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ABSTRACT - An ariificial neural network predictive control scheme is
considered for satellite attitude control. Kalman filtering algorithms are used not
only to train the associated feedforward neural network modeling the dynamics of
the plant but to also estimate the control actions, It is shown that the optimization
of a predictive quadratic performance functional, used 1o determine the discrete
control actions, can be viewed and treated, in a typical iteration, as a stochastic
optimal linear parameter estimation problem. The algorithms obtained are shown
to be the result of application of Newton’s method to appropriate control
optimization functionals that provide solutions that converge 1o smooth and
reference tracking controls. The proposed scheme is then applied to a three-axes
satellite attinede control with a double-gimbaled momentum wheel. Results of
simulations and tests for the situation of fine pointing torques and errors in the
initial sarellite attitude show excellent performance of the proposed scheme.

1 - INTRODUCTION

Although practical processes involve nonlinear behavior, most predictive control algorithms are
based on a linear model of the process. As a result, they do not give satisfactory control
performance when the controlied process is highly nonlinear. Recently, it has been proved that
multilayer feedforward neural networks can model and approximate nonlinear functions arbitrarily
well (Cybenko, 1989, Homnik, Stinchcombe and White, 1989, Funahashi, 1989). Based on this fact,
a farge number of identification and control structures that use neural petworks have been
proposed (Nartendra and Parthasarathy, 1990, Sanner and Slotine, 1992, Chen and Billings, 1992,
Soloway and Harley, 1997, Liu, Kadirkamanathan and Billings, 1998). For neural network
raining, many authors have explored recursive least squares (Chen and Billings, 1992) and
Kalman filtering theory (Singhal and Wu, 1989, Watanabe, Fukuda and Tzafestas, 1991, liguni,
Sakai and Tokumaru, 1992, Chen and Ogmen, 1994, Lange, 1995, Rios Neto, 1997) to develop
hoth off line and on line neural network supervised training algorithms. It has been observed that,
generally, these algorithms furnish better performance than the usual backpropagation algerithm
te g, Silva and Rios Neto, 1999).

When a predictive control scheme is considered, besides training the neural network that wilt
model the plant dynamics, one needs to solve an optimization problem to get the control actions
‘Suand McAvoy, 1993, Mills, Zomaya and Tad¢, 1994, Liu, Kadirkamanathan and Billings, 1998,
Noloway and Harley, 1997, Zhu, Qin and Chai, 1999). In this case, control performance indexes
4re generally minimized using nonlinear programming techniques.



A different approach is used here in the sense that, stochastic optimal parameter estimation theory
is used to design a neural predictive control Kalman filtering algorithm. As a result, the problemg
of neural network training and predictive control are viewed and treated in an integrated way ag
stochastic optimal linear parameter estimation problems. .

In the second part of this paper, the feasibility of the proposed algorithm in the design of a
geostationary satellite attitude control system is tested. Control and stabilization of a double.
gimbaled momentum wheel three-axes stabilized geostationary satellite example configuration
(Kaplan, 1976, Barret, 1992) is investigated. Attttude control torques for this application can be
produced by momentum wheel exchange. The doubie-gimbaled momentum wheel offers control
torques about all three-vehicle axes through wheel speed control and gyrotorquing,

To illustrate design considerations, atttude simulations of a double-gimbaled momentum whee)
satellite with initial off nominal disturbances and selar pressure torques are presented. Resalts
show excellent performance of the proposed scheme with satellite attitude being kept welt inside
limits of orientation of expected spacecraft attitude for one-day attitude simulation,

2 - CONTROL PROBLEM AND NEURAL NETWORK PREDICTORS
The problem at hand is that of controlling a dypamic system represented by

x= flxu) 2.1

for which discrete time nonlinear input-output models can be taken to predict approximate
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where #; =t + jAf.

The adopted neural predictive control scheme uses a feedforward neural network which can
uniformly and with the desired accuracy learn a mapping as that of Eq. (2.2) (Chen and Billings,
1992) to model the dynamic system of Eq. (2.1). The fundamental idea in predictive control is to
predict the vector of future tracking errors and mintmize its nomm over a given number of future
control moves. To accomplish this, the internal model neural network will provide the response
model that will be used to determine a smooth and reference trajectory tracking control actions,
These actions are obtained by minimizing a predictive quadratic index of performance of the type
usually adopted in predictive control schemes
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where as before ¢, = £+ jAf; y (.} is the reference response, n defines the horizon over which the
tracking errors and control increments are considered; R(r,} and R({r;) are positive definite
weight matrices, and 3{+,) is the output of the feedforward neural network, trained to
approximately model the dynamic system of Eq. (2.1) and which can be formally represented as

5{'1) = f(-;'(‘f-l)' 3(‘;%}: “{IH)» “(f,-.,_): *3) (29



Here W represents the neural network parameter vector, adjusted ot estimated along training.
Thus, in summary, for the solution of the resulting neural predictive control problem it is needed;
(i) to choose a feedforward neural network with appropriate architecture and size. Then, in a
process usually involving both off line and on line supemsed training, learn from dynamic system
input-output data sets, how to represent the mapping of the considered nonfinear discrete model
(Eq. 2.2);

(ii) to solve with respect to the control actions, on line and in a small fraction of Ar, the nonlinear
programming problem of minimizing an objective function as that in Eq. (2.3) subjected to the
constraint of Eq. (2.4).

3 - KALMANFILTERING INTEGRATED SOLUTION

The problem of supervised training of the feedforward neural network used in the predictive
control scheme can be treated using Kalman filtering algorithms. Versions of these algonthms,
with different levels of approximation, ¢an be found in the literature. These versions may vary
from full non parallel algorithms, mostly suitable for off line use, to simplified parallel processing
algorithms (Rios Neto, 1997) for on line use. Here, a2 method is proposed where the problem of
determining the predictive control actions is also ireated as one of stochastic optimal linear
parameter estimation. This allows the derivation and use, in a given iteration, of the same Katman
filtering type of algorithms as in the neural network training.

The method starts by assuming that the problem of control determination can be viewed, in a more
general stochastic framework, as a stachastic parameter estimation problem such as
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where j=12,.,n.The errors v (¢,) and v, {¢,) are considered to be constituted of uncorrelated

&

components as well as, uncorrelated for different values of ¢,. A first consequence of this more

general stochastic framework is that the weight matrices in the objective function, Eq. (2.3), have

now the meaning of covariance matrices. This certainly facilitates their definition.
In order to iteratively solve the problem of Egs. (3.5) and (3.6) as one of linear parameter
estimation, one takes in a given ith iteration the linearized approximation of Eq. (3.5)

a(f{y,(fj)—?(f -I[au *) ’b ) - “(‘t’ ] ¥ n’(l‘) (3.9)
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where k= max[O, (j-n, —nu)]. The parameter o, 0 <a(f) =1, is to be adjusted to guarantee the

linear perturbation approximation hypothesis. The partial derivatives indicated above, are to be
calculated recursively using the backpropagation mle and the trained feedforward neural network
(Chandran, 1994, Soloway and Haley, 1997). This observation type of condition is then processed,
taking as a priori information, based on Eqgs. (3.6} and (3.9), the following equation (Rios Neto and
Da Silva, 2000)
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where/=0,1, ..., n-I and #=1,2, ..., I, The control variable @(¢_)) is the estimated selution from [ast
control step and for a new iteration it is assumed that: a(i) « ae(i+ 1) and &(t,,i +1) = (¢, 1) . For
=1 estimates or extrapolations of the control vanables are used.

For j=12, .., nand I=0,1, ..., n-1, the problem represeated by Eqgs. (3.9) and (3.10) is one of
stochastic linear parameter estimation. In a more compact notation,

vit,iy = [urfto,i):ur I,,l’):u-:ur(r,,_,,:')r; {},(r_,) = &r,)
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The meanings of the compact notation variables becomes obvious if Eqs. (3.11) and (3.12) are
identified with Eqgs. (3.10) and (3.9), respectively. Using a Kalman filtering estimator, results
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The matrices R(r), R(t) and 11(:,1) are error covanance matrices of V,(2), V,(z) and
((}(r,f) ~U(1)}, respectively and [/, is an identity matrix. A way of showing that convergence is
guaranteed is by considering the algorithm in the equivalent form (Eq. (3.13))
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and noticing that this is the result of applying Newton’s Method to the functional (Luenberger,
1984)

1 = A 20ROz + v - O RO - i) G.17)

Ir a way completely analogous to that adopted for the problem of neural network training (Rios
Neto, 1997), one can obtain approximated versions of Egs. (3.11) and (3.12) which can be
paralleled processed for each value of /=0,, ..., n-I. To get this simplified version one can
approximate the values of U, (z,#), k= [ in Eq. (3.12) by I/, (¢,{}. These approximations lead to a
problem, which can be locally processed, and which also converges to a smooth control that tracks
the reference trajectory.



4 - SATELLITE ATTITUDE CONTROL

As an example of application a control scheme of a three.axes stabilized, actively attitude
controlled, geostationary satellite is investigated. At synchronous altitude gravity gradient and
magnetic moment methods do not produce sufficient torques to permit satisfactory correction of
orbit attitude errors and solar pressure perturbation effects. Significant perturbing torques result
from solar pressure torques, which are sinusoidal in nature with period equal to that of the orbit.
Mass expulsion, momentum exchange or other practical technique must generate orbit control
forces. Specific torque producers and thrusters are several in type and have been the subject of
study in the past decades. {n particular, techniques using double-gimbaled momentum wheel have
been investigated for satellite attitude maintenance (Kaplan, 1976, Barret, 1992).

The double-gimbaled momentum wheel system is of particular interest because of its unique
combination of advantages over other momentum devices. It offers control torques about alt three-
vehicle axes through wheel speed control and gyrotorquing. This system can be used both for
satellite maneuvering and attitude stabilization. They maintain attitude by momentum exchange
between the satellite and the wheel, As a disturbance torque acts on the satellite along one axis, the
wheel reacts, absorbing the torque and maintaining the attitude. The wheel spin rate increases or
decreases to maintain a constant attitude. Momentum wheel control systems are particularly suited
for attitude control in the presence of cyclic or random torques. An example control system using
the double-gimbaled momentum wheel is presented to illustrate design and feasibility of the
proposed Kalman filtering predictive contro! algorithm.

4.1 - Equations of Motion

The vehicle considered was selected based on specifications suggested by Kaplan, 1972, and
Barret, 1992. The satellite is assumed to have 716 kg of mass and moments of inertia equal to
Ix=1z=2000 kg.m’ and [z=400 kg.m’. Attitude accuracy requirements indicate that pitch and roll
angles should not exceed 0.05° and yaw angle vajues should be less than 0.40°. Then, consider a
satellite initially placed and deployed in geostationary orbit. The control system injtiates operation
with nominal wheel momentum, H,, zero gimbal deflections and smalj attitude errors. A rigid body
model with internal momesntum is used for this preliminary apalysis. Consider a body reference
frame, x, y, Z, which is actually rotating with respect to an ipertial frame at the rate of the orbit, w,,
The z or yaw axis points towards earth center and the x or roll axis is in the orbital plane with the
same direction of the velocity vector. The y or pitch axis completes the orthogonal system of
reference. Euler’s equations for the rigid satellite and wheel are given by

dh dh
'r = — o feaa 4‘].
+ G = y [ ]b + @Wxh ( )

where T is the disturbance torque due to solar pressure and thrust misalignment, G is the gravity
gradient torque and h is the total angular momentum, including wheel. Thus, considering that h,
is the vehicle angular momentum and b, is the wheel angular momentum results that



h =h + A, 4.2)
Expressed in terms of components along the principa] axes,
A =lof+ loj+ Lok {4.3)

where the unit vector i, j, and k correspond to body x, ¥, z, principal axes, respectively. Also, the
momentum wheel components are

h, = cosbsinyh, h, = —cosbcosyh, h, = —-sindh, (4.4)

where §, y are the roll and yaw gimbal angles, respectively. Combining these expressions leads
to the following set of nonlinear ordinary differential equations

@, = 71—[1’; + G, + Osindsinyh, ~ 7 cosdcosyh, ~ cosdsinyh,
* 4.5)
- o, (fo, - sindh, ) + wl(!ywy - cosdcosth)]

W, = 1 T + G, — dsinbcosyh, ~ ycosdsinyh, + cosdcosyh
¥ I ¥ ¥ W
y (4.6)
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W, = L[?; + G + dcosdh, + sindh, - r.o,(!ywy - cosécc:sth)
£ (4.7)
+ (Lo, + cosésinyhm)]
The attitude rates and body rates are related by
W =W, + 0, 4.8)

where @), @ and w,;, are the orbital, absolute and relative angular velocities, respectively. In the
sequel, (3, 6, §) are the yaw, pitch and roll Euler angles of the body with respect to a local
vertical reference system. Then, in terms of their components Eq. (4.8) becomes

¢ cos@ singsin8  sinfcos¢ @, + ,siny cos@

8] = =3 0  cosgcosf ~singcosh [|w, + w,(cosycosg + sinysin@sing)| (4.9)
. cos

P sing cos¢ JJw, + w,(sinysinBcos¢ - cosysing)

The gravity gradient torque components are approximated by

3
G, = Ew;sianI;ccrsz19[‘!'a - !v) (4.10}



3
y = ] cosgsin20(I, - 1) (4.11)

3 .
G, wa, singsin26(1, - 1) (4.12)

and the solar pressure torque components for t=0 at 6 AM. or 6 P.M. orbital position are
approximated by

T = 20x10%1 - 2sinw T = 1.0x10™cosw T = -50x107coswy (4.13)
x 0; ¥ 0r 4 o

4.2 . Simulation and Results

The plant, represented by the set of nine ordinary differential equations, that describes the
satellite attitude motion, was initially identified with a feedforward neural network. The net was
chosen with 12 neurons at the input layer, 20 at the hidden layer and 9 at the output layer, all
layers having a bias of +1. Patterns used for training were created by numerical integration of the
set of differential equations during a 1.0-second interval. This interval alse defines the frequency
of control actualization. Initial conditions were randomiy chosen between the limits: angles ¢, &
and 1, = 9.0573 deg, angle rates, ¢ 6 and Y, = 0.0573 degfs, gimbal angles, 8 and y, = 2.2918
deg, gimbal angle rates, 6 and ¥, = 0.0286 deg/s, angular momentum, h,, 200 = 2 kg.mza’s,
angular momentum rate, /_, = 0,10 kg.m%s’.

The gimbal angie rates & and v and the momentum rate 4, were chosen as control variables. A
set of 1500 patterns were created by choosing a set of initial conditions given by

{@', 0, P, ¢, 6, vy, 6.7, k., 3,7, ﬁm}, numerical integration over the 1.0-second interval
and by getting the state variables at the end of the interval {:p, 8, 1, ¢. 8, ¢, 8.7, hw}. With
a set of conveniently chosen dimensional variables, those two groups of variables were further
converted into values ranging from —1 to +1 and represented the inputs and desired outputs of the
neural network. From the total of 1500 patterns, 1250 were used for training and 250 for
verifications. Neural training was performed until 2 mean square error of 1.0x10? was obtained.
After neural network training, a ome-day satellite attitude simulation was performed. Initial
satellite amtitude was considered as being: Y=0=¢=1.0 degrees and 3, 8 aond ¢ negligibly
small. The objective of the simulation was control the satellite’s attitude in order to lead it to
nominal values, in the presence of unmodeled solar perturbations. Reference trajectory was
actually set as a function of attitude’s angltes and rates current values:
Y, = w6, = 80 ¢, = 9i)e ™

r

W, = B 6, = 80V ¢ = g)e™

It should be noted that for the satellite attitude control simulation, dimensional variables refated
with attitude angles and angle rates were conveniently chosen so that, angles and rates absolute
values never exceed a 1.0-valwe. Simulation results for attitude’s angles and rates as well as
control variables are shown on Figures 1(a) to l{c), 2(a) to 2(c}, 3 and 4, respectively. Results
show excellent performance of the proposed scheme. It can be observed that for one-day
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simulation the valves of satellite’s attitude angles and rates are kept well inside limits of
orientation of expected spacecraft attitude.

£ « CONCLUSION

The use of Kalmaa filtering as an optimal parameter estimation toof allows design of a method to
solve neural predictive control problems, This method can be shown 1o converge to Newton’s
Method solution of minimizing functionals which constraint smooth and reference trajectory
tracking controls.

A numerically simulated test was considered by applying the proposed methodology to the
control of a geostationary satellite attitude. Nonlinear equations of motion were used, neusal
network training patterns were created, a feedforward neural network was trained and then, the
control actions were obtained. Satellite attitude control was obtained with attitude errors
maintained well inside specified limits. The results obtained are excellent, relative to those found
in the literature and although a [.0-degree initial attitude angles were considered, supplementary
simulations demonstrated that control of larger initial angle values are also possible.

The simulation demonstrated that the algorithm'’s performance is equivalent to that of the
correspondent neural network training Kalman filtering algorithms because they are completely
similar algorithms used to solve numerically equivalent parameter estimation problems.
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