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Active synchronization in nonhyperbolic hyperchaotic systems
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We propose a methodology to address the outstanding problem of synchronization in nonhyperbolic hyper-
chaotic physical systems. Our approach makes use of a controlling-chaos strategy that accomplishes the task by
transmittingonly one scalar signal even in the presence of noise.
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The inherent sensitive dependence on initial conditionsigh-dimensional, nonhyperbolichaotic systems with the
implies that two trajectories starting from slightly different transmission of &ingle scalarsignal.
initial conditions diverge exponentially in time on the aver- Intuitively, to achieve synchronization on hyperchaotic
age. Despite that, it has been known that two chaotic systensystems, the number of variables to be transmitted should be
can be synchronizefil]. Later on, Pecora and Carrf2] equal to that of positive Lyapunov exponents in order to
gave a condition for the synchronization of two nearly iden-account for the same number of unstable directions along the
tical chaotic systems: Using appropriately chosen state variehaotic trajectory12]. It was shown in Ref[5] and in sub-
ables of a chaotic systefthe drive)y as input to a replica of sequent works introducing various improvemefsl3,14
the original system, the replica subsystéime slavgé might  that, this belief is incorrect. In general, all those proposed
synchronize with the original system if its Lyapunov expo- approaches use feedback strategies whose parameters are
nents are all negative. Since that work, synchronization irfixed and are calculated using empirical strategies or optimi-
chaotic systems has become an area of intense adéhB)  zation algorithms. As a consequence, none of those strategies

In this report, we address the important problem of syncan be considered to work for sure with any hyperchaotic
chronization of nonhyperbolic hyperchaotic systefsgs-  system.
tems with more than one positive Lyapunov expoinebe- In all the ideas previously discussed, the requirement of a
spite the success of a previous metfi6fifor synchronizing hyperbolic structure for the systems to be synchronized is
certain hyperchaotic systems, so far, to our knowledge, thamplicit [15]. By its turn, nonhyperbolic systems can be clas-
physically relevant issue of nonhyperbolicity, which is typi- sified into two types. For the first type, the splitting of the
cally represented by unstable dimension variability and caiphase space into expanding and contracting subspaces is in-
be extremely severe from the standpoint of shadoW@)d], variant along a trajectory except at the tangencies of the
has not been addressed. We preserdeaeral approach, stable and unstable manifolds, where the angles between
based on the idea of controlling chaf®, to synchronize subspaces are zefb6]. The second type of nonhyperbolicity
nonhyperbolic chaotic systems in high dimensions by utiliz-in hyperchaotic systems is due to unstable dimension vari-
ing only one scalartransmitted signal. In particular, we ap- ability [7]. It is related to the presence of unstable periodic
ply small perturbations to some parameter of the slave sysrbits with different numbers of unstable directions embed-
tem to synchronize it with the driver system. In the slaveded within the chaotic attractor. As a consequence, a typical
system, the current state of the driver system is obtainettajectory experiences different numbers of unstable and
from the scalar transmitted signal by using the extended Kalstable directions as it evolves. Thus, the continuous splitting
man filter[9]. We call this approach thactive synchroniza- of the phase space into expanding and contracting subspaces
tion to emphasize its main difference in relation to the moreis no longer valid.
traditional passive synchronization process in which syn- Because of the global sensitivity, synchronization of cha-
chronization happens as a consequence of a proper couplimgic systems having unstable dimension variability in the
schemg[1-5]. To show that our ideas make sense, we useresence of noise or even small parameter mismatches is
the pole-placement methodlO] conveniently adapted to extremely difficult, if not impossible, to achieve. As synchro-
achieve robust active synchronization for the situations ofized trajectories move from one neighborhood to another
strongly nonhyperbolic chaotic systems with more than onéiaving unstable periodic orbits with different number of ex-
positive Lyapunov exponents and in the presence of noisganding directions, they tend to separate exponentially from
We mention that the concept of utilizing the principle of each other. What makes the situation hard for this type of
controlling chaos to achieve synchronization is, in fact, notnonhyperbolicity is the fact that the sets of periodic orbits
new. It was suggested in Rdfl1l]. However, the strategy with a different number of expanding directions are densely
proposed there is applicable to low-dimensional systemsnixed [7]. Thus, regions where synchronization is highly
only and requires the transmission of all the state variables afusceptible to being destroyed due to the presence of noise
the system from the driver to the slave. In contrast, the stratextend over most of the attractor. As a result, previous meth-
egy proposed in this report allows for the synchronization ofods[5,14] cannot be expected to work for hyperchaotic sys-
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described by the following maps on the Poincaveface of
X section,A: Y;,1=F(Y;,p) and B: X;,,=F(X;,p), where
System A > Xi, YieR", F is a smooth function in its variableg, for
i} systemA is a fixed parameter value, apdor systemB is an

externally adjustable parameter whose value is restricted to
Transmiter lie in some small intervalp—p|< &, aboutp, whereé is

z Signal a small number defining the range of parameter variation.

Generator Suppose that the two systems start with different initial con-

(H) ditions. The resulting chaotic trajectories are completely un-

correlated. Due to ergodicity, the two trajectories can get
Extended arbitrarily close to each other at a later time, $a¥he dif-

A
X
Kalman ference between the trajectories in the next iteration is:
Filter Xit1—Yir1=F(X;,p) —F(Y;,p). For values ofp close to
P, and asX; falls in a small neighborhood of;, this equa-
tion can be linearily approximated in the neighborhood of

Y\ Chaos Controller Yi, as follows:
Xit1= Y 1 =A[Xi—=YP1+Bi(pi—P), (1)

op where A; is an nXn Jacobian matrix andB; is an
n-dimensional column vectoAi=DZF(Z,p)|z=Y_E'p=3 and

Y Bi=DpF(Z,p)|Z=Yiﬁyp=5. Because of unstable dimension

System B variability, the numbers of stable and unstable directions of
the tangent space at each point of the trajectory change as the
trajectory wanders on the chaotic invariant set. &k the
smaller of the number of stable directions for points of the

set. Thus, a trajectory point & has at least stable direc-

tions in its tangent bundle. We arbitrarily chooseectors
FIG. 1. Schematic illustration of our strategy of active synchro-{v; ,, 1,Vi ,,...Vi+y s} Which span a subspace of dimen-
nization. sions of the linearized stable manifold at the po¥{t, ,. We
. . . o . define the matrix: q)i,j:Ai+u—lAi+u—2'"Ai+j+1Ai+j
tems with unstable dimension variability, especially for ex-¢, j=1,2,...4—1). To derive the control action to be

perimental implementatipn where noise .is glway; present. '%pplied to the parameterof systemB at each iteration, we
general, the densely mixed sets of periodic orbits with d'f'iterate Eq. () u fimes to obtain: X, u—YP,

ferent numbers of expanding directions prevent the success 5
of any passive feedback strategies of synchronization inzq)i,OD(i_YiHq)iiBi(pi_5)+q’i,28i+1(pi+1_5)_+'"_
which parameters of the systems are fixed. +Bi+u-1(Pi+u-1—P). To make systenB synchronize with
A synchronization strategy will work for nonhyperbolic SYStemA, X, must land on the subspace of dimenssoof
hyperchaotic systems only if it is capable of continuouslythe linearized stable manifold of systes trajectory at the
keeping track of the local changes of the system as the traoint YF, ;. Thus, parametep must be chosen such that
jectory evolves through the sets of periodic orbits with dif-there existss coefficients a;,a,,...,as such that, X,
ferent numbers of expanding directions and changes its pa-YP, ;= a1Vi 1+ @oVip ot + agViiys. As aresult, we
rameters accordingly. Thute main point here is to have a obtain a system ofi+ s equations withu+s unknown vari-
synchronization procedure with a built-in adjustment mecha-ables: p; ,pi+1,..-Pi+u—1,21,%2,...,as. This system can
nism Wh'iC'h monitors the system local dynachs and adjuste solved for p;: pi—p=—KIX;—YP], where K!
its coefficients to keep the systems synchronizethe re- ILCfl‘Di,o, L=[-100--0], and C=[-®; ,B;,

mamder of this report, we d_etall our control strategy that_ Biiu_1.Visuir .- Visus]. This results in the values of pa-
implements exactly this principle.

o . _ rameterp that must be applied to systebhat each iteration
A schematic illustration of our method to actively syn- P PP y Y

izati i —YP
chronize two chaotic systems is shown in Fig. 1. We exten@rot?sr js;;r}chromzaﬂon of the two systems, i.X;— Y|
the pole placement control of chaos strat€d] to stabilize o . .
a chaotic trajectory of one systei@ystemB) about a chaotic th Thetsta:jte dvaKn?bIes ?Ifts?éStm?r;I be es:mated ttjz lisj['rr:g
orbit of the other systerfSystemA) to achieve synchroniza- ¢ €Xtended Kaiman fi €], as follows. Assume that the

tion. We assume that some parameter of the system can B@nsmitted signal can be described .by the following map:
H(X;,v;), where the random variable; represents a

externally adjusted, and that we have complete access to tﬁﬁ? ooy o :

state variables of the slave systéBystemB). The extended white noise in the commumcapon channel with normal prob-
Kalman filter allows us to estimate the current state of theability distribution. We defineX;" to bea priori state esti-
driver system with the transmitted scalar signal. For conmate at stepgiven the knowledge of the system prior to step
creteness, we consider two almost identical chaotic systenisandX; a posterioristate estimate at stémiven the trans-
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FIG. 2. Results of the use of our strategy to
synchronize two double-rotor systertfsystemA
sl R . and SystenB) at f =8.0 (severe unstable dimen-
263 264 265 266 267 268 260 27 27 272 sion variabilityy when noise is preserisee text
for detail9: (a) time series of the difference be-
tween thex; phase variables of the systen(b)
Phase space evolution fa; andx, phase vari-
ables of SystenB; and (c) Time series of the
euclidian distance between the phase variables of
the systems. For graphi¢a) and(c) k stands for
the number of iterations. The transmitted signal
used isx}+ x5+ x5+ x4 +v, wherev is a white
noise with normal probability distribution and
signal-to-noise ratio equal to @8. Initially, the

AX1=X

3,

- s s : z 5 S N N D g e
T : : : ; : T Pk Sk g e, 88 systems are far apart by an ecludian distance of
R po o o e TR T R AR, one unit.

Bt ; ; ; ; ; ; ; ; ;
2.63 264 2.65 2.66 2.67 2.68 2.69 27 2.7 272

k x 10

mitted signalz;. Our goal is to find an equation that com- able control parameter. We choose parameters suchcihat
putes ara posterioristate estimat¥; as a combination ofan =C,=f. For L and M, we use the setting values from

a priori estimateXf and a weighted difference between an Ref. [10]. ) )

actual measuremenz, and a measurement prediction For the double-rotor map, numerical experimefto]
H(>A<f,0), as follows: Xi=Xf+Ki[zi—H(Xf,O)], where show.that.the system goes through a cascade of pe_rlod—
oo e h ) hoi . ~ doubling bifurcations forf <f,;=6.75 and becomes chaotic
Xi =F(Xi-1,P). .T € gain K.i at eac |ter_at|on, IS with one positive Lyapunov exponent &t. For values off
calculated by using the following set of equations, which

minimizes thea posterior estimate eror covariance nearf=28.0, there is a transition from one positive Lyapunov
P exponent to two positive ones and, about this parameter

value, it exhibits fluctuations between one and two positive
exponents in any finite times. These fluctuations reflect the
presence of unstable dimension variability for this system.
For values of much above the transition point, as is the case
_ for f=9.0, the second Lyapunov exponent becomes so posi-
andP = (1-KiC)P;, whereC;=DzH(Z,v)|z=x, v=0 8 e that finite-time fluctuations of this exponent will only
Di=DH(Z,v)|z=x, ,v=0- have a negligible tail on the negative side. Thus, ffoear

We now apply our ideas to a physical system: the double.0, the chaotic attractor of the double rotor map is nonhy-
rotor map[17,10, which is a four-dimensional map describ- perbolic with severe unstable dimension variability, while for
ing the time evolution of a mechanical system consisting of about 9.0, the attractor has two positive Lyapunov expo-
two connected massless rods. This system is modeled by thents and exhibits essentially nonhyperbolic tangencies of
following four-dimensional map, which describes the dy-the stable and the unstable manifolds. Figure 2 shows the
namics of the rotor relating the state of the system immediresults of applying our control strategy to synchronize two

P=E[(Xi—X) (X =X)T]:P7 =A_,P 1Al 4,

Ki=P; Cl(CiPi C +DiRD{) %,

ately after consecutive kicks double-rotor systems fdr=8.0. The transmitted signal used
is zi=H(X;,v;)=x(1)+x(2)+x(3)+x(4)+v, wherev is
0. =M®,+ 0O, a white noise with normal probability distribution and the
signal-to-noise ratio is #B. This result does not change
D, 1 =LD;+G(0;, 1), (2 even if each individual parameter of the model 8stem B

are changed up to 1%. Thus, we observe that, even in the
where @"=[x(1),x(2)]", ®"=[x(3),x(4)]", andG(®)"  presence of noise or parameter mismatch, small control per-
=[c;y sinx(1),c,sinx(2)]", (® e Stx S, andd e RexRe). In  turbations applied t® result in robust synchronizatidi 8].
Eq. (2), x(1,2) are the angular positions of the rotors at theFor f=9.0, the results are similafhe remarkable result is
instant of theth kick, while x(3,4) are the angular velocities that our active approach works equally well for nonhyper-
of the rotors,L and M are 2x2 constant matrices whose bolic hyperchaotic systems having unstable dimension vari-
elements depend on the physical parameters of the ratprs, ability or tangencies of stable and unstable manifolts
andc, are two parameters that are proportional to the kick-contrast, for the nonhyperbolic case fof 8.0, the previous
ing strengthf, which we choose to be the externally adjust-methodology[5,14] fails, as we have tested.
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In summary, we have proposed a general active methofblds. We expect our methodology to be practically appealing
for achieving synchronization in nonhyperbolic hyperchaoticfor experimental implementation of chaos synchronism in
physical systems. Our strategy employs a built-in adjustmerftigh dimensions.
mechanism that monitors the system’s local dynamics and E.E.N.M. and C.G. were sponsored by CNPQ and by
perturbs the system to maintain robust synchronization, reFAPESP. Y.C.L. was sponsored by AFOSR under Grant No.
gardless of whether the nonhyperbolic hyperchaotic systemBs49620-98-1-0400 and by NSF under Grant No. PHY-
exhibit unstable dimension variability or tangencies of mani-9722156.
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