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CHAPTER 2

MOTION OF CHARGED PARTICLES IN CONSTANT AND UNIFORM

ELECTROMAGNETIC FIELDS

1. INTRODUCTION

In this and in the following twe chapters, we investigate
the motion of charged particles in the presence of electric and magnetic
fields known as functions of position and time. Thus, the electric and
magnetic fields are assumed to be prescribed and not affected by the
charged particles. This chapter, in particular, considers the fields to
be constant in time and uniform in space. This subject is considered in
some detail. since many of the more complex situations, considered in

chapters 3 and 4, can be treated as perturbations to this problem.

The study of the motion of charged particles
in specified fields is important since it provides good physical insight
for understanding some dynamical processes in plasmas. It also permits to
obtain information on some macroscopic phenomena which are due to the
collective behavior of a large number of particles. Not all of the
components of the detailed microscopic motion of the particles contribute
to macroscopic effects. It is possible, however, to isolate the
components of the individual motion that contribute to the collective
behavior of the plasma. Nevertheless, it should be mentioned that the
macroscopic parameters can be obtained much more easily and

conveniently from the macroscopic equations presented in chapters 8 and 9.



The equation of motion for a particle of charge q,
under the action of the Lorentz force F due to electric (E) and

magnetic (B) fields, can be written as

=F=qlE+yxB) (1.1)

Q.l(l
o | 1o

where p represents the momentum of the particle and v its velocity.

Eq.(1.1) s relativistically correct if we take

p= ymy (1.2)

where m is the rest mass of the particle and vy is the so-called

Lorentz factor defined by

~-1/2
y = {1 - v¥/c?) (1.3)

where ¢ is the speed of light in vacuum. In the relativistic case

Eg. {1.1) can also be written in the form

dv v
m—— + q— (v . E) = q(E + v x B) (1.4)
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using the fact that the time rate of change of the total relativistic
energy (U = yme2) is given by dU/dt = q(v.E) and that dp/dt =
= d(Uv/c2)/dt.

In many situations of practical interest, however, the
term v2/c? is negligible compared to unity. For v2/c2 << 1 we have
vy =1 and m can be considered <constant, independent of the
particle's velocity, so that Eq. (1.4) reduces to the following non-

-relativistic expression

If the velocity obtained using this equation does not
satisfy the condition v2 << ¢2, then the corresponding result is not
valid and the relativistic expression (1.4) must be used instead of (1.5).
Therefore, (1.5) applies only to charged particles moving with velocities
much smaller than the velocity of light. Relativistic effects become
important only for highly energetic particles (a 1 MeV proton, for
instance, has a velocity of 1.4 x 107 m/s, with v%/c2 = 0.002). For
the situations to be considered here it is assumed that the restriction
vZ << ¢2, implicit in Eq. (1.5), is not violated. Also, all radiation

effects are neglected.



2. ENERGY CONSERVATION

Consider a particle of charge g and mass m moving
in a magnetostatic field B with velocity v. In the absence of an
electric field (E = 0) the equation of motion (1.5) reduces to

dv

m— = qv x B) (2.1)
dt -

Since the magnetic force is perpendicular to the velocity v it does
no work on the particle. Taking the dot product of {2.1) with v

and noting that (v x B) . v = 0 for any vector v, we obtain

m [ :Ei} .V o= —fi- [-;L— mvz] =0 (2.2)

which shows that the particle's kinetic energy (mv2/2) and the
magnitude of its velocity (speed v) are both constants. Therefore,
a static magnetic field does not change the particle's kinetic
energy. This result is valid whatever the spatial dependence of the
magnetic flux density B. However, if B varies with time then,
according to Maxwell equations, an electric field such that

v x E = -3B/3t is also presentwhich does work on the particle

changing its kinetic energy.



When both magnetostatic and electrostatic fields are

present we obtain from (1.5).

d 1
-—[—-— mv2]=qE.v (2.3)
dgt ? -

Since ¥ x E = 0, we can express the electrostatic field in terms of

the electrostatic potential ¢,

E=-% (2.4)
to obtain
d 1
_ | — mvy2 ] = - q{v¢) . v
dt L 2 J -
dr
= - q(v¢) . —
dt
dé
- - — (2.5)
dt
This result can be written as
d 1
— [ — mvZ + Qb ] =0 (2.6)
dt 2



which shows that the sum of the kinetic energy and the electric potential
energy of the particie remains constant in the presence of static
electromagnetic fields. The electric potential ¢ can be considered as

the potential energy per unit charge.

When the fields are time-dependent we have v x

im

#0

and £ is not the gradient of a scalar function. But since v .

Hiw=)

we can define a magnetic vector potential 5 by B =V x A, and write
Eq.{1.5.2) as

3B 3 3A
VXE+——=9XE+— (vXA) = VX |E+—| =0 (2.7)
N 3t T 7 et T T T tH at

Hence, we can express the electric field in the form

E = -9 - — (2.8)

In this case the system is not conservative in the usual sense and there
is no integral of the energy, but the analysis can be performed using a

Lagrangian function L for a charged particle in electromagnetic fields,

defined by

L o= —mv2 -y (2.9)



where U is a velocity-dependent potential energy given by

U=aqls -v.A4a) (2.10)

The energy considerations presented in this section
assume that the energy of the particle changes only as a result of
the work done by the fields. This assumption is not strictly
correct since every charged particle when accelerated irradiates
energy in the form of electromagnetic waves. For the situations to

be considered here this effect is usually small and can be neglected.

3. UNIFORM ELECTROSTATIC FIELD

According to (1.1) the motion of a charged particle in

an electric field obeys the following differential equation

—— =qE (3.1)

For a constant E field, Eq. (3.1} can be integrated directly giving

p(t) =qEt + p (3.2)



where p = p(t = 0) denotes the initial momentum of the particle.

Using the nonrelativistic expression

p=my=m— (3.3)

and performing a second integration in (3.2) we obtain the following

expression for the particle's position as a function of time

qt
r(t)=-—:—t3+!0t+t

(3.4}
2m °

where r denotes the initial position of the particle and v, its

initial velocity.

Therefore, the particie moves with a constant
acceleration, ge/m, in the direction of E if q > 0, and in the
opposite directionifq « 0. In a direction perpendicular to the
electric field there is no acceleration and the state of motion

of the particle remains unchanged.



4, UNIFORM MAGNETOSTATIC FIELD

4.1 - Formal solution of the equation of motion

For a particle of charge g and mass m, moving with
velocity v in a region of space where there is only a magnetic field

B, the equation of motion is

m — = qg(vx B) (4.1)

It is convenient to separate the velocity v in a component parallel
to the magnetic field, v., apd a component perpendicular to the

magnetic field, v,,

veE Vo + ¥, (4-2)

as indicated in Fig 1. Substituting this expression into (4.1) and

hoting that v, x B 0 we obtain

dv, dv, q

+ = (v
dt dt m f -

Since the term v, X B is perpendicular to B, the parallel component

equation can be written as
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dv,,

= 0 (4.4)
dt

and the perpendicular component equation as
q

—— = — (v, x B) (4.5}
m

Eq. (4.4) shows that the particle's velocity along B
does not change and is equal to the particle's initial velocity. For
the motion in the plane perpendicular to B, we can write (4.5) in the

form
=-VXuw, o =w, XV, (4.6)

where we is a vector defined by

@  JqiB _
w, = = —— = Be = W W (4.7}
- m m

Thus, w. points in the direction of B for a negatively charged
particle (q < 0), and in the opposite direction for a positively
charged particle (g > 0). Its magnitude v is always positive

(w. = |a} B/m). The unit vector points along .
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Fig. 1 - Decomposition of the velocity vector into
components parallel (!”) and perpendicular

(v,) to the magnetic field.

Since W is constant and {from conservation of
kinetic energy) v, = | v, | is also constant, Eq (4.6) shows that
the acceleration of the particle is constant in magnitude and its
direction is perpendicular to both v, and B. Thus, this
acceleration corresponds to a rotation of the velocity vector ¥, in
the plane perpendicular to B with the constant angular velocity W
We can integrate (4.6) directly, noting that W, is constant and

taking vy = drc/dt, to obtain
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Vi =8 X e (4.8)

where the vector r_ 1is interpreted as the position vector of the
particle with respect to a point G (the center of gyration) in the
plane perpendicular to B which contains the particle. Since the
particle speed v, is constant, the magnitude re of the position vector

is also constant. Therefore, Eq. (4.8) shows that the velocity v,

corresponds to a rotation of the position vector re about the point G
in the plane perpendicular to B with constant angular velocity W -
The component of the motion in the plane perpendicular to B is
therefore eacirclecrfradiusrc, The instantaneocus center of gyration of
the particle, i. e., the point G at the distance re from the particle,
is called the guiding center. This circular motion about the guiding

center in the plane perpendicular to B is shown in Fig. 2.

4 4I. ) 4 A i mc A {L
e g
<::: 6 'bfffj> (::: ¢ e Eii>
[ "
(+) (-)
wc
q= 0 q<o

Fig. 2 - Circular motion of a charged particle about the guiding center

G in a uniform magnetostatic field,
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Note that, according to the definition of We given in (4.7), éc always
B points in the same direction as the particle's angular momentum vector

(rc x p), irrespective of its charge.

The resulting trajectory of the particie consists in
the superposition of a uniform motion along the magnetic field lines
(with the constant velocity va) and a circular motion in the plane
normal to B (with the constant speed v,). Hence, the particle describes
a helix (see Fig. 3). The angle between the direction of motion of the

particle and the magnetic field is called the pitch angle, w, given by

a = sin”! (v /v) = tan"t (v /v.) (4.9)

— where v is the total speed of the particle, vZ = v§ + vZ. When v, = 0
but v, # 0, we have a = /2 and the particle's trajectory is a circle
in the plane normal to B. On the other hand, when v, = 0 but v, # 0, we

have o = 0 and the particle moves along B with the velocity va.
_ The magnitude of the angular velocity,
o, = la| B/m (4.10)
is known as the angular frequency of gyration, or the gyrofrequency, or
the eyclotron frequency. For an electron we have |g| = 1.602 x 107+°

Coulombs and m = 9.109 x 10™3! kg, which gives

w, (electron) = 1.76 x 101B (rad/sec) (4.11)
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the units of B being Tesla (or, equivalently, Weber/m2).

Similarly, for a proton m = 1,673 x 10-27 kg, which gives

wc(proton) = 9,58 x 107 B (rad/sec)

yal

L
S~

)
\_

0-0-0H

Vi

Fig. 3 - Helicoidal trajectory of a positively charged
particle in a uniform magnetostatic field.

(4.12)
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The radius of the circular orbit, given by

re = = (4.13)
w lq] B

is called the radius of gyration, Or gyrovadius, Or cyclotron radius,

or Larmor radius.

It is important to note that W is directly proportional
to B whereas re is inversely proportional te B. Consequently, as
the magnetic field increases, the gyrofreguency increases and
the radius decreases.Also, the smaller the mass of the particle the

larger will be its gyrofrequency and the smaller its gyroradius.

Multipiying (4.13) by B gives

Br = —— = (4.18)

which shows that the magnitude of B times the gyroradius of the
particle is equal to its momentum per unit charge. This quantity

is often called the magnetic rigidity.
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4.2 - Solution in Cartesian coordinates

The treatment presented so far in this section is not

— related to any particular frame of reference. Consider now a Cartesian
coordinate system (Xsy.z) such that the z-axis is parallel to the

magnetic flux density, 1. e., B = Bz. In this case, the cross product

between v and B can be written as

X ¥ z
VXxB-= v Yy V| F B(v,, X =v, ¥ (4.15)
0o 0 B

and the equation of motion (4.1) becomes

dy qB .
— = (v. X - v, ¥)
dt m Yy - X =
= (x ) (v, X - v, ¥) (4.16)

The (+) sign in front of we applies to a positively charged particle
(q > 0) and the (-) sign to a negatively charged particle (g < 0),

since w. 1s always positive (@C = |q| B/m).

In what follows we will consider a positively charged
particle. The results for a negative charge can be obtained by changing

the sign of W, in the results for the positive charge.
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The Cartesian components of (4.16) are (for q > 0)

dv /dt = . v, (4.17)
dv/dt = -u v, (4.18)
dv /dt = 0 (4.19)

The last of these equations gives vz(t) = v,(0) = v,, which is
the initial value of the velocity component parallel to B. To obtain
the solution of Eqs. (4.17) and (4.18) we take the derivative of (4.17)

with respect to time and substitute the result into (4.18), getting

d2y

X 2y =0 4.20
o Zv, (4.20)

This is the homogeneous differential equation for a harmonic oscillator

of frequency s whose solution is

Vx(t) = v, sin (wct +6,) (4.21)

where v, 1s the constant speed of the particle in the (x,y) plane
(normalto B) and 6, is a constant of integration which depends on the

relation between the initial velocities vx(D) and vy(O), according to

tan (8,) = VX(O)/V

,(0) (4.22)
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To determine vy(t) we substitute (4.21) in the left hand side of
(4.17), obtaining

Vy(t) = v, COS (mct +8,) (4.23)

Note that vi + v§ = vf. The equations for the components of v can be

further integrated with respect to time, yielding

x(t) = - (Vi/“c) cos (mct + 8,) + X, (4.24)
y(t) = (Vl/wc) sin (wct +8q) + Y, (4.25)
z(t) = vat + z, (4.26)

where we have defined

>
o
Bl

Xy * (V*/wc) COS 8, (4.27)
Yo = Yo - (Vi/w,) sin g, (4.28)

The vector ry = X,X + Yoy + Z,Z gives the initial position of the

particle. From (4.24) and (4.25) we see that

(x=Xo)2 + (y-Yo)% = (vifuw )2 = r2 (4.29)



- 19 -

The trajectory of the particle in the plane normal to B is, therefore,
a circle with center at (X;, Yo) and radius equal to (Vl/“c)' The
motion of the point [ X,, Y,, z(t) ], at the instantaneous center of
gyration, corresponds to the trajectory of the guiding center, Thus,

the guiding center moves with constant velocity v, along B.

In the (x, y) plane, the argument ¢(t), defined by

¢{t) = tan? = = {wt +85); ¢, = - 8, (4.30)

decreases with time for a positively charged particle. For a magnetic
field pointing toward the observer, a positive charge describes a circle
in the clockwise direction. For a negatively charged particle we must
replace we by - W in the results of this sub-section. Hence, (4.30)
shows that for a negative charge ¢(t) increases with

time and  the particle moves in a circle in the counterclockwise
direction, as shown in Fig. 4. The resulting motion of the particle is

a cylindrical helix of constant pitch angle, Fig. 5 shows the

parameters of the helix with reference to a Cartestan coordinate system.

4.3 - Magnetic moment

To the circular motion of a charged particle in a
magnetic field, there is associated a circulating electric current I.
This current flows in the clockwise direction for a B field pointing

toward the observer (Fia. 4).
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Fig. 4 - Circular trajectory of a charged particle
in a uniform and constant B field (directed

out of the paper}, and the direction of the

associated electric current,

X
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Fig. 5 - Parameters of the helicoidal trajectory of a positively

charged particle with reference to aCartesian coordinate

system.
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From Ampére's law, the direction of the magnetic field
associated with this circulating current is given by the right-hand
rule, that is, with the right thumb pointing in the direction of the
current I, the right fingers curl in the direction of the associated
magnetic field. Therefore, the B field produced by the circular
motion of a charged particle is opposite to the externally applied
B field inside the particle's orbit, but in the same direction
outside the orbit. The magnetic field generated by the ring current I,
at distances much larger than r.» is similar to that of a dipole
(Fig. 6). Since a plasma is a collection of charged particles it

possesses therefore diamagnetic properties.

Fig. 6 - The magnetic field generated by a
small ring current is that of a

magnetic dipoie.
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The magnetic moment M associated with the circulating
current is normal to the area A bounded by the orbit of the particle
and points in the direction opposite to the externally applied B

field, as shown in Fig. 7. Its magnitude is given by

[m| = (Current) . (Orbital Area) = IA (4.31)

s/n B
)
/

SN
ND

Fig. 7 - Magnetic moment m associated with a
circulating current due to the
circular motion of a charged particle

in an external B field.

The circulating current corresponds to a flow of

charge and is given by
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= — = —C (4.32)

where Tc 2ﬂ/mc is the period of the particle's orbit, known as the

cyelotron period or Larmor period. The magnitude of m is, therefore,

la] o,

[m{ =
2r

1
(nr2) = —~ g} u, r2 (4.33)
Using the relations o, = |q| B/m and Po = Vi/w., (4.33) becomes

lm} = — m vi/B

W, /B (£.34)

where W, denotes the part of the kinetic energy of the particle which
is associated with its transversal velocity v,. Thus, in vector form

we have

m = - (W/B?) B (4.35)

4.4 - Magnetization current

Consider now a collection of charged particles, positive
and negative in equal numbers (in order to have no internal macroscopic
electrostatic fields), instead of just one single particle. For instance,

consider the «case of a JTow-density plasma, for which we can
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neglect the collisions between the particles (collisionless plasma).
The condition for this is that the average time between collisions be
much greater than the cyclotron period. This condition is fulfilled

for many space plasmas, for example.

For a collisionless plasma 1in an external magnetic
field, the magnetic moments due to the orbital motion of the charged
particles act together, giving rise to a resultant magnetic field wich
may be strong enough to appreciabiy change the externally applied B
field. The mean magnetic field produced by the orbital motion of the
charged particles can be determined from the net electric current

density associated with their motion.

To calculate the resultant electric current density, let
us consider a macroscopic volume containing a large number of particles.
Let S be an element of area in this volume, bounded by the curve C
(Fig. 8-a). Orbits such as (1), which encircle the bounded surface
only once, contribute to the resultant current whereas orbits such as
(2), which cross the surface twice, do not contribute to the net
current. If d1 is an element of arc along the curve C, the number of
orbits encircling dl is given by nA.d1, where n is the number of orbits
of current I per unit volume, and A is the vector area bounded by
each orbit. The direction of A is that of the normal to the orbital
area A, the positive sense being related to the sense of circulation
in the way the linear motion of a right-hand screw is related to its

rotary motion. Thus, A points in the direction of the observer when 1
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flows counterclockwise (Fig. 8-b). The net resultant current crossing S

is therefore given by the current encircling dl integrated along the

curve C, i. e.,

I = éInA.d'l (4.36)
C

VOLUME = A.dl

L A
{a) | A (b)

Fig. 8 - (a) Electric current orbits crossing the surface
element § bounded by the curve C, in a macroscopic
volume containing a large number of particles. (b)

Positive direction of the area vector A.

Sincem = I A, the magnetic moment per unit volume, M, (also called

the magnetization vector) is given by

M = nm = nlA (4.37)
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Hence, (4.36) can be written as

I = ﬁ M.dl = j (v x My .ds (4.38)

where we have applied Stoke's theorem.

We may define an average magnetization current density,

QM’ crossing the surface S, by

I, = J Jy-d$ (4.39)
s

Consequently, from (4.38) and (4.39) we obtain the magnetization current

density as

Jy = 7xM (4.40)

where, from (4.37) and (4.35),
M = nm =- (nk/B2) B (4.41)

and nW, denotes the kinetic energy per unit volume, associated with

the transverse velocity of the particle.
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The charge density, Py associated with the magnetization

current density, QM’ can be deduced from the equation of continuity,

BpM

+ 9.9, =0 (4.42)
3t -7

Since Jy =9 x Mand since for any vector a, v. (Vvxa) =0, it

follows that the charge density o is a constant.
In the following Maxwell equation
vxB = u, (J+e, 3E/3t) (4.43}

we can separate the total current density, J, in two parts: a

magnetization current density, QM’ and a current density, J' due to

other sources,

J = dy+d (4.44)

Expressing QM in terms of M, through (4.40), and substituting in
(4.43), we obtain

VB = u (TxM+dl+e

o 9E/3t) (4.45)

which can be rearranged as
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B 3E
vx[—-M]=g'+e — (4.46)
Defining an effective magnetic field, H,by the relation
B=u_ (H+M) (4.47)
we can write (4.46) as
vxH=Jd"+e aE/ot {4.48)

Thus, the effective magnetic field H 1is related to the current due
to other sources J', in the way B is related to the total current J.
Fags. (4.40) and {4.47) constitute the basic relations for the

classical treatment of magnetic materials.

A simple Tinear relation between B and H exists when M

is proportional to B or H, i.e.,

where the constant X is called the magnetic susceptibility of the
medium. However, for a plasma we have seen that M =« 1/B [ see Eq.
4.41)]1, so that the relation between H and B (or M) is not linear. For
this reason it is generally not convenient to consider a plasma as a

magnetic medium,



- 30 -

5. UNIFORM ELECTROSTATIC AND MAGNETOSTATIC FIELDS

5.1 - Formal solution of the equation of motion

We consider now the motion of a charged particle in the
presence of both electric and magnetic fields which are constant in
time and uniform in space. The nonrelativistic equation of motion is

dv

m = q (E+vxB) (5.1)
dt "~

Taking components parallel and perpendicular to the magnetic flux

density B, i. e.,

v o= Yo Ve (5.2)

E = _E_,.I. + E" (5-3)

we can resolve (5.1) into two component equations

dv.,

m = q E (5.4)
dt
dv,

m = q (E + v, XB) (5.5)

dt
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Eq. {5.4) is similar to (3.1) and represents a motion
with constant acceleration q E./m along the B field. Hence, according

to (3.2) and (3.4) we have

q
vo(t) = — E,t +v,(0) {5.6)
m
q En
re (t) = t2 4+ v, (0)t + r,(0) (5.7)
- 2m -
To solve (5.5) it is convenient to separate v, in two
components
v (8) = i () + (5.8)

where Ve is a constant velocity in the plane normal to B. Hence, vi
represents the velocity of the particle as seen by an

observer in a frame of reference moving with the constant velocity
Ve Substituting (5.8) into (5.5), and writing the component of the

electric field perpendicular to B in the form (see Fig. 9)

(E, x B)

L = - ——~ xB (5.9)
E = B

we obtain
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dv, " (EL x B)
m i q v, + Ve - = X B (5.10)
dt 7 B2
' a
(E,XB) XB
Fig. 9 - Vector products appearing in Eq. (5.9)
(B = 8/3).
This equation shows that in a coordinate system moving with the
constant velocity
(E, x B)
Vp = —_— (5.11)
y B2

the motion of the particle in the plane normal to B is governed

entirely by the magnetic field, according to

= q (vp x B) (5.12)
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Thus, in this frame of reference the electric field component E, is

transformed away, whereas the magnetic field is left unchanged.

Eq. (5.12) is identical to (4.5) and implies that in
the reference system moving with the constant velocity Vs given by
(5.11), the particie describes a circular motion at the cyclotron

frequency e and radius re i.e.,

Vi = w. XX (5.13)
The results obtained so far indicate that the resulting
motion of the particle is described by a superposition of a circular
motion in the plane normal to B, with a uniform motion with the
constant velocity Ve perpendicular to both B and E,, plus a uniform
acceleration gE./m altong B. The velocity of the particle can be

expressed in vector form, independently of a coordinate system, as

q
v(it) =w_xr_ + + .t + v, (5.14)
- ~c ¢ B2 m - -

The first term in the right hand side of (5.14) represents the
cyclotron circular motion,the second term represents the constant
drift velocity of the guiding center in the direction perpendicular
to both E, and B, the third term represents the constant acceleration
of the guiding center along B, and the last term is the initial

velocity parailel to B.
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Note that the velocity e is independent of the mass
and the sign of the charge and therefore is the same for both positive
and negative particles.It is usually called the plasma drift velocity.
Since E, x B = 0, (5.17) can also be written as

Ex B

Ve ” (5.15)
The resultingmotion of the particle in the plane normal
to B is a cycloid, as shown in Fig. 10. The physical explanation for
this cycloidal motion is as follows. The electric force qE;, acting
simultaneously with the magnetic force, accelarates the particle so
as to increase or decrease its velocity, depending on the relative
direction of motion of the particle with respect to. the direction of
E, and on the sign of the charge. According to Eq. (4.13) the radius
of gyration increases with velocity and, hence, the radius of
curvature of the particle's path will vary under the action of
E(. This results in a cycloidal trajectory with a net drift in the
direction perpendicular to E, and B. Different cycloidal trajectories

are obtained, depending on the initial conditions and on the

magnitude of the applied electric and magnetic fields.
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ION E
4
B (® . ExB
ELECTRON

Fig. 10 - Cycloidal trajectories described by ions and
electrons in crossed electric and magnetic
fields. The electric field E acting together
with the magnetic flux density B gives rise

to a drift velocity in the direction E x B.
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The ions are much more massive than the electrons and,
therefore, the Larmor radius for ions is correspondingly greater and
the Larmor frequency correspondingly smaller than for electrons,
Consequently,the arcs of cycloid for ions are greater than for
electrons, but there is a larger number of arcs of cycloid per second

for electrons, such that the drift velocity is the same for both.

In a collisionless plasma the drift velocity does not
imply in an electric current, since both positive and negative particles
move together. When collisions between charged and neutral particles
are important, this drift gives rise to an electric current, since
the ion-neutral collision frequency is greater than the electron-
neutral collision frequency, causing the ions to move slower than
the electrons. This current is normal to both E and B, and is in the

direction opposite to Ve It is knownas the Hall ecurrent.

h.2 - Solution in Cartesian coordinates

Let us choose a Cartesian coordinate system with the

z-axis pointing in the direction of B, so that

B=B3Z (5.16)

E=E X+E V+E 2 (5.17)

Using (4.15), the equation of motion (5.1) can be written as
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dyv q . - -
— [(E, + v, B) X+ (E - v, B) § +E, Z] (5.18)

As before, we consider, in what follows, a positively
charged particle. The results for a negatively charged particle can
be obtained by changing the sign of W, in the results for a
positively charged particle. The z-component of (5.18) can be

integrated directly and gives the same results expressed in Eqs. (5.6)

and (5.7).

For the x-and y-components, we first take the derivative
of dvx/dt with respect to time and substitute the expression for

dvy!dt, which gives

d2y

2 2
+w- v, =uw. E/B (5.19)
dtz c X c Y

This is the inhomogeneous differential equation for a harmonic
oscillator of frequency g Its solution is given by the sum of the
solution of the homogeneous equation [given in (4.,21)] with a

particular solution (which is clearly Ey/B). Thus,
Vx(t) = v; sin (mct + eo) + Ey/B (5.20)
where v; and 6, are integration constants. The solution for vy(t) can

be obtained by substituting (5.20) directly into {5.18). Hence, we

obtain
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E
v (t) = x X = v, COS (mct+80) - X (5.21)
B

Therefore, the velocity components vx(t) and vy(t), in the plane
perpendicular to B, oscillate at the cyclotron frequency W with
amplitude v]. This motion is superposed to a constant drift velocity

ve given by

E
ve = L

E
. . (5.22)
- B B

by
]

This expression corresponds to (5.11) for the case when B = Bz.

One more integration of (5.20) and (5.21) gives the

particle trajectory in the (x, y)} plane

Vi E

x(t) = - [—i]cos (wct+eo)+[—BL]t+xo (5.23)
wC

y(t) = [-EE— ] sin (wct + eo) - [ j%L ] t o+ Y0 (5.24)
mC

where Xo and Yo are defined according to (4.27) and (4,28}, but with

v, replaced by v; .
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In summary, the motion of a charged particle in uniform

electrostatic and magnetostatic fields consists of three components:

(a) A constant acceleration g E,/m along the B field. If E. = 0,

the particle moves along B with its initial velocity.

(b) A rotation about the direction of B at the cyclotron

frequency . = |q| B/m and radius r_ = vj/uc.

(c) An electromagnetic drift velocity v (E x B)/B2,

perpendicular to both B and E.

6. DRIFT DUE TO AN EXTERNAL FORCE

If some additional forceF (gravitacional force, or
inertial force if the motion is considered in a noninertial system,
for example) is present, the equation of motion (1.5) must be

modified to include this force,

dv _
m—— =q{(E+vxB)+F (6.1)
dt -7 7 -
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The effect of this force is, in a formal sense, analogous to the
effect of the electric field. We assume here that F is uniform and
constant. In analogy with the drift velocity (E x B)/B?, the drift
produced by the force F having a component normal to the magnetic
flux density B is given by

FxB

Ve =

(6.2)
qB?

In the case of a uniform gravitacional field, for
example, we have F = mg, where g is the acceleration due to gravity,

and the drift velocity is given by

m
V., = e— (6.3)
q

~9

This drift velocity depends on the ratio m/q and therefore is in
opposite directions for particles of opposite charge (Fig. 11). We
have seen that in a coordinate system moving with the velocity

vp = (E X §)/B2, the electric field component E, is transformed away
leaving the magnetic field unchanged. The gravitational field

however cannot, in this context, be transformed away.

In a collisionless plasma, associated with the
gravitational drift velocity there is an electric current density,

gg, in the direction of g x B, which can be expressed as
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—» g xB

Fig. 11 - The drift of a gyrating particle in crossed gravita

tional and magnetic fields.

1
=—_.): v, (6.4)
g AV 1 %i Zgi
where the summation is over all charged particlescontained in a
suitably chosen small volume element aV. Using (6.3) we obtain
1 (g x B) (g x B)
~=[-—-E ]-——-=o——-—— (6.5)
g &V B2 B2

where p denotes the total mass density of the charged particles.
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A comment on the validity of Eq. (6.2) is appropriate
here. Since we have used the nonrelativistic equation of motion, there
is a Timitation on the magnitude of the force F in order that (6.2) be

applicable. The magnitude of the transverse drift velocity is given by

V. = (6.6)
D o8
Hence, for the nonrelativistic equation of motion to be applicable we

must have

F
e (6.7)
qB

ar, if F is due to an electrostatic field g,

—_— g (6.8)

For a magnetic field of 1 Tesla (10" Gauss) for example, Eq. (6.2)
may be used as long as E, is much less than 10° Volts/m. If these
conditions are not satisfied, the problem becomes a relativistic one.
Although the relativistic equations of motion can be integrated
exactly for contant B, E anq F, we shall not analyze this problem

here. It is left as an exercise for the reader.



PROBLEMS

2.1 - Calculate the cyclotron frequency, 0 and the cyclotron radius,

Fes for:

(a) An electron in the Earth's jonosphere at 300 km altitude,
where the magnetic flux density B = 0.5 Gauss, considering
that the electron moves at the thermal velocity (kT/m)l/2 with

T = 1000 K, where k is Boltzmann's constant.

(b} A 50 MeV proton in the Earth's inner Van Allen radiation
belt at about 1.5 Re (where Rg = 6370 km is the Earth's radius)
from the center of the Earth in the equatorial plane, where

B=x= 0,1 Gauss.

{c) A 1 MeVY electron in the Earth's outer Van Allen radiation
belt at about 4 RE from the center of the Earth in the

equatorial plane, where B = 1075 Gauss.

(d) A proton in the solar wind with a streaming velocity of

100 km/sec, in a magnetic flux density B = 107° Gauss.

(e) A 1 MeV proton in the solar atmosphere, in the region of a

sunspot, in which B = 1000 Gauss.
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2.2 - For an electron and an oxygen ion 0% in the Earth's ionosphere,

2.3 -

at 300 km altitude in the equatorial plane, where B = 0.5 Gauss,

calculate:
(a) The gravitational drift velocity Eg.

(b) The gravitational current density Qg’ considering
= = 106 e 2
e = 1 10° em = .

Assume that g is perpendicular to B .

Consider a particle of mass m and charge q moving in the
presence of constant and uniform electromagnetic fields given
by E= Yy E, and B = z B,- Assuming that initially, at t = 0,

the particle is at rest at the origin of a Cartesian coordinate

system, show that it moves on the cycloid

E infw t
(@) - o [t_:ifi_g_lj

B0 W, B
E [
y(t) = 0 L_l - cos(mct{}
B w
0 c

Plot the trajectory of the particle in the z = 0 plane, for

q>0 and g < 0, and consider the cases when Ve > Vg
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2.5 -

2.6 -
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Ve = Vg and Ve < Vps where Ve denotes the particle velocity
associated with only its cyclotron motion and vg is the

electromagnetic drift velocity.

In general, the trajectory ofa charged particle in crossed
electric and magnetic fields is a cycloid. Show that, if
v= X Voo B = ZB and E = y E, then for v, = E/B the
path is a straight 1ine. Explain how this situation can be

exploited to design a mass spectrometer.

Derive the relativistic equation of motion in the form (1.4),

starting from (1.1) and the relation (1.2).

Write down, in vector form, the relativistic equation of motion
for a charged particle in the presence of a uniform

magnetostatic field B =128 and show that its Cartesian

0!
components are given by
v q B
d X - 0 v
dt Y

(1- g2)1/2 n
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s
d Vy - 9 Bo v
dt (1_82)1/2 m X
d Vs _] - 0
dt (]‘32)1/2 _i
were B = v/c. Show that the velocity and trajectory of the

charged particle are given by the same formulas as in the
nonrelativistic case, but with «

(lalB,/m) (1-82)1/2.

c replaced by

Study the motion of a relativistic charged particle in the
presence of crossed electric (E) and magnetic (B) fields which
are constant in time and uniform in space. What coordinate
transformation must be made in order to transform away the
transversal electric field? Derive equations for the velocity

and trajectory of the charged particle.



