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Wave dissipation by electron Landau damping in low aspect ratio
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Longitudinal dielectric permittivity elements are derived for radio-frequency waves in an
axisymmetric tokamak with elliptic magnetic surfaces, for arbitrary elongation and inverse aspect
ratio. A collisionless plasma model is considered. Drift-kinetic equation is solved separately for
untrapped(passing or circulatingand three groups of the trapped particles as a boundary-value
problem. Bounce resonances are taken into account. A coordinate system with the “straight”
magnetic field lines is used. Permittivity elements, evaluated in the paper, are suitable to estimate the
wave dissipation by electron Landau dampimgg., during the plasma heating and current drive
generationin the frequency range of Alfwe fast magnetosonic, and lower hybrid waves, for both

the large and low aspect ratio tokamaks. The dissipated wave power is expressed by the summation
of terms including the imaginary parts of both the diagonal and nondiagonal elements of the
longitudinal permittivity. © 2002 American Institute of Physic§DOI: 10.1063/1.1499953

Low aspect ratio tokamak®r spherical tokamaksep-  surface, where the Cartesian coordinates are (R
resent a promising alternative route to magnetic thermo- p cosé)cos¢, y=(R+ p cosé)sing, z=—psiné. In the
nuclear fusion™® In order to achieve fusion conditions in (r,0') coordinates, the magnetic field lines become
these devices additional plasma heating must be employeestraight,” and the module of an equilibrium magnetic field,
Effective schemes of heating and current drive in tokamak-|:||-||, is
plasmas can be realized using rf waves. As is well known,
the kinetic wave theory of any toroidal plasma should be H(r,0’)=\/H§50+ Hf,og(r,a’),
based on the solution of Vlasov—Maxwell's equations. How- 2)
ever, this problem is not simple even in the scope of linear g(r,0")= J(1—ecosf’ )2+ \(e—cosh’)?/(1—&?),
theory since to solve the wayer Maxwell’s) equations it is
necessary to use the correct dielecfdcwave conductivity
tensor valid in the given frequency range for the concrete _ —h2(h2/a2 _
two- or three-dimensiondRD or 3D) plasma model. In this s=1/R, A= h"(b la 1>’

paper, the longitudinal permittivity elements are derived for _ YR . YR
rf waves in a 2D axisymmetric tokamak with elliptic mag- hy=Hao/ VHyoTHoo,  hg=H ol VH ot Hip.

netic surfaces under the arbitrary elongation and arbitrar;q¢0(r) andH ,(r) are the toroidal and poloidal projections
aspect ratio. The drift-kinetic equation is solved separately H for a given magnetic surface at the poiits + 7/2; R
for untrapped particles, usuaitrapped particles, and tWo g the major tokamak radius; afdanda are the major and
additional groups of the so-calledttrapped particles as a mingr semiaxes of the elliptic cross section of the external
boundary-valug problem, using an approach d_eveloped fahagnetic surface. In this model, all magnetic surfaces are
low aspect ratio tokamak with circular magnetic surfices similar to each other with the same elongation equad/@
and for I%rge aspect ratio tokamaks with elliptic magnetic 14 solve the drift-kinetic equation for plasma particles
surfaces’ _ _ _ ~ we use the standard metiodl* of switching to new vari-

To describe a low aspect ratio t_okame,lk with elliptic gples associated with conservation integrals of energy and
magnetic surfaces we use the new variabies'( ¢) instead  magnetic moment. Introducing the variablegparticle en-
of quasitoroidal coordinate®,,¢) as ergy) and » (nondimensional magnetic momeim velocity

r=p+\(a2/b?) sir? 6+ cod 6, space instead of, and v, :

1
s (1 |(a @ 2 o HE,
6’ =2 arcta tan = arctan —tané
1+e 2 b

2 2 2
_ ve=v,t+ vy, = 7 )
’ ¢ ¢! I L K Vﬁ"‘Vi H(raa )
transforming the initial elliptic cross sections of the magneticthe perturbed distribution function of plasma particlasy
surfaces to circles with radiua of the external magnetic kind of ions and electronsan be found as

where
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f(t,r,e’,¢,v‘|,vi)=3=§i:l fyr,0' ,v,pwexp —iot+ing), 5 i0t=ial’CC0;lt8(l+)\)/()\+82)

where we have determined that the problem is uniform in e2(1+N)2 1 , 1—¢2\2
both timet and toroidal anglep. In the zeroth order over - \/ N+ 22)?2 T T el 1+e )\—( 1 ) }
magnetization paramete(se., neglecting the finite Larmor
radius effects and assuming that the wave frequency is much (14
larger than both the drift frequency and the precession fre-
quency, the linearized drift-kinetic equation for harmonics + fy= iarcco%s(l-l—)\)/()\-l-sz)
fs can be written as
(1—&cosf’)? 1—ug(r,0') [ ofs STw \/82(1+>\)2 1 5 (1—82)2 }
> TE . — +inqfg| —i—fq + pav z[1te N —
(1—¢2) g(r,6") (ae ) hyv (N+e%)°  Ate M
—2 (erEFIMh, 21— -g(r.6), ®) (19
where for the given magnetic field structure lgyr,0’) in Eq. (2).
Further, we solve Eq(6), in the general case, for un-
N V2 , 2T ehy trapped,t-trapped, and two groups af-trapped particles,
F 771.51/13_9XF{ 2l T q o T—o? (7)  i.e., under the condition when the tokamak magnetic field

E,=E-h is the parallel(to h=H/H) electric field compo-
nent; th steady-state distribution functibnis given as Max-
wellian with the particle densitil, temperaturd’, chargee,
and masdM. The index of particles specié®ns and elec-
trons is omitted in Eq(6). By the indexes=*+1 for f, we

configuration can be considered as a system with two local
minimums ofH(r,#"). In this case, the existence criterion of
the d-trapped particles is<<\or

b/a>\1+e+q°(1—¢&?)le. (16

Otherwise, ife>\, the equilibrium magnetic field has only

distinguish the perturbed distribution functions with positive one minimum, and the-trapped particles are absent at the

and negative values of the parallel velocity,
=svy1—ug(r,0') relative to H. Thus, the initial drift-

given magnetic surfacéas it is in tokamaks with circular
magnetic surfaces whebe=a, A =0 and accordingly\ <eg).

kinetic equation is reduced to the first-order differential Of course, thed-trapped particles are characteristic only of

equation with respect to the poloidal angé, where the
variablesr, v, u (as well asR, a, b, g, N, T) appear as the
parameters. Note, using the smallness &fl and\ <1, that
Eqg. (6) can be readily reduced to the initial drift-kinetic

equation in Ref. 7 for plasma particles in the large aspect

ratio tokamaks with small elongation.
After solving Eq.(6), the longitudinal component of the
current densityj,;=j-h can be expressed as

+1
n(r,e'>=weg<r,e'>§ s

o] / ’/
xf v3flg(rH)fs(r,é”,v,,u)d,u.dv. ®)
0 0

Depending onu and 6, the phase volume of plasma

particles should be split in the phase volumes of untrapped,

t-, andd-trapped particles by the following inequalities:

O=su=<p,, —-w<6'<7 for untrapped particles, (9)
MeSpu=<u;, —6,=<0'<8¢, for t-particles, (10
MSpS<pg, —6<0'<-46y for d-particles, (11)
MSu<uq, 64<0'<6, for d-particles, (12
where[analyzing the conditiorv(u,6’)=0]
1-¢ 1+e e
Muy= \/ma M= \/ma Md= 1+ Ta (13)

and the reflection points 6, and = 64 for t- andd-trapped
particles, respectively, are

elongated tokamaks. Moreover, in the D-shaped tokamaks, in
the general case, the additional groups of trapped particles
can appear. However, the description of the new groups of
the trapped particles there will be more complicated.

The solution of Eq(6) should be found by the specific
boundary conditions of the trapped and untrapped particles.
For untrapped particles, we use the periodicityf pbver 6',
whereas the boundary condition for theandd-trapped par-
ticles is the continuity of ¢ at the corresponding stop points,
Egs.(14) and(15). As a result, we seek the perturbed distri-
bution functions of untrappedf, t-trapped, fts, and
d-trapped,f¢, particles as

!

*oo 0
fi=> f;pexp{iZTr(pﬂan)T(T—)—inqa’}, (17)
p u

Foo

. e
fé:Epf‘svpexr{erp—Tt —mq&}, (18)
0=y
fg‘:Ep fg‘peX%IZﬂ'pT—d—mqﬂ . (19

wherep is the(intege) number of the bounce resonances for
trapped particles, and the transit resonances for untrapped
particles,

T(a,):fe’ (1-e?)g(r,n)dy
0 (1—&cosy)*V1-ug(r,n)’

is the new time-like variabl¢instead off’ to describe the
bounce-periodic motion of untrapped, andd-trapped par-

(20
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ticles along the magnetic field line with the corresponding
and T4=2[7(6)
andf? | for un-
and d-trapped particles can be readlly derived

periods T,=27(w), T.=47(6,),
—7(04)]. The Fourier harmonick ,, f¢ .
trapped,t-,

after the corresponding bounce-averaging.

To evaluate the dielectric tensor elements we use the
Fourier expansions of the current density and electric field

over the poloidal anglé®’:

juaed)

Jjuce") o
A=eDgir,g) ~ & il extime),

(1-e)g(r,0') <

! _ m’ H I gt
Ei(0) =5 coss 2 —% EM exp(im’6").

(21)

(22
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() — 7(64)

(00— ed)}d”' 31

m b
Cp= Ld sif (m+nq) n]cos{pw

7(7) — 7(6q)
7(60) — 7(64)

As was mentioned previously, Eq&4)—(26) describe

the contribution of any kind of untrappet}, andd-trapped
particles to the dielectric elements. The corresponding ex-
pressions for plasma electrons and ions can be obtained from
(24)—(26) replacingT, N, M, e by the electro,, N, m,

ec. andionT;, N;, M;, e parameters, respectively. To obtain
the total expressions of the permittivity elements, as usual, it
is necessary to carry out the summation over all species of

b
Dpr“:f si(m+naq) »]sin p7

by

}d 7. (32

As a result, the whole spectrum of the electric field, Plasma particles. It must be pointed out that the dielectric

Elﬁ"' , is present in the givemth harmonicj|" of the current

density:
4qri <
_l =

2 Sﬁnm Eu

m’

_E(Sllu +ep +8Hd )EH )

(23

characteristics, Eqg24)—(26), are derived neglecting drift
effects and the finite particle-orbit widths. These effdets
well as the finite pressure and Larmor radius correcjicas
be accounted for in the next order of perturbations over
the magnetization parameter.

Note that Eqs(24)—(32) have been written in the quite
general form where the ellipticity is accounted implicitly by

Wheresﬁf‘;,m' : sm‘m' andsﬂ‘am' are, respectively, the separate the functionsr(r,6), g(r,6), and\(r) defined, respectively,
contributions of any kind of the untrapped, andd-trapped  in Egs. (20), (2), and (3). In particular, for tokamaks with
particles, to the longitudindparalle) permittivity elements:

circular magnetlc surfaces, wheke=0 and ¢y M=0, the

0?2 = T AmAm expressions:™ and ™ (and the corresponding phase
Irlnum 2‘)—23 f —2[1+ 2u coeff|C|entsAg‘ m) can be simplified substantiaflypecause
2hyrrm p=== Jo (p+nq) the 7(r, 0) functlons for trapped and untrapped particles can

be reduced tdi) the third kind elliptic integrals in low £

+2i \/;uf)W(up)]d,u, (24 1) aspect ratio tokamaks, 6if) the first kind elliptic inte-
2 2 = grals in large £€<1) aspect ratio tokamaks. An important
emm = o~ 2 ~ BB‘BB" [1+ 2,}‘2) feature of the dielectric characteristics of EQ%:J)—(%G) is
23S p=1 Juyp the fact that, since the phase coefﬂueAﬁE, By, Cp and
_ 3 Dg1 are independent of the wave frequenegpnd the particle
+2i \/;V pW(vp)ldu, (25 energyy, the analytical Landau integration of the perturbed
distribution functions of both the trapped and untrapped par-
emm’ 2 CmCm i DmDm ) ticles in velocity space is possible. As a result, the longitu-
. hﬁ $7T3p 1 ) dinal permittivity elements are written by summation of
bounce-resonant terms including the well-known plasma dis-
X[1+225+2i \/;Z,SJW(Zp)]dM- (26)  persion functiorW(z), i.e., by the probability integral of the
Here we have used the following definitions: complex argument, E¢27). After this, the numerical esti_—
mations of both the real and imaginary parts of the longitu-
dinal permittivity elements become simpler, and their depen-
W(z)=exp(—2z%)| 1+ —f exr(tz)dt) (27 dence of the wave frequency is defined only by the
argumentsi,, v,, andz, of the plasma dispersion functions
roy1—e2T, rwy1—e2T, W(up), W(vp), andW(z). . _
up:m, e v One of the main mechanisms of the radio frequency
olPTNAqivT oPrT plasma heating is the electron Landau damping of waves due
z,= rw\1—e?Ty2mhypry, wf,=47rN /M , (28 to the Cherenkov resonance interact_iorEpf/vith untrapped_,
t-, and d-trapped electrons. Here, it should be taken into
m [ 7(7n) account that the Cherenkov resonance conditions are differ-
Ap:fo co (m+nq)n—(p+nq)wm d7, (29 ent for trapped and untrapped particles in the considered
plasma model, see the arguments of the plasma dispersion
m m7(7) functions(28), and have nothing in common with the wave—
szfo cog (m+nq)z— pzT(g) d7 particle resonance condition in the cylindrical magnetized
plasmas. Another important feature of tokamak plasmas is
+(_1)p71f COE{(ernq)ner (ﬂdn 30  the contribution of allE™ harmonics to the given" har-
0 27(6,) monic of the current density, Eq23). As a result, after av-
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eraging in time and poloidal angle, the wave power ab-  The longitudinal permittivity elements evaluated in the
sorbed,P=Re(j;), due to the untrappedstrapped, andi- paper are suitable for both the large and low aspect ratio
trapped electrons can be estimated by tokamaks with elliptic magnetic surfaces and valid in the
wide range of wave frequencies, mode numbers, and plasma

_ @ mm’ mm’ mm’ parameters. Expressiof4)—(26), (34)—(36) have a natural
P=&r %“ %‘ (IMeyg” +Imey ™ +ime)q") limit to the corresponding resuft$or tokamak plasmas with
) ) circular magnetic surfaces, bf=a and\ — 0. Since the drift-
X(ReE['ReE]" +ImE"ImE"), (33)  kinetic equation is solved as a boundary-value problem, the
- - - longitudinal permittivity element$24)—(26) can be applied
where Ims; ;" , Imeg; , and Ims 4" are the separate con- {4 siudy the wave processes with a regular frequency such as

tributions of untrappedi-, and d-trapped electrons to the the wave propagation and wave dissipation during the
imaginary part of the longitudinal permittivity elements: plasma heating and current drive generation, when the wave

Im gﬁ“’mlzlm smm/-l-lm smm/+lm sﬁ‘f&m/, frequency has being given, e.g., by the antenna-generator
25,3 © T4 system. Of course, the best application of our dielectric char-

Ime™m — wph @ (1—g?)LS 2 Hu u apter|st!cs is to develop a ngmenpal code to solve the two-
T ghypyar®® o= Jo Ip+ngl® dimensional Maxwell's equations in elongated tokamaks for

, electromagnetic fields in the frequency range of Alfyéast

XATAT exp(—uj)du, (349 magnetosonic, and lower hybrid waves. On the other hand,

25 3 " T4 they can be. analyzed independently of the sollution'of Max-

Imemm — wpl~w (1- 2153 F U gmpm well’s equation, by analogy with the computations in Refs.

It 8h(5,V-?—7T5'5 = 5PpPp 6—8.

) Note that in analyzing the collisionless wave dissipation

X exp(— vp)du, (39 by the plasma electrons one should remember other kinetic
w2r53 =T mechanisms of the wave—particle interactions, such as the

|m£ﬁnam': g . 55(1_82)1.52 d_g(cmcm' transit time [nagneu_c pumping and/o_r the cyclotron reso-
' 4hgoym> p=1 Ju P PP nance damping, which can be described by the transverse

e 5 and cross-off dielectric permittivity elements. Recently, a
+Dp Dy Jexp(—zp)du. (36) comprehensive theoretical analysis on the Cherenkov ab-
sorption of the magnetohydrodynamic wav@sfven and

In the simplest case of toroidicity-induced Alive |
fast magnetosonic wavesy electrons has been ddAdor

eigenmode® (TAEs), describing the coupling of only two ; b X
harmonics withm, and my— 1, the terms withmy, my— 1 large aspect ratio tokamaks with circular magnetic surfaces.
also should be accounted for in E(23) to estimate the The corresponding approach can be used as well for elon-

TAEs' absorption by the trapped and untrapped electrons. Agated spherical tokamaks. However, this is a topic for addi-

a result, the dissipated power of TAEs by the electron Lan:[Ional investigation.
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