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Abstract. In this work we consider the problem of two-impulse orbital transfers
between non-coplanar elliptical orbits with minimum time for a prescribed fuel
consumption. We used the equations presented by Eckel and Vinh, add some new
equations to consider cases with different geometries, and solved those equations
to develop a software for orbital maneuvers. This software can be used in the next
missions developed by INPE. The original method developed by Eckel and Vinh
was presented without numerical results in that paper. Thus, the modifications
considering cases with different geometries, the implementation and the solutions
using this method are contributions of this work. The software was tested in real
applications with success.

1 - INTRODUCTION

The majority of the spacecrafts that have been placed in orbit around the Earth utilize the basic
concept of orbital transfers. During the launch, the spacecraft is placed in a parking orbit distinct
from the final orbit for which the spacecraft was designed. Therefore, to reach the desired final orbit
the spacecraft must perform orbital transfers. Besides that, the spacecraft orbit must be corrected
periodically because there are perturbations acting on the spacecraft. Both maneuvers are usually
calculated with minimum fuel consumption but without a time constraint. This time constraint
imposes a new characteristic to the problem that rules out the majority of the transfer methods
available in the literature: [Hohm 25], [Hoel 59], [Gobe 69], [Prad 89], etc. Therefore, the transfer
methods must be adapted to this new constraint: [Wang 63], [Lion 68], [Gros 74], [Prus 69],
[Prus 70], [Prus 86], [Ivas 81], [Ecke 82], [Ecke 84], [Lawd 93] and [Taur 95]. In Brazil, we have
important applications with the launch of the Remote Sensing Satellites RSS1 and RSS2 that
belongs to the Complete Brazilian Space Mission and with the launch of the China Brazil Earth
Resources Satellites CBERS1 and CBERS2.

In this work we consider the problem of two-impulse orbital transfers between non-coplanar
elliptical orbits with minimum time for a prescribed fuel consumption. This problem is very
important because most of spacecrafts utilize a propulsion system only capable of providing a fixed
value of velocity increment, and the velocity increment is direct related to the fuel consumption. On
the other hand, in many missions are important to perform the maneuvers in the minimum time, as
for instance in the case of remote sensing satellites because during the maneuver the collected data
are of low quality and therefore they are not able to be used. Thus, we used the equations presented
by [Ecke 84], add some new equations to censider cases with different geometries, and solved those
equations to develop a software for orbital maneuvers. This software can be used in the next
missions developed by INPE.



2 - DEFINITION OF THE PROBLEM

The orbital transfer of a spacecraft from an initial orbit to a desired final orbit consists [Mare 79] in
a change of state (position, velocity and mass) of the spacecraft, from initial conditions 7, v, and

m, at time ¢, to final conditions r,, v, and m, attime t, (¢, = ¢,) as shown in Fig. 1.

Fig. 1: Orbital Transfer Maneuver, cf. [Mare 79].

The maneuvers can be classified in: maneuvers partially free, when one or more parameter is free
(for example, the time spent with the maneuver); or maneuvers completely constrained, when all
parameters are constrained. In this case the spacecraft perform an orbital transfer maneuver from a
specific point in the initial orbit to another specific point in the final orbit (for example, rendezvous
maneuvers). In this work we consider the orbital transfer maneuvers partially free, and that the
spacecraft propulsion system is able to apply an impulsive thrust. Therefore, we have the
instantaneous variation of the spacecraft velocity.

3 - PRESENTATION OF THE METHOD

The bases for this method are the equations presented by [Ecke 84]. These equations furnish the
transfer orbit between non-coplanar elliptical orbits with minimum fuel and fixed time transfer, or
the transfer orbit with minimum time transfer for a prescribed fuel consumption. But in this work
we consider only the problem with minimum time transfer for a prescribed fuel consumption. The
problem with minimum fuel and fixed time transfer has already been considered by [Rocc 97] and
summarized by [Rocc 99].

The equations were presented in the literature but the method was not implemented neither tested
by Eckel and Vinh, and it is only valid for a specific geometry. They used the plane of the transfer
orbit as the reference plane but we decide to use the equatorial plane as the reference plane because
in this way it is easy to obtain and to apply the results in real applications. Using the transfer orbit
as the reference plane almost all the results obtained belongs to the same specific geometry, so we
change the reference system, adding the equations 1 to 6 to consider cases with more complex
geometry. Therefore, the method was implemented to develop a software for orbital maneuvers.
Thus, the modification, the implementation and the solutions using this method are contributions of
this work. By varying the total velocity increment necessary to the maneuver the software
developed furnishes a set of results that are the solution of the problem of bi-impulsive optimal
orbital transfer with minimum time for a prescribed fuel consumption.




Given two non-coplanar terminal orbits we desire to obtain a transfer orbit that performs an orbital
maneuver from the initial orbit to the final orbit with minimum time and fixed total velocity
increment. The orbits are specified by their orbital elements (subscript I: initial orbit; subscript 2:
final orbit; no subscript: transfer orbit):

Table 1 — Orbital Elements.

a

Semi-major axis

e | Eccentricity

Semi-latus rectum

p
@ | Longitude of the periapsis

[ | Inclination

Longitude of the ascending node

Eccentric anomaly

Q2
M | Mean anomaly
E
A

Angle between the planes of the initial and final orbits

B, | True anomaly of the point N obtained in the plane of the initial orbit

£, | True anomaly of the point N obtained in the plane of the final orbit

I, | Location of the first impulse

I, | Location of the second impulse

A | Transfer angle obtained in the plane of the transfer orbit

¥, | Plane change angle result of the first impulse

¥, | Plane change angle result of the second impulse

Vi | Velocity increment generated by the first impulse

, | Velocity increment generated by the second impulse

Total velocity increment

Time spent in the maneuver

@, | True anomaly of the point /, obtained in the plane of the initial orbit

¢, | True anomaly of the point 7, obtained in the plane of the final orbit

1 | Distance from point [,

r, | Distance from point /[,

£, | True anomaly of the point I, obtained in the plane of the transfer orbit

f> | True anomaly of the point [, obtained in the plane of the transfer orbit

X, | Radial component of the first impulse

x, | Radial component of the second impulse

¥, | Transverse component of the first impulse in the plane of the initial orbit

¥, | Transverse component of the second impulse in the plane of the transfer orbit

Z, | Component of the first impulse orthogonal to the initial orbit

Z, | Component of the second impulse orthogonal to the transfer orbit

h, | Horizontal component of V,




The geometry of the maneuver is shown in Fig. 2.
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Fig. 2: Geometry of the Maneuver.

From the geometry of the maneuver we obtain f§,, f,, A and the transfer angle A :
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Considering that the spacecraft propulsion system is able to apply an impulsive thrust, and that
maneuver is bi-impulsive, the total velocity increment is:

V=V, +V,=F(X) (7)
The time of the transfer maneuver is:
T =G(X) (8)

Therefore, the problem is the minimization of T° for a prescribed V . If the total velocity increment
is prescribed, being equal to a value V,, we have the constrained relation:

V-Vt )
Thus, we have the performance index:

J=T+k(V-V,) (10)
From [Ecke 84] we know that the solution of the problem depend on three variables: the semi-latus

rectum p of the transfer orbit and the true anomaly ¢; and ¢, that define the position of impulses
in the initial and final orbits. Therefore, we have the necessary conditions:

v T VI _ VI

—+k—=0 -— = 0 11
dp dp dat, dor, da,  da, L

1

By eliminating the Lagrange’s multiplier k& from equations 11 we have the set of two equations:

aV dT 9V aT av aT  aV aT
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Evaluating the partial derivatives in these equations and doing some simplifications we have the
final optimal conditions:
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W, -W, 2, S 14
e Ha Wi 7W2tan£ N W, Zer,e,sina, _0 (14)
sind 2} g,p,sinf, siny,

which utilize the relations shown in appendix A.

Thus, we have an equation system composed by equations 9, 13 and 14. Solving this equation
system by Newton Raphson Method (cf. [Pres 92]), we obtain the transfer orbit that performs the
maneuver between two terminal non-coplanar elliptical orbits spending a minimum time but with a
specific fuel consumption.



4 - RESULTS

Figures 3 to 8 present some results obtained in [Rocc 97] and [Rocc 99] with the software
developed. They not only show the tendency of the parameters, but they quantify the evolution of
the variables studied. The graphs were obtained through the variation of the total velocity increment
necessary to perform the maneuver. Thus, each point was obtained executing the software to the
specific total velocity increment. The points were joined by a line that shows the behavior of that
orbital element.

We utilized as an example the maneuver between an initial orbit with semi-major axis of 12030 km,
eccentricity 0.02, inclination 0.00873 rad, longitude of the periapse 3.17649 rad, longitude of the
ascending node zero and a final orbit with semi-major axis of 11994.7 km, eccentricity 0.016,
inclination 0.00602 rad, longitude of the periapse 3.05171 rad, longitude of the ascending node
0.15568. We utilized as initial values I = 17511.16764407 km, ¢, = 3.19194826 rad, and a, =
6.18292080 rad. The graphs were obtained through the variation of the total necessary velocity
increment from 0.063 to 4.42 km/s.

5 - CONCLUSIONS

In Figs. 3 to 6 we can verify that when the total velocity increment increases the semi-major axis
and the eccentricity of the transfer orbit also increase, however, the transfer angle and the time spent
in the maneuver decrease. These behaviors occur because when the maneuver is performed with a
high value of the velocity increment the transfer orbit approaches a parabolic orbit, so the
eccentricity approaches one. Then we have a high value of the semi-major axis and a small value of
the transfer angle. In Fig. 7 we have the behavior of the plane change angle. We can verify that
when the necessary velocity increment increases the absolute value of the plane change angle also
increases. This is expected because changes in inclination, in general, spend more fuel. From this
figure we conclude that the sum of the plane change angles almost remain constant because the
second impulse undo part of the plane change angle that results of the first impulse. In Fig. 8 we can
see that when the maneuver spends more time the velocity increment is smaller than when the
maneuver spends less time. This is expected because when the maneuver spends more time the
impulse directions approach the movement directions. However, we are studying the non-coplanar
case, therefore the impulse directions never will be in the movement directions because we always
have a component orthogonal to the orbital plane. In these graphs we can see that it was possible to
obtain results when we fixed a small value of the velocity increment, but there is a lower limit,
which occur when we reach the solution for time free. Besides that, we should advise that the
developed program can not supply the solution for all combinations of the input parameters. For
certain values of the total velocity increment it can be impossible to obtain one solution because for
a very small or very large values of the total velocity increment the solution can not exist, or the
numerical algorithms used in the program do not converge for the solution, because the initial
values used can be too far from the solution. So, it 1s recommended a physical analysis of the
problem, that takes into account the geometry of the maneuver, to find the range of values for the
total velocity increment which 1s possible to accomplish the maneuver. Another question to be
solved is if the solution is a local or global minimum. Up to where we verified, the solution
obtained seems to be a global minimum because for the same input parameters, but using different
initial values, it was not possible until the moment, to obtain better results. It is important to notice
that the software tests automatically all the results, verifying if the maneuver obtained is just a
mathematical solution or if it can really be implemented. When we use numerical methods there are
some solutions, which satisfy the equations, however, in practice, they are impossible. Concluding,
we can verify that these results are very similar to the results obtained by [Rocc 97] for the case of
minimum fuel consumption and fixed time transfer. Thus it is clear that the case of minimum time
transfer and fixed fuel consumption is almost- the converse of the case of minimum fuel



consumption and fixed time transfer. Therefore, both cases were studied, implemented and tested
with success. The simulations showed that the software developed can be used in real applications
and it is capable to generate reliable results.
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