aos equipamentos que possuam amostrador automático.

Sample Num:	0 🌲	Sample ID: 001	
		F	-
	-	000	

Fig. 9 - Identificação das Amostras.

b) Em "Results Data Set" o campo destinado a "Result Name" deverá ter o número do lote da amostra (fig. 10). Clique em "open" para usar um arquivo já existente ou crie um novo arquivo.

hoose Results Data	a Set					
Library location:	C: VA	AUSER\RES	ULTS			V OK
Result Name:	I			Description:		X Lan
Name	124	Date	Time	Description	-	1 ibrar
8LC316FK1		17/08/2001	11:14:11	Hidrazina BTSA		
teste		07/08/2001	13:53:49			

Fig. 10 - Identificação do "Result Name".

- 13) Com todas as configurações efetuadas, a "workspace" para a análise do ferro terá a configuração final como mostra a figura 11 e o equipamento estará pronto para iniciar a análise.
- Ligar o sistema de exaustão, setar os reguladores de pressão do acetileno em 12 psi e do ar comprimido de 3 a 4 bar.
- 15) Setar as condições do queimador:
 - a) Autozero com a chama apagada e queimador abaixado.
 - b) Subir o queimador até absorbância positiva, baixar até ficar tangente (absorbância zero 0,000 Abs). Baixar ¼ de volta.
 - c) Acender a chama e dar autozero.
 - d) Colocar 1º padrão e regular o queimador com o maior valor de absorbância.
 - e) Ajustar o nebulizador para se obter um fluxo que se obtenha uma maior absorbância.
- Iniciar a análise pelo branco, em seguida fazer a curva de calibração com os padrões de 5, 10, 20 ppm.

SpectrometerWavelength .248.3Energy .0Slit0.20SignalAACurrent StatusIdle	Flame Oxid Fuel	G C2H2 10.0
Analyze O Blank Standard Conc: 5.00	Analyze O Sample	0.2 Flow L/min 2.0
Sample Information File: untitled	Open	Interlocks
Results Data Set Name: 8LC316FK1 During Analysis: 🔽 Save Data 🔽 Print L	Open og	

Fig. 11 - Configuração final da "workspace" para análise de ferro.

- Analisar a amostra. Caso a concentração encontrada esteja fora dos pontos de calibração, efetue diluição até que o valor encontrado esteja dentro da faixa de calibração.
- Leve em consideração a diluição da amostra (quando necessária) para efetuar os cálculos.

5. MODELO DE RELATÓRIO DE ANÁLISE

O relatório de análise deverá constar de um formulário padrão que dispõe de campos de identificação da amostra, dados da análise e resultados. O modelo deste formulário é apresentado na figura 12.

Instituto Nacional de Pesquisas Espaciais - INPE Banco de Teste com Simulação de Altitude- BTSA RELATÓRIO DE ANÁLISE Nº 000/01					
ld	lentifica	ção da amostra			
Amostra N ₂ H ₄ Reservatório	Lote: #8LC316FK1		Fabr.:		
Quantidade amostrada	Ponto de Coleta		Data/ hora		
500 ml	Reservatório BTSA		05/10/00 09:30		
Responsável pela amostragem	Especificação do Fabr.				
Alvaro e Domingos		99.3%			
Dados da análise					
MIL_P_26536F	Absorção Atômica		% de Fe		
Responsável pela análise	Nº de repetição		Data/hora		
Jofre / Turibio		1	05/10/00 13:00		
Resultados					
Detreminação		Encontrado	Aceitável até		
% de Fe					

Fig. 12 - Modelo de relatório de análise.

6. LISTA DE CHECAGEM DOS PROCEDIMENTOS DE ANÁLISE

Ao iniciar uma análise o operador deverá ter obrigatoriamente em mãos a lista de checagem para conferir, de maneira simplificada, os passos da análise. Caso haja dúvida, consultar o item **4.4.** Análise em Passos do documento que normatiza o procedimento de análise: ANÁLISE DE FERRO EM HIDRAZINA SEGUNDO A NORMA MIL – P – 26536E

- Atentar para as normas de segurança (item 3 do documento ANÁLISE DE FERRO EM HIDRAZINA SEGUNDO A NORMA MIL – P – 26536E.
- 2) Dissolver o resíduo seco proveniente da análise de resíduos não voláteis (RNV) com 5 ml de H₂SO₄ 5N. Aquecer com agitação, não permitindo que o condensado escape. Manter em ebulição de 3 a 5 minutos. Deixar esfriar a solução e transferir quantitativamente para balão volumétrico de 100 ml. Lavar o recipiente pelo 3 menos vezes com cerca de 5 ml de solução de H₂SO₄ 0,1N, sempre transferindo quantitativamente para o mesmo balão. Após a transferência quantitativa do resíduo, completar o volume do balão com solução de H₂SO₄ 0,1N. A hidrazina também pode ser diluída diretamente na proporção de 2:1 para a dosagem no equipamento de Absorção Atômica. Neste caso, a solução para o teste em branco (zero de absorbância) será preparada somente com a mesma água de diluição.
- Ligar o Aanalyst 300 no interruptor lateral e carregar no microcomputador o programa AA WINLAB ANALYST.
- Após a verificação da conexão entre o equipamento e a workstation aparecerá a tela principal.
- 5) Clicar em METHOD na barra de ferramentas.
- 6) Aparecerá uma lista com as opções dos métodos existentes.
- Selecione o método ferro em hidrazina. Seguir as páginas de configuração para o método "Fe em hidrazina", modificando o conteúdo

dos campos quando necessário. Os parâmetros de configuração são automaticamente atribuídos pelo software em condições normais de operação para análise de Fe.

- Preencha os campos de configuração correspondentes a "Equation, Units & Replicates".
- Preencha os campos de identificação dos padrões (ID) e suas respectivas concentrações (Conc) de acordo com as concentrações dos padrões preparados.
- Preencha os campos de configuração correspondentes ao "Report". Caso sejam efetuadas alterações nos parâmetros de configuração, salvar o método ferro em hidrazina e fechar o método editor.
- Para iniciar a análise, clicar em "workspace" na barra de ferramentas. Aparecerá uma lista com as "workpaces" existentes. Selecione o arguivo ferro.flm e clique "OK".
- 12) Aparecerá a "workspace" para a análise de ferro.
- Preencha os campos "Sample ID" e "Results Data Set Name", da seguinte maneira:
 - a) Identificação das amostras: Coloque o número da amostra no contador em ordem crescente com a respectiva identificação da mesma. O campo destinado a "Sample Information File" não deverá ser preenchido, pois se destina apenas aos equipamentos que possuam amostrador automático
 - b) Em "Results Data Set" o campo destinado a "Result Name" deverá ter o número do lote da amostra . Clique em "open" para usar um arquivo já existente ou crie um novo arquivo.
- 14) O equipamento estará pronto para iniciar a análise.
- 15) Ligar o sistema de exaustão, setar os reguladores de pressão do acetileno em 12 psi e do ar comprimido de 3 a 4 bar.
- 16) Setar as condições do queimador:
 - a) Autozero com a chama apagada e queimador abaixado.

- b) Subir o queimador até absorbância positiva, baixar até ficar tangente (absorbância zero 0,000 Abs). Baixar ¼ de volta.
- c) Acender a chama e dar autozero.
- d) Colocar 1º padrão e regular o queimador com o maior valor de absorbância.
- e) Ajustar o nebulizador para se obter um fluxo que se obtenha uma maior absorbância.
- 17) Iniciar a análise pelo branco, em seguida fazer a curva de calibração com os padrões de 5, 10, 20 ppm.
- Analisar a amostra. Caso a concentração encontrada esteja fora dos pontos de calibração, efetue diluição até que o valor encontrado esteja dentro da faixa de calibração.
- Leve em consideração a diluição da amostra (quando necessária) para efetuar os cálculos.
- 20) Emitir relatório de acordo com o item 5. Modelo de Relatório de Análise.

REFERÊNCIAS BIBLIOGRÁFICAS

- Military International Standard (MIL). MIL-PFR-2653E Performance specification propellant hydrazine. USA, 1997.
- Calegão, I.C.C; Ferreira, J.L.G.; Ferreira, M.A. Segurança e manuseio de hidrazina anidra. São José dos Campos: INPE, 1995. 44p. (INPE 5644 MAN/04).
- Bressan, C.; Calegão, I.C.C; Ferreira, M.A; Vieira, R.L Procedimento de transferência de hidrazina anidra grau monopropelente. Cachoeira Paulista: INPE, 1996. 27p. (INPE - 5983 - MAN/09).
- Blondeau, Ch. **Rapport d'activites jounalier**. Cachoeira Paulista: INPE, 1999. Relatório de atividades.