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Preface

Life was simple when the dynamic, the spectral and the resolving powers of our instruments

were small. One observed whole objects – planets, stars, sunspots, galaxies, often in rainbow

colors. Then the revolution occurred: we acquired the centimetric eyes, the millimetric eyes, the

infrared eyes, the ultraviolet eyes, the X-ray eyes and the γ-ray eyes. With these we see mottles on

the surface of stars, streams in sunspots, and spirals in nuclei of galaxies. We see regions of

multiple mass densities and temperatures in a precarious balance, losing it occasionally, exhaling

flares. The universe is timed, cosmic phenomena are clocked; eternity is lost and variability is

bought. Microarcsecond resolutions revealed stirring and sizzling interiors underneath serene

surfaces. Short durations and small scales demanded employing a discipline with similar attributes

– the discipline of Plasmas and Fluids – known more for its complexity than for its felicity.

These lecture notes are based on a course on Fundamentals of Astrophysical Plasmas designed

for graduate students of astrophysics and astronomy, geophysics, and plasma physics at the INPE.

The background of the students varied from a faint familiarity with the subject to a working

knowledge of some aspects. However, the will to learn and understand more of it was writ large on

every countenance. Each session of lectures lasted for more than two hours with a very brief coffee

break and continued discussions. I was guided, in my choice of material, by the desire to present a

systematized and logical development of this complex field without apologizing for the rigour. The

students, as my perception goes, lapped it up and responded enthusiastically to the suggestion of

preparing these lecture notes.

Jorge Albuquerque de Souza Corrêa, one of the students of the “Divisão de Astrofísica”, was

lured into coordinating the production of the lecture notes and he has done this job admirably well.

I appreciate and thank Jorge and his team mates Jean Carlos Santos, Marcelo Henrique Gonçalves

do Nascimento and Marcia Oliveira for their interest and industry, without which my transparencies

could never be converted into this user friendly form. I particularly thank Alessandra de Mello

Stocco for her impeccable typing of the major portions of the non-mathematical material.

I am glad that I got to know Dr. José Williams dos Santos Vilas Boas, the organizer of the

course. In fact, it was he who conceived the idea of producing these lecture notes and we fell into

his trap! We discussed matters outside this course and I particularly enjoyed learning about his

research interests in Meteor Showers and trails which might have electrically charged dust

component.

I wish to put on record my sincere thanks to FAPESP (process n° 01/06031-8) for supporting

my visit to the Solar Physics Group of the INPE.



Special thanks are due to my host, collaborator and friend Prof. H.S. Sawant for his continued

support throughout my year long (August 2001 – August 2002) stay at INPE. And this brings me

finally to express my deep gratitude to the Institute (INPE), especially to the “Divisão de

Astrofísica” (DAS) for providing me whatever help I needed from time to time. I shared a warm

and friendly relation with many of the DAS members. I do hope that these notes will help the

uninitiated to venture deeper into the complexities and challenges of astrophysical plasmas.

Vinod Krishan.
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Chapter 1

INTRODUCTION TO PLASMA PHENOMENA

1.1. The Agenda

Out of the four fundamental forces which have shaped the universe as we see it

today, the gravitational force dominates the macrocosmos. Newton’s law of gravitation

along with Einstein’s general and special theories of relativity was the major

preoccupation of the astronomers of the last century. After obtaining a decent

understanding of the motion of the heavenly bodies, it was natural that the investigator

turned her attention to the investigation of their working. How and why do Cosmic

objects shine or not shine were the questions whose answers lay in the interplay of the

other three forces. The Electromagnetism with its myriad manifestations turned out to

be the next dominant occupation of the astronomers as they learnt to see under the lamp-

post! And plasmas appeared as one more consequence of the electromagnetism. It did

not take the inquisitive astronomer long to apprehend the importance of plasmas in their

diverse abodes and forms, be it in the humble environs of the planets or the dark cores

of stars or the vastness of the intergalactic space. Plasmas are here to stay so we better

get to know them in all their glory if we wish to sustain any pretentions of knowing our

universe. This appears to be the agenda of the present century astrophysicists!

1.2. Description of a Field

On being asked how should one describe one’s field of activity, the Nobel Laureate

Subramanyan Chandrasekhar replied: The description should answer the following

questions (i) What is the nature of the system? (ii) towards what purpose is its study and

(iii) what are the techniques for its investigation? Taking inspiration from the ‘man who

knew the best’, we shall in this chapter, begin with the nature of a plasma and continue

to explore it in other chapters, pausing in Chapter 2 to develop the techniques. The

purpose unfolds itself as we learn more and more about the nature of plasma. However,

if you like one-liners, we can say: The nature of a plasma is Hyperactive, the purpose is

to Comprehend the Universe and the techniques employed are Many-Body.
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1.3. Birth of Plasma Physics

In 1879, William Crookes was investigating the phenomenon of electrical discharge

in neutral gases. He coined the term – “Fourth State of Matter” in order to describe the

ionized component of the gas generated by the electrical discharge. However, it was

Irving Langmuir who while studying electronic devices based on ionized gases, in 1927,

christened the ionized gas as plasma, since the ionized conducting fluid carrying high

speed electrons, ions and atoms reminded him of the blood plasma carrying red and

white corpuscles along with germs!

The research in plasma physics spread with the development of the radio and the

subsequent discovery of the ionosphere. The reflection of radio waves from the

ionospheric plasma made the short-wave communication possible around the world.

The astrophysicists recognized the universal presence of plasmas and their role in the

production and propagation of radiation from our nearest star, the Sun, to the most

distant quasars. The laboratory studies of plasmas received a big boost with the promise

of a nearly free, and pollution free sources of energy from the controlled thermonuclear

fusion. The plasma physicists dreamt of creating a Sun in the laboratory. Alas they are

still dreaming!

1.4.  What’s a plasma?

We are fairly well familiar with the three states of matter – the solid, the liquid and

the gas. Some of us have some familiarity with a fourth state known as the plasma. This

plasma state of matter is so prevalent throughout the cosmos that it is the Plasma

Universe, a term coined by the Nobel Laureate Hannes Alfven, that we observe and are

in awe of. We may find it disconcerting that our expertise and experience in the three

common states of matter are barely adequate to comprehend only about one percent of

the universe, the remaining 99% being in the plasma state. Of course, if 90% of the

universe is actually made up of the so called Dark Matter (gravitating but nonradiating

matter), as some people believe, then the remaining 10% is the radiating and reflecting

and, therefore, observable matter; plasmas then form the silver lining of this dark

universe. This, in no way exempts us from the study of plasmas since it is the visible

radiating matter that telleth of the unseen! Let us forget about fractions and start

exploring the nature of a plasma. So, what is a plasma?



3

A solid can be converted into a liquid and a liquid can be converted into a gas by

heating them. With an increase in the temperature of a solid or a liquid, the freedom of

movement of the constituent atoms or molecules increases. What happens if we

continue to heat a gas? The gas is ionized. The atoms or molecules lose some of their

electrons and a sizzling sea of positively charged ions and negatively charged electrons

is created. The net electric charge of the system is zero. Some neutral atoms and

molecules may still be present. The electric charges in motion produce electric currents.

These are the makings of a plasma. A plasma is an electrically conducting gas, though

the converse need not be true.

1.5.  Plasmas as Cleansers

The Plasma technology has entered our very homes. The plasma based ultraviolet

and X-ray sources as well as the energetic electron beams have found applications for

protection against diverse environmental hazards. The plasma ultraviolet sources

incapacitate the DNA of the microorganisms in water in a matter of a few seconds at a

small fraction of the cost of the traditional water purification methods such as boiling. A

plasma with iron filings injected into it produces excited states of atoms, the emissions

from which carry their identification. Such an atomic metal emission detector is placed

in a smokestack where it detects dangerous fuel impurities. The plasma technology is

turning out to be all encompassing from depositing a few angstrom thick layer of gold

on brass to creating space-specification materials to plasma crystals with yet

undiscovered characteristics!

1.6.  Plasmas in the Universe

Plasmas are found everywhere in the universe. Infact our earth and all the other

planets of the solar system are in a continuous flux of plasma – the solar wind. Plasmas

occur with densities as small as or smaller than those in the highest vacuum that can be

produced in a terrestrial laboratory and as large as and larger than those existing in the

atomic nuclei. An idea of the range of densities, temperatures and the not so well known

magnetic fields is given below:



4

(1) Earth’s Ionosphere

The Solar ultraviolet radiation ionizes the upper atmosphere in the altitude range of

~70~1500 km. Here electron density varies from 103 cm-3 to 106 cm-3, the temperature

from 102 K to 104 K and the magnetic field is of the order of a fraction of a Gauss.

These are only fiducial numbers. The ionosphere undergoes large variations in all its

properties on various time scales. Due to its ability to guide radio waves and its

coupling to the overlying magnetosphere, the ionospheric studies are an active field of

research. The electrical conductivity of the ionosphere is another not so well known

quantity. In addition to being inhomogeneous, it can also become anomalously small

due to the intervention of plasma instabilities to which the ionosphere is very much

vulnerable.

(2) The Solar Wind

By observing the deflection of the ionized part of the cometary tails, Biermann in

the fifties conjectured that it must be due to a flux of protons from the Sun. Parker, later

developed a model of the solar wind and inferred that the corona is at 106 K and

expanding. The solar wind has an electron density varying from 0.5 cm-3 to 102 cm-3, a

temperature from 105 K to 106 K, a velocity anywhere from 200 km s-1 to 900 km s-1

and a magnetic field of 0.2 to 80 nanotesla. Again the solar flares cause drastic changes

in all these parameters.

(3) The Solar Corona

The million degree solar corona exhibits a host of structures in the form of loops,

arches and filaments. These structures have an electron density around 109-1010 cm-3

and are magnetically dominated. In other words, the magnetic pressure is much larger

than the kinetic pressure. The heating of the solar corona is a big puzzle and has

remained an active field of the solar physics research.

(4) Stellar Interiors

The stellar cores harboring thermonuclear reactions have higher than metallic

densities and temperatures greater than tens of million degrees Kelvin. Some of plasma

shielding effects play an essential role in the physics of nuclear reactions and energy

generation.
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(5) Pulsars

Pulsars are highly compact objects with neutrons as the major constituent and a

small fraction in the form of electrons and protons. The densities are higher than nuclear

densities in the core. However the atmosphere of the pulsars, especially the radio

emitting region, has typically solar coronal densities but with magnetic field of 105 - 106

Gauss. The relativistic electron-positron plasma pulled out from the surface of a pulsar

by inductive electric field has densities of the order of 1013 - 1015 cm-3.

(6) Other Astrophysical Objects

A variety of compact objects such as nuclei of active galaxies, extragalactic jets

accretion disks around black holes, X-ray binaries, intracluster region of galaxies and

many more contain hot and dense and hot and tenuous plasmas which are detected

though their emission in different bands of the electromagnetic spectrum.

1.7.  Making Plasmas

Astrophysical plasmas consist mainly of protons, electrons, He ions and traces of

heavy ions and atoms. In equilibrium, these particles obey the Boltzmann Distribution,

so that the number density ne of particles in a given energy state El, at a temperature T is

determined from:
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If we identify the state l with the electron-ion pair and the state m with a neutral atom,

we can find the fractional ionization from equation (1.2) provided the energy difference
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(El-Em) is equal to the ionization energy I of the atom. Thus the number density of ions

ni is found to be:
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The values of gi and gm are found from quantum – mechanical calculations and here, we

give an approximate formula for the ratio
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where h is Planck’s constant, me the electron mass, and the temperature T is in degrees

Kelvin. Substituting Equation (1.4) in Equation (1.3), we obtain Saha’s Ionization

Equation:
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We find that a significantly large degree of ionization is achieved for hydrogen even

at temperatures much below that corresponding to the ionization energy of 13.6 eV.

This is Thermal Ionization. Stellar plasmas are mostly produced through thermal

ionization.

Another way of producing ionization is by applying electric fields for example

through an Electric Discharge, in terrestrial laboratories or during lightening in

planetary atmospheres. Matter can also be ionized by the action of electromagnetic

radiation. The ultraviolet radiation from hot stars ionizes most of the interstellar

medium. The solar ultraviolet radiation creates our ionosphere.

In high density regions, collisions among electrons and atoms can also cause

ionization. At even higher densities, the phenomenon of Pressure Ionization occurs.

During this process, the matter is so tightly packed that electrons are squeezed out of

their energy levels if their energy, the Fermi Energy, exceeds the ionization energy.
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Interiors of large gaseous planets such as Jupiter, and the ultradense stars called White

Dwarfs are some of the probable sites of pressure-ionized plasmas.

1.8.  Qualifications of a Plasma

Ionization is a necessary but not a sufficient condition for a plasma. In order to

qualify as a plasma, an ionized gas must admit Quasineutrality and exhibit Collective

behavior.

Two isolated charges separated by a distance experience the Coulomb force. In an

ionized gas, there are many other charges between these two charges, influencing and

being influenced by them. Thus, the motion of a given charge is determined collectively

by the entire system of charges. There are no free charges in a plasma. As these charges

move around, local concentrations of positive and negative charges can develop,

producing electric fields. This charge separation, though, can occur only on microscopic

scales, for otherwise forbiddingly large electric fields would be generated. The existence

of a very small amount of charge separation over a very short spatial scale for a very

short time interval is what is meant by the Quasineutrality of a plasma. It is for this

ability of a plasma to sustain a tiny difference in positive and negative charge densities

that its study has acquired the status of an independent discipline. The charge separation

arises due to the thermal motion of electrons and ions. Thus, electric fields of strengths

such that the associated electrostatic energy per particle does not exceed the thermal

energy per particle are produced spontaneously. This condition restricts the amount, the

extent and the duration of charge separation in a plasma. The electric field E due to a net

charge density Q existing over a region of linear extent l is E=4πQl and the electrostatic

energy of an electron or proton is 4πQel2/2. The average thermal energy per particle

with one degree of freedom is KBT/2. Therefore,

22
4

2 TKl
Qe B≤π (1.6)

and l is the spatial scale of charge separation. For complete charge separation in a

plasma of electron density n, Q=en, so that
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where λDe is called the Debye Length of electrons. It is also known as the screening

distance, as it screens the charge separation from the rest of the system. The time

duration, τe, for which this charge separation can exist is the time taken by an electron to

travel the distance l with the mean thermal speed Ve, so that
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and ωpe is called the Electron-Plasma Frequency. Thus, the higher the density n, the

shorter is the time scale τe and the spatial scale λDe. We realize that we can have a

spatial scale τi and a time scale λDi for ions and that λDi ≤ λDe and τi >> τe. Therefore τe

is the shortest time scale for which charge separate can exist and strict neutrality can be

violated. It is in this sense that a plasma is Quasi-Neutral; on a spatial scale λDe and a

time scale τe, departures from charge neutrality exist.

In this sea of electrons and ions, there must be Coulomb collisions among these

particles. The collisions produce mixing of charges, and therefore reduce the spatial

scale of charge separation. In order that there still exists a finite spatial scale of charge

separation, the mean free path λe of the electrons must be much larger than the scale of

charge separation λDe. This condition gives:

21

24
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or

eipe νω >>

i.e. the electron plasma frequency must be much larger than the electron-ion collision

frequency νei. Another important consequence of a low collision frequency νei is that the

electrons and ions take a long time to thermalize with each other and reach a common

temperature. For durations smaller than the collision time (νei)
-1, electrons and ions can

remain at different temperatures Te and Ti respectively. An ionized gas with vanishingly
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small λDe does not qualify to be a plasma as such as a system is strictly neutral and not

quasi-neutral. Further, in order to treat the part of the system enclosed in a region of

linear dimension λDe as a statistical system with a temperature T and number density n,

it must contain a large number of particles. The number of particles Nd in a sphere of

radius λDe – called the Debye Sphere, is

1
3

4 3 >>= Ded nN λπ
(1.10)

We have now found all the conditions that an ionized gas must satisfy before it can be

called a plasma. These are given by equations (1.9) and (1.10) along with the obvious

requirement that the size of the system must be larger than all the characteristic spatial

scales such as λe and λDe. We shall learn more about the consequences of

quasineutrality in other chapters.

1.9.  Electrostatic Potential in a Plasma-Debye Screening

Suppose we insert a positive test charge q in a plasma. We expect that it will

immediately attract a cloud of negative charges around it. The effect of the test charge is

not felt outside this cloud. The rest of the plasma is screened from the test charge by the

cloud. What is the size of this cloud and what is the potential due to q in a plasma?

According to Poisson’s equation, the electric potential ϕ can be determined from

)(42
ie nne −=∇ πϕ (1.11)

where ne and ni are respectively the electron and singly charged ion densities in the

plasma. The two densities become unequal due to the presence of the potential ϕ caused

by the test charge q. The particles, in addition to their kinetic energy, now possess

potential energy |eϕ|. If we assume that at a temperature Te the electrons follow the

Boltzmann distribution given by
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where the total energy We=(meV
2/2) - eϕ, we find









=

TK

e
nn

B
e

ϕ
exp0 (1.13)

where n0 is the electron density in the absence of the potential. The ions at their

temperature Ti also follow a similar distribution:









−=

TK

e
nn

B
i

ϕ
exp0 (1.14)

These Boltzmann distributions are discussed again in Chapter 4. For |eϕ / KBTe| << 1

and |eϕ / KBTi| << 1 we can expand the exponentials in Equations (1.13) and (1.14),

substitute in Equation (1.11), and find that the spherically symmetric potential ϕ at a

distance r from the charge q obeys the linear equation:
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The solution to Equation (1.15) can be easily seen to be:
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where
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111
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+= (1.17)

and λDe and λDi are the electron and ion Debye lengths respectively. So, the electrostatic

potential ϕ (Equation 1.16) is no longer like the Coulomb potential which varies as r-1,

but has additional exponential decay with distance r and diminishes to 1/e of its

Coulomb value at r = λD , the Effective Debye Length. Thus, for r >> λD, the potential
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becomes vanishingly small. The potential is felt by the plasma particles within a

distance r ≅  λD from the position of the charge q. We, therefore, find that the size of the

screening or the Debye Cloud is ~ λD. It increases with an increase of temperature, since

electrons with high kinetic energy can withstand the attraction of the positive charge q

up to larger distances. On the other hand, λD decreases with an increase of density n0,

since a larger number of charges or electrons can now be accommodated in a shorter

region to annul the effect of q. As Te and Ti → 0 or n0 → �, λD → 0 and all the

interesting plasma phenomena disappear. A finite λD is the source of the entire game of

electromagnetic phenomena in a plasma. We have already seen the collective behavior –

the potential due to a single change q in a plasma is a function of the electron or ion

density and their temperatures and does not depend on the individual properties of the

plasma particles.

1.10. Coulomb Collisions Among Plasma Particles

There are several characteristic time scales in a plasma. We have already

encountered three of them, τe and τi corresponding to the electron-plasma frequency ωe

and the ion-plasma frequency ωi, and the third corresponding to the electron-ion

collision frequency νei. We shall encounter more time scales when we study a plasma in

a magnetic field. Since the collision frequency is one of the defining characteristics of a

plasma, it must be known before we proceed to explore the nature of a plasma any

further.

In a plasma, charged particles continuously feel the Coulomb force due to other

particles. Therefore, the actual trajectory of a particle is not a sum of discrete random

paths. However, it is found that some aspects of thermal motion and transport processes

can be well accounted for using the description of Coulomb collisions and defining an

effective Coulomb cross-section. We can treat collisions resulting in large scattering

angles and those resulting in small scattering angles separately. Here, we present an

approximate analysis of Coulomb collisions, a more formal treatment of collisions can

be seen in Chapter 2.

A particle of charge z1e and mass m1, undergoes a deflection in its trajectory due to

the effect of the Coulomb force exerted by another particle of charge z2e and mass m2.
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The magnitude of the Coulomb force F when the two particles are a distance r apart is

given by

2

2
21

r

ezz
F = (1.18)

This two-body collision problem can be reduced to the problem of a single particle of

reduced mass µ and relative velocity V
ρ

 moving in the force field F
ρ

. The particle feels

this force for the duration t it spends in the neighborhood of the other particle. This is

the time needed to cross the closest distance of approach b. Thus

V

b
t = (1.19)

where V
ρ

 is the relative velocity of the particles. The change ∆P in the momentum of the

particle is, therefore
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Now, we know that for a scattering angle of 180o the particle reverses its direction of

motion and the change in the momentum is twice the original momentum. Therefore, we

expect that for large deflections the change in the momentum of a particle is of the order

of its momentum, i.e.,

V
b

ezz

V

b µ≈






2

2
21

(1.21)

Thus the distance b, known as the Impact Parameter, between the particles for a large

deflection is found to be:
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21
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µ
= (1.22)

The effective cross section for a binary interaction is the area of a circle of radius b, i.e.

πb2. The effect of all small angle scatterings is collectively included in a parameter

known as the Coulomb Logarithm ln Λ. The Coulomb logarithm is the ratio of the

maximum and minimum impact parameters. The maximum impact parameter is of the

order of Debye screening distance λD because for distances larger than this, the

Coulomb potential becomes vanishingly small and the particle does not undergo any

deflection in its path. The minimum impact parameter bmin corresponds to the maximum

deflection and can, therefore, be taken as the value of b given in Equation (1.22). It is

inversely proportional to V2. In the classical regime, bmin must be larger than the de

Broglie wavelength of the particle. In the quantum-mechanical regime, bmin can be taken

to be the de Broglie wavelength given by

V
b

µ
η=min (1.23)

Thus, the Coulomb logarithm in the classical regime is:

2
21

2

ln
ezz

VDµλ=Λ (1.24)

and the total Coulomb cross-section σc is given by:

( ) Λ= ln2bc πσ (1.25)

A particle moving with velocity V, in a medium of density n undergoes nVσc collisions

per unit time. The collisions frequency νc, is therefore, given by

cc nVσν = (1.26)

and the mean free path by
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c
c n

l
σ
1= (1.27)

If the particle undergoes collisions with several different types of particles, the total

mean free path is the sum of all the inverse free paths and the total collision frequency is

the sum of all the collision frequencies.

Three types of collisions can occur in a fully ionized plasma – among like particles such

as electron-electron and ion-ion and among unlike particles such as electron-ion. Thus,

the Electron-Electron Collision Frequency is given by

( ) ee

Be

e
ee

TKm

en Λ= ln
3

4
2321

2πν (1.28)

in a plasma of temperature T, electron density ne and ion density ni. Here V has been

replaced by its root mean square velocity. The Ion-Ion Collision Frequency is given by

( ) ii

Bi

i
ii

TKm

ezzn Λ= ln
3

4
2321

4
21πν (1.29)

Finally, the Electron-Ion Collision frequency νei is found to be

( ) ei

Be

i
ei

TKm

eZn Λ= ln
3 2321

42πν (1.30)

for the charge ze on the ion of mass mi >> me. Now, collisions bring about thermal

equilibrium among the various particles. During each collision, there is an energy

transfer from the more energetic particle to the less energetic particle. The laws of

momentum and energy conservation imply that during a large angle collision between

particles of identical masses, the particles have nearly equal energies after the collision.

Therefore τee = νee
-1 and τii = νii

-1 represent the time durations during which electrons

and ions reach a common temperature T. The case of electron-ion thermalization is

different. Again from kinematics, it can be easily checked that during a large angle

collision an electron transfers only a fraction me / mi of its energy to an ion. Therefore,
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equilibration among electrons and ions would take that much longer, i.e. the

thermalization, also called the relaxation time τei for electrons and ions is given by

eie

i
ei m

m

ν
τ ≅  (1.31)

We find that for an electron-proton plasma τei > τii > τee which implies that

electrons-ions interaction can remain at different temperatures for much longer than can

ions-ions and electrons-electrons interactions. This is why a plasma is often

characterized by two temperatures, one for ions and the other for electrons. As we shall

see, a magnetized plasma can have even more than two temperatures. How do the three

Coulomb logarithms compare? There could be one more type of collision process –

Coulomb collisions of ions with electrons with a collision frequency νie. It may not be

very clear at this stage that νie is different from νei. We shall learn in Chapter 2 that, in

the magnetohydrodynamic description of a plasma, where it is assumed that the rate of

momentum transfer between the electron fluid and the ion fluid is proportional to their

relative velocity, the two collision frequencies are related as (Equation 2.111):

ieieie νρνρ = (1.32)

where ρe and ρi are the mass densities of the electron and the ion fluids respectively.

Thus, in a plasma with equal particle densities, we find νie << νei and therefore,

electron-ion collisions are the main process of thermalization among electrons and ions.

These collisions frequencies determine the rates of transport processes, such as diffusion

and dissipation processes, such as Ohmic heating.

1.11 . Diffusion in a Plasma

Associated with a collisional process is a mean free path lm = Vτ that a particle with

velocity V traverses between two collisions in a collision period τ. The particle diffuses

in the system from one position to another through this random walk. The diffusion

coefficient D is defined as:
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τ

2
mlD = (1.33)

If a plasma is magnetized, the particles are not so free to walk randomly. We shall learn,

in detail, about the motion of charged particles in a magnetic field in Chapter 3, but for

the present, it would suffice to remember that charged particles execute a circular

motion in a direction perpendicular to the magnetic field and move freely along the

magnetic field. The diffusion rates, consequently, differ in these two directions.

Perpendicular to the magnetic field, a particle diffuses from one orbit to another only if

it undergoes collisions with other particles. The mean free path, here, is then of the

order of the radius of the orbit, which is the cyclotron radius RB = V/ΩB where ΩB is the

cyclotron frequency (Equation 3.6). The diffusion coefficient D⊥  in the perpendicular

direction is given by:

ττ 2

22

B

B VR
D

Ω
==⊥ (1.34)

Along the magnetic field, the parallel diffusion coefficient D// is the same as in an

unmagnetized plasma (Equation 1.33). The ratio of the two diffusion coefficients is

found to be:

22
//

1

τB
D

D

Ω
=⊥ (1.35)

In the absence of the magnetic field D⊥  = D//. Therefore, we can write a general

expression as:

22
// 1

1

τB
D

D

Ω+
=⊥ (1.36)

so that D⊥ = D//  for ΩB = 0 and Equation (1.35) is recovered for ΩBτ2 >> 1. This

provides us with a definition of a magnetoplasma, i.e., one where the period of circular

motion is much less than the collision period. The motion of the particles is dominantly
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circular and not a drunkard’s doodle. The perpendicular diffusion coefficient is

inversely proportional to the square of the magnetic field B. This dependence on B is

also followed by other transport coefficients such as thermal conductivity and electrical

conductivity.

It is easy to see that in an electron-proton plasma, the parallel diffusion coefficient

D//e for electrons is much larger than D//i, the parallel diffusion coefficient for ions. Does

this mean that electrons will diffuse away from a region and ions will be left behind

there? No. The quasineutrality condition forbids that. The slow diffusing ions will pull

back the fast diffusing electrons and yield conditions for a joint diffusion of both

electrons and ions with a diffusion coefficient DA// such that D//e > DA// > D//i. This

phenomenon is known as Ambipolar Diffusion. In a plasma, therefore, the net

diffusion rate is not decided by the fast diffusing particles, but rather by the slow ones.

In a magnetized plasma, the perpendicular diffusion coefficient for electrons, D⊥ e is

much smaller than D⊥ i (Equation 1.34) for identical electron and ion temperatures T.

Therefore, the joint diffusion coefficient DA⊥  is determined dominantly by the slow

diffusing species, the electrons. The physical reason for the slower perpendicular

diffusion of electrons is their smaller mean free path, which is nothing but their

cyclotron radius. We shall derive an expression for the ambipolar diffusion coefficient

in Chapter 5, since it requires the two-fluid description of a plasma.

In a fully ionized plasma, the diffusion is predominantly governed by Coulomb

collisions among unlike particles. The collisions among like particles do not affect a

change of the center of mass and hence cause little or no diffusion.

1.12.  Electrical Resistivity of a Plasma

For moderate values of the electric field E
ρ

, a plasma obeys Ohm’s law:

JE
ρρ

η= (1.37)

where J
ρ

 is the current density and η is the resistivity. Electrons, the major carries of the

current, move under the combined actions of the applied field E
ρ

 and the frictional force

due to collisions with ions. Under steady state conditions (∂/∂ t = 0). We get:
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0=Γ−− ei
i Een

ρρ
(1.38)

where Γei is the frictional force density. For a simple collisional model where the

frictional force is proportional to the relative velocity between electrons and ions, we

can write:

( )ieeiee
ei VVnm

ρρρ
−=Γ ν (1.39)

The current density J
ρ

 is by definition:

[ ]iee VVenJ
ρρρ

−−= , (1.40)

and we find the resistivity

2en

m

e

eieνη = (1.41)

Now, substituting for νei from Equation (1.30), we obtain the surprising result that the

resistivity is almost independent of the electron density ne. Therefore, the current

density J
ρ

 driven by the electric field E
ϖ

 is independent of the concentration ne of the

charge carriers. If a plasma contains neutral atoms or molecules, the situation, however,

changes. Recall that the electron-ion collisions are infrequent at high temperatures. The

reason for this is that at high thermal velocities an electron spends a rather short time in

the vicinity of an ion and therefore loses only a small quantity of momentum. Thus, at

sufficiently high temperatures, electrons do not feel the frictional drag due to ions and

the motion of the two species decouples. The plasma resistivity becomes vanishingly

small. Under such conditions, electrons can gain energy from the applied electric field,

unhindered. There is a critical value of the electric field, known as the Dreicer Field,

ED, above which electrons feel only acceleration and no frictional force. The value of ED

can be determined from equation (1.38) and is found to be:
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where Ve has been replaced by the root mean velocity and Vi << Ve. This is one way of

generating high energy electron beams. Of course, the acceleration cannot go on

indefinitely. The charge separation, resulting from the decoupling of electron and ion

motion, builds up to a value that makes the system unstable, since a plasma always

tends to remain quasi-neutral. These instabilities give rise to waves with amplitudes

growing with time. The electrons now feel a kind of frictional drag due to these waves.

It is found that the resistivity under such circumstances becomes anomalously large,

sometimes larger by several orders of magnitude. The effective Ohmic heating,

correspondingly, take place at a much higher rate than that due to Coulomb resistivity.

The anomalously large resistivity turns out to be extremely useful in explaining

phenomenon such as solar flares, where large amounts of energy are released in a very

short time interval.

1.13.  Plasma as a Dielectric Material

In a plasma, the charged particles not only move in response to the externally

applied electric and magnetic fields, but during their motion, they also continuously

produce electric and magnetic fields. Thus, a very complex interplay of fields and

motion takes place and we face a difficult task of determining these fields in a self-

consistent manner.

In a material of macroscopic dimensions, the average charge density is made up of

two parts: (i) that due to the average charge of the atomic or molecular ions or the

average free charge residing on the macroscopic body; (ii) that due to induced charges

produced by polarization. In the absence of external fields, an atom or a molecule may

or may not have a permanent electric dipole moment. Even if they have, due to their

random thermal motion, the electric dipole moments are directed in a random manner,

so that the average dipole moment of the entire system is zero. In the presence of an

external field, there is a net dipole moment, which tends to align itself with the external

field. This net dipole moment produces a charge density since the external field causes

displacement and redistribution of the charges. If the polarization is uniform, there is no
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net change in the charge density. This is why the polarization charge density is

expressed as the divergence of the dipole moment per unit volume EP
ρ

. Poisson’s

equation including free fρ  and induced Iρ  charge densities becomes:

IfE πρπρ 44. +=∇
ρρ

,

but

IEP ρ−=∇
ρρ

. (1.47)

so that

( ) fE DPE πρπ 44 =⋅∇≡+⋅∇
ρρϖρρ

where D
ρ

 is the displacement vector. Since, EP
ρ

 is produced only by the application of

E
ρ

, we can write P
ρ

 as a power-series in E
ρ

 as:

...
,

++=∑ ∑
j kj

kjijkjijEi EEEP βα (1.48)

Experiments tell us that the linear term in E
ρ

 is quite adequate at moderate temperatures

and electric fields. For isotropic conditions, Equation (1.48) can be recast as:

EP eE

ρρ
χ= , (1.49)

where χe is known as the electric susceptibility of the medium. The displacement

vector D
ρ

 is related to the electric field E
ρ

 through the dielectric constant ∈  of the

medium as:

ED
ρρ

=∈ (1.50)

or



21

EEE e

ρρρ
=∈+ πχ4 ,

so that

eπχ41+∈= (1.51)

For a uniform medium ∈  is independent of space, Poisson’s equation takes the form:

fE ρπ
∈

=∇ 4
.
ρρ

(1.52)

Thus, for a given free charge density fρ , the electric field inside a plasma is reduced by

the factor ∈ . The reduction results because the direction of the electric field produced by

the induced charge density is opposite to that of the applied field. A plasma with a large

dielectric constant screens AC electric fields the way a plasma with small Debye length

screens DC electric fields.

The resistive properties of a plasma are included in the dielectric function ∈ . All

aspects of electromagnetic wave propagation through a plasma are studied using the

dielectric function ∈  of a plasma. We can thereby learn about the frequency pass bands,

cutoffs, absorption, refraction and reflection properties of a plasma.

When high intensity radiation propagates through a plasma, it modifies the plasma

characteristics completely. The reflection region may become absorbing and a

transparent plasma may become a scattering medium. All this is accomplished  through

the dielectric constant ∈ , which in addition to depending upon plasma parameters,

becomes a function of the intensity and the frequency of the incident radiation.

Calculation of the dielectric constant, which is anything but a constant, is a major

occupation of plasma physicists.

1.14.  Plasma as a Source of Coherent Radiation

A source of radiation is coherent if its size is smaller than the wavelength of the

radiation it emits, for then, the differences in the retarded times of the different parts of

the source can be neglected. Plasmas, due to their cooperative nature are found to be

very efficient sources of strong and coherent radiation over a huge range of the
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electromagnetic spectrum. The source of energy lies in the non-thermal distributions of

particles such as an electron beam traversing a plasma, or in an anisotropic velocity

distribution, such as a loss-cone distribution arising in an inhomogeneous magnetic

field. These distributions, in an attempt to relax to an equilibrium, produce electric and

magnetic fields which may be in the form of electrostatic or electromagnetic waves.

Since these waves are produced by the induced charge densities and electric currents,

the bulk of the plasma particles participate in this process. We have already learned that

in a plasma, charge densities can exist only over distances of the order or less than the

Debye length. The condition for the production of coherent radiation is that its

wavelength must be greater than the Debye length. Under these conditions, all the

particles contained in the Debye sphere are in phase with each other and participate

collectively in the emission process. Thus, the typical size of a coherent plasma source

is of the order of the Debye length. Of course it will never be possible to resolve a

source of this size in cosmic circumstances. That there is a coherent process in action, is

inferred, for example, from observations of time variability of intensity and polarization

of radiation among other possible consequences.

1.15. Strongly Coupled Plasmas

Strongly coupled plasmas are a more common occurrence in celestial compact

objects than in terrestrial systems. An example close to home is provided by the planet

Jupiter. The interior of the planet is made up of hydrogen with a few percent helium

with average mass density ρ = 1-10 gcm-3 at a temperature T ~ 104 K. It is found to be a

strongly coupled plasma with rs = 0.6-1 and Γ = 20-50, where sr , the ratio of the

Wigner-Seitz, is the radius of an electron and the Bohr radius is given by

( ) ( )223143 ηcmnr ees π= . The observation that Jupiter and Saturn emit 2-3 times more

infrared radiation than they absorb from the Sun, has been interpreted to be the result of

the energy release due to a phase transition of the strongly coupled plasma in the

interiors of these planets.

The interiors of Sun-like stars have Γ ~ 0.05 and therefore do not qualify as strongly

coupled plasmas, but strong coupling effects need to be included in the study of the state

of heavy elements and their mixing.
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A neutron star contains about the mass of the Sun in a sphere of radius of about 10

km. It is, perhaps, the most condensed state of matter. Theoretical models show that a

crust of 1-2 km radius and a mass density of 104 - 107 gcm-3 consisting mostly of iron

exists just below the surface of a neutron star. With an expected coupling constant Γ ~

10-103, the tendencies of this plasma of iron nuclei towards Wigner-Crystallization and

a glassy transition are being investigated since the knowledge of the state of crystal

matter is crucial for understanding the cooling rate of a neutron star.

The interior of a white dwarf consists of dense material with mass density and

temperature similar to what exists in the crust of a neutron star. White dwarfs with

interiors made up of carbon-oxygen mixture are believed to be the progenitors of some

type 1 supernovae. The possibilities of phase separation and formation of alloys in this

carbon-oxygen mixture have important bearing on the cooling rates, mechanism of

supernovae explosion, transport processes and neutrino emission processes. A lot of

work, theoretical and experimental, is being carried out in the field of strongly coupled

plasmas and it will not be an exaggeration to say that the motivation comes from the

‘Heavens’ and from our eternal search for new materials.

1.16.  Dusty Plasmas

Though, so far, we have been mainly referring to a two component plasma with

electrons and ions, in astrophysical situation, a third component, called the dust, is often

present. This three component system is quite different from the one with three species

of charged particles. For, one thing, the dust particles acquire electric charge, like a

capacitor, when they are inserted in a plasma. Their charge is not a constant. It is a

function of plasma parameters, varies with time, and it takes finite time for a dust

particle to acquire charge. Dust particles are of macroscopic dimensions, of the order of

a micron and smaller. The composition of the astrophysical dust varies from one

environ to another. It could be carbonaceous, silicates, ferrites or any alloy of them.

Heavy molecules and frozen ices are also a part of the family of dust grains. The

composition of dust is determined from its response to the radiation that falls on it. The

absorbed, the scattered and the re-emitted radiation carries diagnostics of the dust

grains. So, what happens when a plasma of electrons and protons is impregnated with

dust grains?
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The grains suffer collisions with electrons and protons and acquire electric charge in

the process. The electrostatic potential due to the charged grains affects the electron and

proton density distributions, which in turn modify the electron and proton fluxes

impinging upon the grains. Thus, the charging of the grain and plasma particle

distribution must be determined self-consistently. The system is complex, therefore, we

need to make some simplifying assumption. The first assumption is that the number

density nd of dust grains is much less than the electron or proton densities. Two cases

are identified in this connection: a plasma is called a Dusty Plasma if the number of

grains Nd in a Debye Sphere is much larger than unity. The opposite case with Nd ≤ 1 is

referred to as Dust in a Plasma. In addition to the charging of a grain by electron and

ion currents directed on to it, its charged state may also change due to photoemission if

subjected to radiation. The secondary emission of electrons when a grain is bombarded

by electrons as well as the field emitted electrons, further, deprive a grain of its negative

charge. The rate of change of the charge Q of a grain due to all possible causes can be

expressed as:

∑=
s

sI
dt

dQ
, (1.70)

where Is is the current due to a process s. Let us first consider the charging of a grain

only due to electron and proton fluxes. Thus, if eJ
ρ

 and iJ
ρ

 are the current densities due

to electrons and protons respectively, then the total currents Ie and Ii are given by:

eeee eVnaI απ 24−= (1.71)

and

iiii eVnaI απ 24=

where a is the radius of a spherical grain, Ve and Vi are the velocities of the electrons

and protons relative to that of the grain velocity Vd, and αe and αi are known as the

sticking coefficients. In a Maxwellian plasma, Ve and Vi can be replaced by the

corresponding thermal velocities. If Vd is larger than the thermal speed of protons, than

Vi is replaced by Vd. For constant ne, ni, and temperatures Te, Ti, we see from Equations

(1.70) and (1.71), that the charge Q increases linearly with time. Of course, this cannot
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continue for long. As the charge Q builds up, the negative charge on the grain begins to

repel electrons and attract protons, so that in the neighborhood of the grain, ne decreases

and ni increases. A steady state is reached when Ie = Ii and Q = Q0. Realizing that at a

common temperature T, the electron thermal velocity VTe >> VTi, the ion thermal

velocity, we find that the time taken by the grain to accumulate a charge Q0 is given by:

( ) 21
0

2

0
0

4 eB mTKena

Q
t

π
= (1.72)

where we have taken ne = ni = n0 and αe ~ 1. We know that electrostatic potential ϕ ≅  –

KBT/e can exist in a plasma. Therefore, the grain charge Q0 produces the potential 0ϕ

due to which the electron current to the grain ceases. If the grain is treated as a capacitor

of capacitance C0 then the charge Q0 is related to C0 and 0ϕ  as

000 ϕCQ = (1.73)

and C0 = a for a spherical capacitor. Thus, we find:

pe

D

a
t

ω
λ=0 (1.74)

and

e

TaK
Q B−=0

Thus the charge relaxation time in a plasma is ~ 1−
peω , and the smaller the size of the

grain, the smaller the cross-section for an electron encounter, and the longer charging

time t0, the larger temperature, the larger electron flux to the grain and, finally the larger

capacitance a, the larger charge Q0. For a more accurate derivation of these results, we

need to know the particle distribution in the presence of the grain potential and

determine Ie and Ii. It is found that for equal electron and ion temperatures, the grain

potential is given by: ϕ ≅  -2.5KBT/e which is not too different from the value obtained

from the approximate treatment given above.

In astrophysical situations such as comets whizzing through the solar wind or

interstellar grains braving the ultraviolet radiation of stars, photoemission of electrons
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from the grains must be included in the list of charging processes. The electron emission

takes place via the well known photoelectric effect described by the Einstein relation:

EW +=ωη ,

where ω is the frequency of the radiation falling on a material of work function W, and

E is the kinetic energy of the emitted electron. For astrophysical grains, the work

function is of the order of a few electron-volts, consequently the radiation frequency ω

corresponds to the ultraviolet part of the electromagnetic spectrum. Thus a knowledge

of ω and W provide us with an estimate of E and therefore of the current Ip. The electron

emission endows the grain with a positive charge which may try to pull back the emitted

electrons. Again, in principle, we could determine the steady state by requiring the total

current

0=++ pie III (1.75)

The steady state potential due to the charged grain could be positive or negative. In

reality, however, a lot of work and a lot more guess work goes into the determination of

the work functions for which a good idea of the composition is a prerequisite. The sizes

and shapes and their distributions are the other important parameters, which are

intimately connected with the formation mechanisms of dust grains.

Far from a charged grain, the electrostatic potential in a plasma tends to vanish due

to screening effects. What if there are many grains within the Debbye sphere? Each

grain has a potential ~ (KBT/e) with an e-falling distance of the order of the Debbye

length. But now, due to the presence of other charged grains, the potential far from the

grain is not vanishingly small, but has a finite value, say, fϕ . So, the net potential

( fϕϕ − ) will now be supported by a lesser value of Q given by:

( )faQ ϕϕ −≅ , (1.76)

where the capacitance of the spherical grain still remains close to a for a << λD. As we

realize by now that charging of grains constitutes a host of complex processes and

therefore, can be addressed with any thoroughness only in a specific circumstance.
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1.17. Study of Plasmas: Towards what Purpose?

Since most of the visible universe is in the plasma state, knowing about plasmas

would help us to understand some of the workings of the universe. Of course, it is the

controlled thermonuclear fusion – that pollution free, nearly free, eternal source of

energy – that is the ultimate goal of most of the laboratory plasma physicists. In the

meantime, plasmas have been serving mankind through a host of technological

applications – from communication to dyeing, to deposition of ions on metals, and

fabrication of new materials. Plasma physics has also drawn the attention of people

seeking the ultimate accelerators, the keyholes to the structure of matter and the origin

of the universe.

Filamentary structures of all sizes and shapes are observed on all scales in the

universe – be it on planetary and stellar atmospheres, supernovae ejecta, planetary

nebulae, galactic environs or extragalactic realms. The macroscopic stability of these

structures is studied using single and two-fluid descriptions of a plasma. These

descriptions relate the size, the pressure, the fields and the flows in a plasma structure.

In addition, we would like to know how do the characteristics of radiation that

propagates or originates in these structures depend upon their defining parameters, such

as, density, temperature magnetic and velocity fields. For example, quasi-periodic time

variations in the radiation flux may indicate that the emitting region is in a state of

oscillation.

In the same manner, we can learn about the medium through which the radiation

propagates. For example, the observed delay in the arrival times of pulses of different

frequencies from a pulsar, is attributed to the dispersion properties of the interstellar

plasma. This time delay can be related to the electron density, the magnetic field and the

size of the intervening interstellar medium. The observations and modeling of the non-

thermal radio emission from the Sun provides us with estimates of density, temperature,

magnetic field and geometric configuration of the solar corona. Through the absorption

and scattering of electromagnetic radiation in the emission line regions of a quasar we

hope to learn about the invisible central object, suspected to be a back hole.

It is in the realm of coherent sources of electromagnetic radiation that plasmas

exhibit their versatility the most. Plasmas are good at fast and large releases of energy.

This is possible as they can store free energy in several forms, as gradients in

configuration and/or in velocity space. Thus, large departures from equilibrium are first

allowed to grow; this is the state of instability. After attaining a critical stage the plasma
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undergoes relaxation, either in an explosive manner, or in a more gentle way. Solar

flares are one such phenomenon where a complex configuration of magnetic and

velocity fields becomes unstable and relaxation takes place with the release of

electromagnetic and mechanical energy. Most of the strong extragalactic radio sources

are associated with non-thermal (non-Maxwellian) distributions of energetic particles

which thermalize through single particle and collective plasma processes, the latter

being always more efficient and faster, if and when they happen. Often, the radiation

observed from astrophysical sources has several components in it. There may be a

steady emission over which is superimposed a rapidly varying quasi-periodic

component; or the contribution of thermal to non-thermal processes may vary in

different parts of a single source; or the emission may appear as absorption at some

parts of the spectral region. All these situations can be a result of wave-particle and

wave-wave interaction processes which can enhance or eliminate certain spectral

regions. The generation and propagation characteristics of cosmic radiation bring us the

diagnostics of the physical conditions in distant objects.

1.18.Techniques of Studying Plasmas

As for any many body system, the statistical methods are the most suitable for

studying plasmas. The use of statistical methods have provided us with three levels of

description of plasma particles and their attendant and externally imposed

electromagnetic and other fields. For moderately dense plasmas, the particle-particle

correlations can be ignored and the N-body system can be described though an N –

particle distribution function, which is a function of positions and velocities of N-

particles at a given instant of time and describes the number density of particles with

given velocities at given space-time points. The only condition that this function has to

satisfy is contained in the Liouville Equation which expresses its constancy in the

phase space of positions and velocities. By integrating over all positions and velocities

except one we get a single particle distribution function, and the condition of its

constancy in the phase space is nothing but the Boltzmann Equation. Combined with

Maxwell's equation, the collisionless Boltzmann or the Vlasov Equation describes the

entire range of plasma phenomena including stability, heating and radiative processes –

essentially the microscopic aspects of the plasma. This constitutes the Kinetic

Description of plasmas.
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Further simplification is achieved by taking the velocity moments of the Vlasov

equation. Averaged macroscopic quantities, such as number density, velocity and

pressure are obtained for each species of plasma particles. Each species is now treated

as a fluid. A plasma consisting of electrons and protons has two interpenetrating fluids –

the electron fluid and the proton fluid. Each fluid moves with a single velocity, has one

single temperature and behaves like a conducting fluid in the presence of

electromagnetic fields. This is known as the Two-Fluid Description and is very handy

for describing phenomena in which electrons and ions play differential roles.

A third level of description is obtained by combining the equations of electron fluid

and ion fluid. Here, the electrons, and ions lose their identities. Instead, a single fluid

with a specific mass density, velocity, a current density and pressure is the outcome.

This description of a plasma covers a wide variety of phenomena and has earned itself

an independent title – Magnetohydrodynamics (MHD). At the root of MHD lies the

mutual interaction of the fluid flow and the magnetic field. The magnetic field and its

associated current produce Lorentz force which accelerates the fluid across the magnetic

field, which in turn creates an electromotive force resulting in currents that modify the

field. Macroscopic configurational stability, generation of magnetic fields – in fact all

phenomena not dependent upon charge separation are studied using MHD. Each of the

three descriptions has its region of applicability and can be deployed for linear and

nonlinear problems.

1.19.  Waves in Plasmas

After ascertaining the equilibrium of a plasma, its response to a small disturbance

must be investigated. A plasma is said to support linear waves if the space-time

variations of its defining parameters, such as density, velocity, magnetic field, etc take

sinusoidal forms. Linear – because under small disturbances, the equations describing

these oscillations are linear. Their nontrivial solutions provide us with a relation, known

as the Dispersion Relation, between the frequency and the propagation wave-vector of

a wave. The dispersion relation may have more than one root. Each root represents a

wave with definitive phase and group velocities. By substituting the dispersion relation

back into the plasma equations, we can determine the relative magnitudes of the various

parameters and fields, albeit, not the absolute strengths, as well as the polarization of the

waves. This much knowledge of waves is enough to classify them as MHD Waves,
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Drift Waves and Electromagnetic and Electrostatic Waves. These waves have finite

lifetimes, they suffer damping due to Coulomb collisions and other non-ideal effects.

But a plasma can be remarkably collisionless. Under the circumstances, wave-particle

and wave-wave interactions can drain out the energy from a given wave. These

processes, together, are clubbed as collisionless damping mechanisms, of which the

Landau Damping in unmagnetized and Cyclotron Absorption in a magnetized plasma

are the most effective.

1.20.  Instabilities In Plasmas

In a plasma, the waves can go unstable, i.e., their amplitudes grow with time,

usually in an exponential way. There are three broad classes of plasma instabilities. The

first class consists of instabilities which are studied using single or two-fluid

descriptions. The driving force and energy for the excitation of this class of instabilities

is contained in the non-equilibrium or non-thermal arrangement of the plasma fluid and

the magnetic field in configuration space. For example, the Rayleigh-Taylor instability,

which comes into play when a heavy fluid lies over a light fluid. The velocity shear

between fluids of different mass densities could also excite instabilities as in the solar

wind – comet tail interaction. A current carrying conducting fluid may undergo bending

or twisting due to the excitation of these instabilities.

The second major class of instabilities involves a collisionless transfer of energy and

affects the plasma at a microscopic level. These instabilities are studied using the kinetic

description. The driving force and energy are contained in the non-thermal or non-

Maxwellian velocity distribution functions of the electrons and the ions. For example,

energetic electron and ion streams traveling through an ambient plasma medium could

excite electrostatic waves, which then get converted into electromagnetic waves through

several possible nonlinear processes. The other sources of energy are the density

gradient, temperature anisotropy, and the current flow. Given the source of energy, the

excitation of an instability requires an intermediary – one or the other of the many

possible waves that a plasma supports, in order to tap the free energy. For example, it

may be necessary to have an otherwise stable wave of phase velocity lying in the non-

thermal part of the velocity distribution function. There is generally a threshold

condition which must be satisfied before the waves go unstable. Then, once they start
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growing, their saturation levels and mechanisms need to be determined. These

instabilities affect the transport phenomena in a very substantial manner.

The third major class of instabilities constitutes the Parametric Instabilities. Here,

the driving energy is contained in a finite amplitude wave, electrostatic or

electromagnetic, that impinges on a plasma. It then couples with other waves in the

plasma and drives them unstable. These unstable waves may eventually undergo

dissipation and heat the bulk plasma or accelerate some plasma particles. This class of

instabilities also plays an important role in the generation of high frequency radiation

form low frequency radiation, e.g., through a process called Stimulated Raman

Scattering, where low frequency radiation, by scattering on the electron plasma wave of

a high energy electron beam is converted into a high frequency radiation. This process

is akin to inverse Compton scattering but with the important difference that a single

electron in the Compton scattering is substituted by an electron plasma wave in the

Raman scattering. Both these processes have been applied to explain the properties of

Quasar non-thermal radiation. Parametric instabilities have been widely studied in the

earth’s ionospheric plasmas, the solar corona and extragalactic plasmas.

1.21.  Plasmas in Curved Space – Time

Astrophysical plasmas are accelerated to relativistic speeds in the vicinity of

compact objects such as pulsars and black holes. This necessitates the inclusion of

effects due to Special Theory of Relativity. In addition, the strong gravitational fields

of the compact objects may produce curvature in the space immediately around them.

Under such circumstances, it becomes essential to study fluids and plasmas in the

curved space – time using the General Theory of Relativity (GTR), formulated by

Albert Einstein in 1916. The special theory of relativity operates in inertial frames of

reference which are related to one another by the Lorentz Transformations of space-time

coordinates, velocities and electromagnetic fields. The general theory of relativity is the

generalization to include non-inertial frames of reference which are not related to one

another by any fixed transformation laws. The Principle of Equivalence tells us that

the properties of the motion in a non-inertial frame are the same as those in an inertial

frame in the presence of a gravitational field. This implies that a system in an

accelerated frame of reference is equivalent to its being in a gravitational field. We

know that additional forces such as – the centrifugal and the coriolis forces arise when
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we go into a rotating frame of reference, for example, in the frame in which the earth is

rotating. We call these forces as fictitious forces, since they disappear as soon as we go

back to a non-rotating frame or inertial frame of reference. So, although, the motion in

an accelerated frame of reference can be simulated by an equivalent gravitational field,

this gravitational field has very different properties from a real gravitational field. The

equivalent gravitational field may increase indefinitely at large distances. Whereas, the

real gravitational field, as we know, must vanish at infinity. Thus, we can eliminate the

gravitational field only locally, in a limited region of space. There is no transformation

to a non-inertial frame by which the field can be eliminated over all space.
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Chapter 2

STATISTICAL DESCRIPTION OF A MANY-BODY SYSTEM

2.1. Track them down!

Molecules in a gas or a liquid, men in a metropolis and stars in a galaxy are in a

state of incessant motion resulting from the action of various forces: internal, due to

other molecules or (wo)men or stars; and external forces, due to the rest of the universe.

It would be a frustrating task if we had to know the position and velocity of every

molecule or star at every instant of time, in order to deal with the gas or the galaxy. The

saving grace is that we need not know every move of every molecule or star and we will

still be able to manipulate the system to our advantage. For most purposes, it suffices to

know the average properties like thermal and electrical conductivities, and mechanical

and electromagnetic stresses of a large system. In this chapter, we set up a mathematical

framework to describe the behavior of a macroscopic system. After establishing a

transport equation for a discrete system in the phase space, continuum limits are taken to

facilitate the study of fluid. The mass, momentum and energy conservation laws are

derived for each species of particles in a fluid. This multi-fluid description is further

simplified to a single fluid description with two component fluid of electrons and ions

taken as an example. This chapter contains the entire set of mathematical tools needed

to investigate ‘a single particle’, ‘a multi-fluid’ and ‘a single fluid’ characteristics of an

electrically conducting as well as an electrically non-conducting system. In the

subsequent chapters, these descriptions will be further explored under various

simplifying and tractable circumstances.

2.2. The Phase Space

Consider a system with a large number of particles N. Its time evolution is described

by Hamilton’s equations of motion for given initial conditions. The Hamiltonian H(q1,

q2, ...; p1, p2, ...) is a function of the canonical coordinates (qi, pi). The mechanical state

of a system can be represented by a single point in the 2N Dimensional Space. This is

the Phase Space.

The Hamilton equations are:
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The time derivative of any function f(qi, pi, t) is given by:
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Where [f, H] is the Poisson Bracket. If f is a constant of motion then [f, H] = 0.

2.3. The Gibb’s Ensemble

Average properties of a system are found by studying a large number of identical

systems. Their location in phase space may differ, but they have the same average

properties, e.g., E = p2 +q2 is the energy of a simple harmonic oscillator. The members

of the ensemble will all have the same value of E but different p and q.

Each system is represented by one point in the phase space. The ensemble

corresponds to a group of points. Associate a density ρ (q1...qN; p1... pN) with this group

of points, the number of members in a volume (dq1...dqN;dp1...dpN) is ρ(dq1...dqN;

dp1...dpN), which is the statistical weight of the system.

Then the total number of members is:

∫ NN dpdpdqdq ...... 11ρ (2.4)
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The probability of finding the system in a volume (dq1...dqN dp1...dpN) is:

∫ NN
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dpdpdqdq
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......

11
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ρ
ρ

(2.5)

We use the normalization:

1...... 11 =∫ NN dpdpdqdqρ (2.6)

Now,
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The motion of the system from one point (1) to another point (2) represents the time

evolution of the canonical transformation (Figure 2.1).

We know that (1) the volume element remains invariant under canonical

transformations and (2) all the points in a given volume element ∆V at (1) that will end

up in a volume ∆V at (2) following Newton’s Laws.

Thus both the numbers of members and the volume element remain constant with

time

     (2)

    t

             (1)

Figure 2.1.
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The equation (2.8) is known as the Liouville Equation. In statistical equilibrium ([ρ,

H]=0) ρ is a function of only the constants of motion, e.g., the energy. The Liouville

Equation is linear, i.e., ρ1 + ρ2 is also a solution – the law of superposition holds.

2.4. Distribution Function

For the given density ρ, how are the points distributed in phase space? What is the

functional depedence of ρ on the constants? Is it a gaussian, power law or any other

form?

When ρ is given in a special form it is called the Distribution Function. Thus ρN

(q1, ..., qN; p1, ..., pN; t) is the N Particle Distribution Function. One can define

Reduced Distribution Function too. A s particle distribution function ρs as

NsNsNs dpdpdqdq ...... 11∫ ++= ρρ (2.9)

For arbitrary set of s particles the distribution function is:

),...;,...(
)!(

!
11 ssss ppqq

sN

N
f ρ

−
= (2.10)

This is the generic distribution function used in the statistical descripition of a many

body system.

2.5. One Particle Distribution Function

It is impractical to work with ρN. Instead we work with 1, 2 or 3 particle distribution

functions. Let us begin with the Liouville Equation

0),...,...( 11 =tVVqqf
dt

d
NN

ρρ
(2.11)
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Where we have replaced momentum p by velocity V
ρ

. Integration over q2, ..., qN and

p2, ..., pN gives one-particle distribution function. Integration over q3, ..., qN and p3, ...,

pN gives two particle distribution function and so on and so forth.

The two particle distribution function is the joint probability of finding particle 1 in

volume (dq1 dV1) and particle 2 in volume (dq2 dV2). Let us study the time evolution of

one particle distribution function. We begin with
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Integrate over all the coordinates, except q1 and 1V
ρ

, to find
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The partial integration ∫ ==
∂
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∞− 0|iNi
i

N qfdq
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f
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N dqf  must be a bounded

function.
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Vd
ρ

 results from (i) external forces extF
ρ

 and (ii) internal forces intF
ρ

due to the mutual interaction with other particles. The acceleration term with
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Assume Aβi is independent of Vβi, this is true for most of the forces we encounter

including the velocity dependent Lorentz Force; then each term in the sum is:
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So we get
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The internal force on particle α due to all the other particles can be written as:
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Then the acceleration term becomes:
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The internal force is a function of the separation and the perpendicular velocities, it

is not a function of the velocities parallel to the force. Let us separate out the term for

α=1 to get
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It can be shown that for any other choice of α, the integral vanishes. Thus we find:
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Collecting all the terms, we get:
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We see that the time evolution of )1(f  depends on )2(f . Similarly it can be shown

that the time evolution of )2(f  depends on )3(f  and so on and so forth. This leads to

what is known as the BBGKY Hierarchy after Yvon (1935, 1937), Bogolioubov

(1939), Born & Green (1946, 1947) and Kirkwood (1946, 1947).

BBGKY equation describes the evolution of a system under

1. Diffusion (∂f/∂q)

2. External Force (∂f/∂V)

3. Particle Interaction (F1γ . ∂f/∂V)

The internal force contribution can be generally expressed as ctf |/δδ  known as the

collision term and different choices of the collision term gives rise to different equations

such as the Boltzmann and the Fokker Planck equations.

For a collisionless system 0|/ =ctf δδ . This applies for a low density medium. It is

also applicable to stars in a galaxy which rarely collide. But there is the dynamical

friction that the stars experience and can be described though the Fokker Planck

equation. The hierarchy must be truncated in order to close the system. We must know

)2(f . The function )2(f  is the joint probability of finding particle 1 at (q1,V1) and

particle 2 at (q2, V2). If they move independently of each other then
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Then the internal force term becomes:
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Where llllls dVdqVqfFF ∫∑≡ ),(11

ρρ
 is known as the self-consistent force.

With the self-consistent force term, the one particle distribution function obeys the

Vlasov Equation given below:
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The equation (2.24) is used to study waves and instabilities in a collisionless plasma.

There is one Vlasov equation for each species of particles such as electrons, protons and

other ions. At high densities the particle motions are correlated and the joint probability

for two particles can be written as

cffff += )1()1()2( (2.25)

Where fc describes the correlations.

2.6. Collision Models

In the Krook Collision Model, the collision term is written as

( )101
1 1

| ff
t

f
c −−=

τδ
δ

(2.26)

Where τ is the relaxation time and f10 is the equilibrium distribution function. In the

absence of external forces and spatial variation, we find

[ ] 101011 )0,(),( fefVftVf t +−= − τ (2.27)

The Boltzmann Collision Model used to describe binary and elastic collisions

between particles treated as hard spheres. The Fokker Planck Model is derived from the

Boltzmann model for small and continuous changes in the velocities of the colliding

particles accounting for only grazing collisions. Stars in a galaxy provide an example of

such a system.

2.7. The Kinetic Description

A high temperature plasma is nearly collisionless and can be described using the

Vlasov equation in the presence of the Lorentz force. This along with the Maxwell

equations provides the kinetic description of a plasma. The relevant equations are:
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Where

The charge density is ∫= dVfQnQ iiii .

The current density is VdfVQJ iii

ρρρ
∫= .

The particle density is ∫= dVfn ii .

Where i stands for the species of particles such as electrons and ions.

This description is used to study microscopic stability  or otherwise of a plasma. The

cause of the instability lies in the distribution function f. Any departure from the

equilibrium distribution function such as a relative motion between electrons and

protons or temperature anisotropy such that T⊥ ≠T// with reference to the magnetic field

can make the plasma unstable. The free energy released through instabilities can be used

for heating of plasma and/or for production of radiation, the plasma ultimately reaching

an equilibrium. For stellar systems, the gravitational force given by ggF ϕ∇−=
ρρ

 and the

Poisson equation for the mass density ),(42 trG mg

ρρπϕ =∇  with dVtVrfmm ∫= ),,(ρ ,

provide the  kinetic description.

2.8. The Fluid Description

Under certain conditions, a system of large number of particles N can be described

as a continuum. This continuum or a fluid has only one velocity. There is a fluid for
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each species of particles. Thus we have an electron fluid, a proton fluid and so on and so

forth.

The fluid moves obeying a set of laws. These are the conservation of mass,

momentum and energy. These conservation laws are derived by taking the moments of

the Boltzmann or Vlasov equations in the velocity space. This exercise is possible only

for certain forms of the distribution function f.

2.9. The Fluid Equations

We begin with the Vlasov equation
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The first velocity moment is obtained by integrating over the velocity.

Taking the first term of equation (2.33):
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where n is the particle density.

Taking the second term of equation (2.33):
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where the average velocity or the fluid velocity U
ρ

 is defined as:
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Taking the third term of equation (2.33) without magnetic field:
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at V = ±∞. Notice that dSv is proportional to V2, then f must be proportional to α−V  (α

>2). We found a restriction on the distribution function.

Now taking the third term of equation (2.33) that includes the magnetic field, we

get:
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The surface integral → 0 if f is proportional to α−V  (α > 3). This is the second

condition. So what is f ?  A form that satisfies these conditions is the Maxwellian

Distribution that is given by:
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Since the exponential fall is faster than any power law fall. The collision term

describes change in n due to collisions and correlations which may result in forming

aggregates and producing recombination, ionization and diffusion effects. In the

absence of such processes ∫ = 0| dV
t

f
cδ

δ
. The exercise of taking  the first moment is

over! Then we find
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This is the continuity equation describing particles or mass conservation.

Let us take the second velocity moment. Multiply the Vlasov equation by mVi and

integrat over dV
ρ

.
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First term:
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Second term:
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Define uUV ′+= ρρρ
 where the fluctuating part u ′ρ

 is such that ∫ =′>=′< 03Vfduu
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The second term becomes
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The quantity

jiij m uutr ′′≡∏ ),(ρ (2.34)

is the stress tensor. Its diagonal components are 222 ,, zyx uuu ′′′ ρρρ  represent pressure, the

off-diagonal componets ...yxuu ′′ρ  represent the shear stresses. They arise when the

direction of motion of a fluid is different from the direction of the transfer of

momentum. In the presence of the magnetic field, //Π≠Π ⊥ . The fluid is said to be

anisotropic.

Coming back to
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The third term (force) BVE
ρρρ

×+  becomes BUE
ρρρ

×+ . The collision term ∑
′≠

Γ
ss

ss
i

'

describes the rate of change of momentum due to collisions between different species or

fluids. Stresses between different parts of the same fluid are in ijΠ  The exercise of

taking the second moment is over!

We find the momentum conservation law as:
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The third moment is taken with VV. This gives us the energy equation. In the

absence of viscosity or shear, 0=B
ρ

, thermal conductivity and collision equal to zero,

we find 0)( 35 =−ρp
dt

d
 which is the adiabatic equation of state. It describes  changes in

pressure or volume under varying temperature conditions.

Taking moment with ( )2
UV
ρρ

−  gives the heat transport equation. A simplified form

of which is

[ ]Tk
t

T
c∇⋅∇=

∂
∂ ρρ

(2.37)

describing heat diffusion where the heat flux is TkH c∇=
ρ

 with kc the thermal

conductivity.

2.10. Correlation Functions

The joint probability distributions contain information on the correlated behavior of

a system, i.e., when the position, in the phase space, of one part of the system depends

on distribution of other parts. We can consider the distribution of galaxies. It is well

known  that galaxies come in pairs, groups, clusters and super clusters. The positions of
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galaxies are strongly correlated. One can define the radial pair correlation function for a

homogeneous and isotropic system as

Ω+= ∫ 2
2121112

),,,,(
4

1
)( ddVdVtVRqVqf

n
R cπ

ξ (2.38)

where d2Ω  is the differential solid angle in the direction of separation R
ρ

 of the two

galaxies.

The correlated part of the joint probability fc enhances the density of particles at

certain positions. The observed 3-dimensional galaxy-galaxy correlation function is

found to follow

74.1

4.5
)(

−







=

Mpc

Rh
Rξ (2.39)

where the Hubble constant ℜ  = 100h km/s Mpc-1. For clusters of galaxies, the

correlation function is

8.1

360)(
−







≈

Mpc

Rh
Rξ (2.40)

for R < 150 Mpc. It shows that clusters of galaxies are more strongly clustered than the

galaxies. The correlation length is the distance R for which ξ(R) = 1.

2.11. The Single Fluid Description

There is a way in which the different fluids corresponding to each species of

particles can be combined to form a single fluid. This single fluid is caracterized by one

mass density and one velocity.

We will discuss the circustances of its validity in a later chapter. Here we derive the

single fluid equations. We begin with the equation for the electron fluid and ion fluid.
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We define single fluid quantities: The mass density is [ ]ieiem mmn +=+= ρρρ ; the

velocity is 
ie

iiee

mm

UmUm
U

+
+=

ρρρ
; and the current density is [ ]ei UzUneJ −=

ρ
. Where we

have assumed that ne = ni = n.

Only the steps to the arrive at the single fluid equation will be given. They are:

1. Add the electron and ion equations

2. The single fluid continuity equation is: [ ] 0=⋅∇+
∂

∂
U

t m
m

ρρ
ρρ

3. For deriving the momentum conservation law, we set: eiie Γ−=Γ
ρρ

Which says that the momentum is conserved during inter-particle collisions. It is

valid when the rate of momentum density change between two fluids is proportional to

their relative velocity, i.e.:

[ ] eieeiei UU ρν
ρρ

−−=Γ (2.43)

[ ] ieiieie UU ρν
ρρ

−−=Γ       (2.44)

iieeei ρνρν = (2.45)

The momentum conservation equation becomes
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Where γ  is the viscous term. So there is no electric field in an ideal electron and

singly ionized ion plasma. There is only the inductive fluid in a varying magnetic field

and this is given by Faraday’s law of induction.

Ohm’s Law

The familiar form of the ohm’s law EJ
ρρ

σ= , takes a rather inflated form in a non-

ideal fluid. By taking the difference of the electron and the ion equations, substituting

)( ie

e
i mmen

Jm
UU

+
+=

ρ
(2.47)
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UU

+
+=

ρ
       (2.48)

into either and eliminating tU ∂∂  using the single fluid momentum equation we find
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J
BUE

J
eiieei

pipe

ρρρρρρρρ&
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)(

11

000
22 ρρσωω

   (2.49)

The equation (2.49) is known as the generalized Ohm’s Law. The last term of this

equation is the Hall effect term in MHD flows. A simplified form of Ohm’s law is

obtained in the absence of all but the finite conductivity effects. It is








 ×+=
c

BU
EJ

ρρρρ
0σ (2.50)

For ideal MHD, the electrical conducting ∞→0σ  and the inductive electric field

c

BU
E

ρρρ ×−=  is found.

In this way we arrive at the single fluid description consisting of the following

equations:
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ρρϖ 1
(2.54)

t

E

c
J

c
B

∂
∂+=×∇

ρρρϖ 14π
(2.55)

We still need a relation between the pressure and density. Usually one uses

ρ∇=∇
ρρ

2
scp , where cs

 2 is the sound speed. This is derived from the addition of the

adiabatic energy equation for each species.

The single fluid description is used to study the configurational stability of a plasma.

The cause and the source of the instability lies in the spatial gradients of density,

temperature, magnetic field and velocity.

We now have mathematical framework to study a plasma as a single fluid, as two

fluids and as a kinetic system.
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Chapter 3

PARTICLE AND FLUID MOTIONS IN

GRAVITATIONAL AND ELECTROMAGNETIC FIELDS

3.1. Back to Single Particle Motion

In Chapter 2, we presented the kinetic and the fluid descriptions of an N-particle

system. We can recover the familiar single particle equations by ignoring the many

body effects like collisions and stresses and the extensive quantities like pressure and

temperature. For an important class of problems, the knowledge of the motion of a

single particle under the action of various forces provides us with great insight at a

modest effort. Under certain circumstances, the entire fluid does what each particle

does. We shall study these drifts which are common to both a single particle as well as a

fluid. But there are additional drifts which originate entirely due to fluid properties such

as pressure forces. The two types of drifts in the presence of space and time dependent

fields will be studied in this chapter.

3.2. Purpose of Studying Single Particle Motion

Yes, we must learn to walk before we can run! Identification of a simpler unit of a

complex whole is an essential first step in any endeavour. For example, instead of the

frustrating prospect of taking into account the gravitational forces of all the members of

the Solar System, we can delineate the major component of the motion of any planet by

assuming that it moves under the gravitational force of the sun alone. The finer details

can be worked out later depending upon the purpose for which they are required.

The study of motion of a particle in the presence of electromagnetic and

gravitational fields is inherently a nonlinear problem since the fields have to be

evaluated at the instantaneous position of the particle, which is determined by the action

of these bery fields. The non-linearity, however, can be broken by using perturbation

methods if the spatial and temporal variations of the fields are slower than the spatial

and time scales of the phenomenon under investigation. We can then determine the

velocity and the trajectory of a particle. If the velocity is a function of charge and or

mass of a particle, the relative motion between different species of particles like

electrons and ions can result in a current flowing through the system. This current, if

exceeds a certain threshold, can make the system unstable. Thus, the determination of
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particle drifts forms an important part of the study of the stability of a plasma. The

concepts of adiabatic invariance are also found to be quite useful in analyzing the

motion in complex field configurations and thereby in studying the transfer of energy

from one degree of freedom to another (as we will see in a magnetic mirror geometry).

Further, the motion of a star in a galaxy, of an asteroid or a comet in the solar

system, or of an atom in the ionizing electromagnetic field is being studied with a new

awareness of the sensitive role of the initial conditions. This constitutes chaotic

dynamics which has sprung many surprises in a seemingly well determined classical

system.

The action of a strong electromagnetic wave on a particle can be described in terms

of a nonlinear potential called the Ponderomotive Potential. In the fluid limit, then, all

the particles feel this force, which is akin to a pressure gradient force. This technique

comes quite handy for understanding some of the nonlinear plasma phenomena. In the

following sections, we will study the variety of motions that a particle and a fluid

undergo under the action of gravitational and electromagnetic forces, acting singly or

jointly.

3.3. Equation of Motion of a Single Particle

Figure 3.1. Helical Motion of Electrons and Ions in a Uniform Magnetic Field.

The equation of motion of a particle with charge Q, mass m and velocity U
ρ

 in the

presence of an electric field E
ρ

, a magnetic field B
ρ

 and a gravitational potential ϕg is

given by:

gc

BU
E

m

Q

dt

Ud ϕ∇−






 ×+=
ρρρρρ

(3.1)
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3.4. Motion in Uniform Mangetic Field B
ρ

Let us first study the motion of a charged particle in the presence of only the

magnetic field. The equation is








 ×=
c

BU

m

Q

dt

Ud
ρρρ

(3.2)

Note that 0=⋅
dt

Ud
B

ρρ
; ( ) 02

1 2 =mU
dt

d
.

This means there is no acceleration along the magnetic field and the total energy is

conserved. In a direction perpendicular to B
ρ

, we find

tUU Bx Ω= ⊥ cos0 ,   tsinUU By Ω−= ⊥ 0 ,   =zU constant (3.3)

mc

QBz
B =Ω ,   ( ) ( ) 2

2

2
02

0
2

0 B

B

R
U

yyxx ≡
Ω

=−+− ⊥ (3.4)

where B
ρ

 is in the z direction.

In cylindrical coordinates ( )zr ,,θ , the phase of the particle motion is

t
xx

yy
BΩ−=

−
−

= −

2
tan

0

01 πθ (3.5)

Here ( )00 , yx  is the initial position, 0⊥U  is the initial perpendicular velocity, BΩ  is

the cyclotron frequency and BR  is the cyclotron radius.

In the presence of extremely strong magnetic fields such as in pulsars, the cyclotron

radius BR  may become comparable to the De Broglie wavelength. Under these

conditions, the motion becomes quantum mechanical.

The quantized energy levels are

Bl hlE Ω




 +=

2

1
(3.6)
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where l is an integer.

The relativistic equation of motion can be written as

BU
c

Q

dt

pd ρρρ
×= ,   Ump

ρρ γ= (3.7)

and 
2

1

2

2

1
−







−=

c

Uγ  is the Lorentz factor.

3.5. Motion in Combined Electric and Magnetic Fields

The equation of motion is:
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Q

dt

Ud
ρρρρ

(3.8)

Notice that

BE
m

Q

dt

Ud
B

ρρρρ
⋅=⋅ (3.9)

Thus there is an acceleration parallel to the magnetic field due to an electric field

along B
ρ

. In the steady state

0=
dt

d
       (3.10)

so that

( ) 0
1 =××+× BBU
c

BE
ρρρρρ

       (3.11)

or
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2B

BE
cUU E

ρρρρ ×=≡ (3.12)

The velocity EU
ρ

 is known as the BE
ρρ

×  drift. It is independent of the charge, mass and

the energy of the particle. Electrons and protons both move with this common velocity.

For stationary electric and the magnetic field, substituting BE UUU
ρρρ

+=  in the

equation of motion, we find
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since B
c

U
E E

ρ
ρ

ρ
×−= . This motion with velocity BU

ρ
 is nothing but the cyclotron motion.

Thus the total motion of a charged particle in crossed electric and magnetic fields is

equal to a helical motion plus the steady drift EU
ρ

. It can be shown that the trajectory of

the particle is given by

( ) tsin
U

tUxx B
B

Ex Ω
Ω

++= ⊥ 0
0    (3.14)

which shows that the center of  gyration moves x0 with the velocity EU
ρ

. This is known

as the guiding center motion. If we average over the circular motion, only the rectilinear

motion of the center of gyration remains. Thus depending upon the time scale of

interest, one can consider the complete motion or only the drift of the gyration center.

3.6. Motion of a Charged Particle in Magnetic and Gravitational Fields

The equation of motion in a magnetic field B
ρ

 and a gravitational field with

acceleration due to gravity g
ρ

 is

g
c

BU

m

Q

dt

Ud ρ
ρρρ

+






 ×=    (3.15)
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In analogy with the electric field, one can define a Bg
ρρ×  drift gU

ρ
 as:

2B

Bg

Q

mc
U g

ρρρ ×=    (3.16)

Note that this drift is a function of the charge and the mass of the particle. It can

therefore result in an electric current density in an electron-proton plasma:

gppgeeg UenUenJ
ρρρ

+−=        (3.17)

The current density beyond a critical value could make the plasma unstable. The

circumstances of high g
ρ

 and low B
ρ

 are favorable for producing high Bg
ρρ×  drift

current.

3.7. Motion in Inhomogeneous Magnetic Field

Strictly speaking magnetic field is always inhomogeneous since the field lines are

curved due to the divergence free nature of the magnetic field. An example is the dipole

field which in spherical polar coordinates ( )ϕθ ,,r  is described as:
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m
B

B

B
r

(3.18)

where Bm  is the magnetic dipole moment.

Finding the trajectory of a particle in such a field is a non trivial task. We must

resort to perturbation methods. We separate the field into its uniform and non uniform

parts

( )trBBB ,10

ρρρρ
+= .    (3.19)
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First the particle motion in the uniform part 0B
ρ

 is found. Then we substitute this

trajectory in the non-uniform part and find the new solution. Averaging over the circular

motion gives guiding centre drifts of the particles. As an example let us take a field of

the form:
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We find the guiding center drift velocity
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where
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B
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1

00















∂
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−=
ρ

is the radius of curvature of the magnetic field.

The component of gcU
ρ

 proportional to 2
0⊥U  is called the grad B drift and the

component proportional to 2
0zU  is known as the curvature drift. The drifts provide the

cross field transport of the particles.

3.8. Motion of a Charged Particle in a Magnetic Mirror or BB
ρρ

//∇  Field

Such a field has a gradient in its own direction, i. e.,

0≠
∂
∂

z

Bz (3.22)
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But we must have

0=⋅∇ B
ρρ

(3.23)

Therefore, in cylindrical coordinates:
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Again let us first solve the equation of motion only in the uniform part of B. Then

substitute it in the non-uniform part to find the drift velocity
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We see that for 0>
∂
∂

z

Bz , the velocity decreases with time. The particle slows down,

comes to a rest and reverses its direction of motion. Now the particle encounters a

negative gradient of zB  and therefore it accelerates. At any time t the total energy of the

particle remains a constant. Therefore

( ) ( )tUtUUU zzo
2222

0 +=+ ⊥⊥ (3.26)

We notice that at the moments of reflection, the entire energy is in the perpendicular

component. Thus the particles are trapped in a magnetic mirror. Other effects such as

collisions may help the particles to move out of the trap. An example of such a system is

found in our own magnetosphere. These are the Van Allen radiation belts which were

detected through an increase in the cosmic ray intensity by a factor of 104 at 1.5-3 times

the radius RE of the Earth. The inner belt at 1.5 RE is a result of the interaction of the

cosmic rays with oxygen and nitrogen molecules to produce neutrons which undergo β

decay to produce protons and electrons and these electrons get trapped in the earth’s

magnetic field. The outer belt at 3 RE is mostly populated by the solar wind electrons.
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3.9. Adiabatic Invariants of Motion of a Charged Particle in Slowly Varying

Magnetic Fields

We have seen that inhomogeneities in a magnetic field can make the equations of

motion difficult to solve unless we resort to perturbation methods, which can be

deployed under slow variations of the field. It was proved a long time ago, that certain

quantities called the Action Integrals, which are invariants of a system under

homogeneous and time independent fields, remain invariant to the first order in the

parameters of the slowly varying fields. This is known as the Principle of Adiabatic

Invariance of Action Integrals. Many of the characteristics of a system under slowly

varying fields can be discussed with the use of adiabatic invariants, without having to

solve the equations of motion. The principle of adiabatic invariance has found

applications in fields like plasma physics, accelerator physics and galactic astronomy.

The action integral J is defined as

∫= pdqJ , (3.27)

where p is the canonical momentum and q is the corresponding canonical conjugate

coordinate. We may recall, here, the definition of the canonical momentum:

i
i q

L
p

&∂
∂= , (3.28)

where L is the Lagrangian of the system.

Let us write the Lagrangian of a particle in a magnetic field in cylindrical

coordinates ( )zr ,,θ  as:

( )
c

QBr
zrr

m
L

22

2
2222 θθ

&
&&& +++= (3.29)

where ( )BB ,0,0=
ρ

 has been assumed. Observe that L is independent of θ  and therefore

θ is the cyclic coordinate. The corresponding canonical momentum
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is a constant of the motion.

Using the results obtained above, we find
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constant, (3.31)

according to the principle of adiabatic invariance. Thus, the Magnetic Momentum






= ⊥

B
mU

2

2
0µ  or the Magnetic Flux ( )2

BBR  are the Adiabatic Invariants of motion of

a particle in a slowly varying field.

3.10. Magnetic Mirror Revisited

Figure 3.2. A Magnetic Mirror.

We have seen that at any instant, the total energy of a particle moving in a magnetic

field remains constant. This is also true at any instantaneous position of the particle.

Thus,

( ) ( ) 22
0

2
0

22 UUUzUzU zz ≡+=+ ⊥⊥ . (3.31)

Since we now know that the magnetic moment µ is an adiabatic invariant, we have
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where 0⊥U  and 0B  are the values at 0=z . From the two last equations, we get

( ) ( ) 2
0

0

22
⊥−= U

B

zB
UzU z
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We observe that as ( )zBz  increases along the z direction, ( )zU z  decreases; the radius of

gyration 
( )
( ) 








∝ ⊥

zB

zU
R

z

B 2

2
2  decreases and the particle spirals in a continuously narrowing

helical path. It also means that there is a transfer of energy from one degree of freedom

to another – from parallel to perpendicular motion and vice-versa in a region of

decreasing ( )zBz . Thus, in a magnetic mirror a particle suffers reflection at the two

ends where ( )zBz  is a maximum and can remain trapped. The condition for trapping is

( ) 0≤zU z . Now ( ) 0=zU z  at ( ) ( )MMz zBzB =  where ( )MM zB  is the maximum value

of zB . At this point, we find

( ) 2
0
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2
⊥= U

B

zB
U MM , (3.34)

and the condition for trapping, therefore, becomes:
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or

M
M

sin
R

sin θθ 22 1 ≡≥ , (3.36)

where θ is the angle between the velocity U
ρ

 and the magnetic field B
ρ

 at 0=z  and




=
0B

BR M
M  is known as the Mirror Ratio. It is clear from the last equation that
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particles with Pitch Angles Mθθ >  remain trapped in the magnetic mirror executing

oscillations between the two regions of the highest magnetic fields. Whereas particles

with pitch angles Mθθ <  can leave the mirror. Thus, a magnetic mirror gives rise to a

velocity distribution of particles which has no particles with Mθθ < . Such a velocity

distribution is known as the Loss Cone Distribution. The trapped and the untrapped

particles are separated by a boundary at 


=
M

M Rsin 12θ . The trapping condition has

no dependence upon mass and the charge of a particle. But the presence of collisions

among particles can introduce charge and mass dependent differences.

3.11. Motion in Time Dependent Electric and Magnetic Fields

In such fields we can again use perturbation and adiabatic invariance techniques in

order to determine the motion of the charged particles. Here, we describe one example

where a charged particle is subjected to an intense electromagnetic radiation. The

particle experiences a force known as the Ponderomotive Force. The equation of motion

is:

( ) ( )
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where E
ρ

 and B
ρ

 are the fields of the electromagnetic radiation. We use perturbation

method as follows. We expand the position and velocity of the particle as well as the

electric field as:
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Κρρρρ
Κρρρρ
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(3.39)

and find the corresponding magnetic field.
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To the first order, we find:
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and to the second order, we get
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Taking the average over the fast oscillatory motion at frequency ω, we get
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where

( )0
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2

2

4
rE

m

Q

ω
ψ =

is known as the Ponderomotive Potential. It modifies the electron density and the

temperature of the plasma.

The ponderomotive force acts like a pressure force. Thus the charged particles move

from regions of high ponderomotive pressure to low ponderomotive pressure, creating a

local depletion or a cavity with electron plasma oscillations. A plasma can acquire novel

properties affecting the propagation of electromagnetic radiation.
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3.12. Fluid Drifts

We have determined drifts of single particles under different circumstances of

spatially and temporally varying electric and magnetic fields. In all cases, it was the

guiding center of a particle that moved with the drift speed. When we treat an entire

system of N particles, it acquires new characteristics like pressure, density and transport

parameters like thermal and electrical conductivity, as we have seen while deriving fluid

equations in Chapter two. There are, thus drifts which are specific to the fluid character

of a system and do not exist for single particles.

In the presence of a pressure gradient, a neutral fluid flows from a high pressure

region to a low pressure region. However, a new flow is generated when a pressure

gradient force acts upon a charged fluid in the presence of a magnetic field. To see this,

let us write the equation of motion of charged particles of species s (for example an

electron or an ion fluid):
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where only the diagonal part sp  of the stress tensor sΠ  has been retained. There are

two time scales in the last equation, the inertial time scale over which sU
ρ

 varies and the

cyclotron time scale ( ) 1−ΩB . For variations of sU
ρ

 much slower than ( ) 1−ΩB , we can put

the term 0≅
∂
∂

t

U s

ρ
. Taking the cross product of the last equation with the magnetic field

B
ρ

 gives:
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222
. (3.46)

You should be able to recognize the first and the third terms on the right-hand side

as the BE
ρρ

×  and Bg
ρρ×  drifts found earlier for a single particle. The middle term is the
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New Fluid Drift – The Bp
ρρ

×∇  Drift that has arisen due to the pressure gradient force in

a fluid.

The Bps

ρρ
×∇  drift depends on the charge sQ  and the number density sn  of particles

of species s and is known as the Diamagnetic Drift. This is akin to the BB
ρρ

×∇  drift

since, as we will show later, magnetic field has an associated pressure ( )π82B  with it.

The diamagnetic flow is depicted in figure (3.9) for n∇
ρ

 in the y direction and B
ρ

 in the z

direction. There are more electron orbits going up towards x in region A compared to

the number of electron orbits coming down in region A’. Why? So, there is a net

electron flux ⊥eeUn
ρ

 in the x direction. For the same reason, there is a net flux ⊥iiUn
ρ

 in

the (-x) direction.

We must appreciate the fact that particle drifts are the drifts of their guiding centers and

fluid drifts are the mass motion of the entire fluid.

We can also determine if there is any drift of a fluid in a direction parallel to the

magnetic field. We write the z component of the equation of motion:
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If we ignore the convective term, we see immediately that the fluid feels an acceleration

along the direction z of the magnetic field. Further, neglecting the inertial terms

altogether gives us a relation between the particle density, the gravitational potential gϕ

and the electric potential 



∂

∂−= zEz
ϕϕ :
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m
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Q
nzn ϕϕexp0 ,    (3.48)

were we have expressed TKnp Bss = , the isothermal equation of state. This equation is

the Boltzmann Relation for species s of particles and describes the redistribution of

particles resulting due to a balance of pressure gradients, gravitational and electric

fields. This distribution has important consequences for plasma phenomena as we will

find out in the following chapters.
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Chapter 4

MAGNETOHYDRODYNAMICS OF CONDUCTING FLUIDS

4.1. Electrically Conducting Fluids

Ionized gases or plasmas and liquid metals such as mercury or liquid sodium are

electrically conducting fluids. The outer core of the earth is believed to be molten

iron. Magnetospheres of planets and stars, tails of comets, extragalactic jets,

accretion disks and many other astrophysical objects are studied by treating them as

electrically conducting fluids. The study of magnetohydrodynamics (MHD) draws

from two well known branches of physics, electrodynamics and hydrodynamics,

along with a provision to include their coupling. The basic laws of electrodynamics

described in the form of Maxwell’s Equations supplemented by the generalized

Ohm’s law are sufficient for the purpose. The hydrodynamics of a fluid is expressed

in the form of conservation laws of mass, momentum and energy. These laws treat

the fluid as a continuum. The continuum description is valid if the mean free path of

the constituent particles is much shorter than the spatial scales on which the flow is

visualized. Thus, according to this criterion, any substance can be treated as a

continuum at some spatial scale. The magnetohydrodynamic phenomena are a

consequence of the mutual interaction of the fluid flow and the magnetic field. As is

well known, a conductor crossing magnetic field lines gives rise to an induced

electric field, which drives an electric current in the conducting fluid. The resulting

Lorentz force accelerates  the fluid across the magnetic field, which in turn creates

another induced electric field and currents which modify the initial magnetic field.

Thus the bulk motion of a conducting fluid and a magnetic field influence each

other and must be determined self-consistently.

The interaction of fluid flows and electromagnetic and gravitational fields

determines the configurational characteristics like loops, jets, tails and filaments

observed on almost all scales in the universe. The configuration of the radiation

emitting plasma causes variability in radiation over a host of spatial and temporal

scales. The stability or otherwise of the configuration determines the lifetime of the

radiating material in a particular mode. The magnetohydrodynamic instabilities help

the configuration to relax with an attendant release of kinetic, electromagnetic and

gravitational energy.
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One of the major results of magnetohydrodynamics is the ability of conducting

fluids to amplify magnetic fields, the amplification of magnetic fields being a

universal necessity. This aspect of  MHD reminds us that more often than not, fluids

are turbulent. Turbulent fluids only permit a statistical description. We will, defer

the discussion of this topic until the chapter on nonconducting fluids.

4.2. Validity of Magnetohydrodynamics

There is a well defined region of applicability of MHD. Generally MHD

addresses the macroscopic, bulk or large spatial scale and large time scale processes

occurring  in a conducting fluid. More specifically, for example, in an electron-

proton fluid, effects associated with fast variations of electric and magnetic fields

are neglected. One of these effects is the Space Charge Effect. Therefore:

(1) Space Charge Effects are Neglected in MHD. In an electron-proton fluid,

electrons and protons are accelerated by the applied electric and magnetic

fields and decelerated by the Coulomb collisions between them. Ohm’s law

EóJ
ρρ

=  is a consequence of the balance of these accelerating and retarding

forces. In MHD, the mean free path of the particles is very short or the

collision frequency is very high. On the other hand, the frequency of the

applied fields is low. Under these circumstances, there cannot result any

significant charge separation since the large number of collisions can

neutralize any charge separation produced by the applied fields. The applied

fields of low frequency may produce a small polarization or net charge

density, which is neglected in MHD. The Poisson Equation is therefore

never used in MHD to determine electric fields as there is no net charge

density. The electric fields are entirely produced due to time varying

magnetic fields or charge distributions external to the fluid.

(2) Again, due to the slow time variation of electric and magnetic fields, the

Displacement Current term in the modified Ampere’s law is Neglected.

(3) The collision frequency being the highest frequency in MHD phenomena,

Maxwellization of velocities of particles is ensured. Please recall that we

derived the single-fluid and the two-fluid equations by taking the moments

of the Boltzmannn equation. In this process, several times, we had to invoke
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the velocity dependence of the distribution function which would reduce the

surface integrals to zero. And we found that the Maxwellian distribution

function of velocities fitted the bill very well. Collisions thermalize electrons

and protons to a common temperature. Thus, a Fluid is Characterized by a

Single Temperature.

4.3. Equations of Magnetohydrodynamics

The motion of a conducting fluid in a magnetic field is described by the usual

hydrodynamic variables: mass density, velocity and pressure; Ampere’s law without

the displacement current; Faraday’s induction law; and the generalized Ohm’s law.

We have derived the single fluid equations in Chapter 3. We use them here to study

MHD phenomena. The MHD equations for a fluid consisting of electrons and

protons are:
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where the viscosity coefficients ξ = ξe + ξi ,µ = µe + µi  and pressure p = pe + pi .

The generalized Ohm’s law (4.3) has also been written under the assumption

(me/mi) ! 0. By adding the energy equation for each species and expressing the

(4.1)

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)
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sum in terms of the single fluid variables U
ρ

 and J
ρ

, the energy equation for an

electron-proton fluid can be determined. This is rather a long algebraic exercise. We

will here give a simple form of the energy equation with the inclusion of Joule

heating rate in the presence of current density J
ρ

and its associated magnetic field

B
ρ

. The rate of production of heat per unit fluid volume is given by:

2
2

2
2 )(

)4(

1
.

→→→→
×∇== B

c
JEJ

σπσ

The rate of resulting rise in temperature,∆T, is given by
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The energy equation,therefore, in the absence of viscous effects, becomes:
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Equation (4.9) does not include a contribution from the collisional term. This term

tends to equalize the temperatures of the various species. Therefore under the MHD

approximation, where we assume that the fluid is characterized by a single

temperature, the collisional term can be neglected. We will study

magnetohydrodynamics of conducting fluids by using Equations (4.1), (4.3), (4.4),

(4.5), (4.6), (4.7), (4.8) and (4.9).

4.4. Ideal Conducting Fluids

An ideal conducting fluid is one with infinite conductivity σ, or zero electrical

resistivity η, and zero viscosity coefficients µ and ξ. In the generalized Ohm’s law,

Equation (4.3), the Hall term BJ
ρρ

× is usually smaller than BU
ρρ

× term and if

additionally the pressure forces are zero, the condition of infinite conductivity

implies that

0 =×+
→→

→

c

BU
 E

(4.9)

(4.8)

(4.10)
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Faraday’s induction law Equation (4.7) becomes:
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→
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∂
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B   U 
 t

B 

It can be easily shown that Equation (4.11) is a statement of conservation of

magnetic flux, provided that the area enclosing the flux moves with the fluid with

velocity U
ρ

. The magnetic flux ϕB can change due to (1) a change in magnetic

induction B
ρ

and/ or (2) a change in the area enclosing the flux as a result of the

moving boundaries of the area. Thus:
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Figure 4.1. Conservation of Magnetic Flux ϕB in Moving Ideal Fluid.
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Using Stokes theorem and a well known vector identity we find that:

0
 t 

 B =
d

 d ϕ

Thus the magnetic flux ϕB remains constant as long as the surface enclosing it

moves with the fluid velocity U
ρ

. This characteristic of the magnetic induction B
ρ

in

a fluid has given rise to the term Frozen-in Fields, i.e., an ideal fluid and the

magnetic field lines move together with a common velocity. We can easily see that

this will not be true for finite conductivity, for, non-ideal fluids suffer viscous

dissipation themselves, as well as cause magnetic field dissipation. From Equation

(4.10), we see that this common velocity of the field and the fluid is nothing but the

familiar B  E 
ρρ

×  velocity 
0E

U ρ
ρ

. The motion of the fluid parallel to the magnetic field

is governed by non-magnetic forces. The case of infinite conductivity is not just a

mathematical curiosity. We have seen earlier how induced electric fields generated

by a rotating neutron star produce a plasma around the star. We can estimate that the

electrical resistivity of a fully ionized plasma is given by:

sec  10 2/37 −−≅ Tη

where T is the temperature of the plasma in Kelvin degrees. Thus for typical

temperatures of the order of 108 - 1010 K, η ≅  10-19  - 10-22 sec. Do you know that

the resistivity of copper is ~ 10-18 sec ? Many properties of plasmas around neutron

stars are studied using ideal magnetohydrodynamics. There are numerous examples

of nearly ideal conducting fluids in the universe. Of course, large conductivity or

small resistivity is not always an advantage. A phenomenon like solar flares , where

large amounts  of energy are released in a matter of few minutes, could not occur in

ideal conducting fluid. Several mechanisms to reduce the conductivity and enhance

the joule dissipation rate or ohmic heating have been investigated.

(4.12)

(4.13)
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4.5. Pragmatic Conducting Fluids

Yes, there are fluids with large electrical conductivities and there are fluids with

small conductivities but there are no fluids with infinite conductivities; the large and

small are decided by the phenomena we choose to study. Let us see how a normal

fluid with finite conductivity behaves. Again neglecting the viscous forces, and Hall

current, we substitute for J
ρ

from the generalized Ohm’s law in the momentum

Equation (4.2) to get
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The solution of Equation ( 4.21 ) is found to be
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That is, if there were an initial perpendicular velocity  0⊥
→
U in addition to the 

→→
× BE 

velocity, it would fall exponentially with time. The e fall time is

2

2
m

B 

c  
 

σ
ρ=et

and ultimately only the 
→→

× BE  motion will survive. The magnetic field retards any

attempts of the fluid to cross it and offers a kind of magnetic viscosity.

(4.14)

(4.15)

(4.16)
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What happens to the magnetic field in a non-ideal conducting fluid ? Let us

substitute the generalized Ohm’s law without the viscous and pressure forces and

Hall current into Faraday’s induction law. We find

→→→→
→

∇+××∇=
∂
∂

B
c

BU
B 2

2

 
 4

)  (  
 t σπ

We have seen the effect of the first term, which established the constancy of

magnetic flux in a moving ideally conducting fluid. In order to appreciate the effect

of finite conductivity, let us neglect the first term. Now, Equation (4.17) assumes

the form of a diffusion equation:
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cB 2

2

 
 4

  
 t σπ

This equation can be solved by the method of separation of variables. By comparing

Equation (4.18) with the momentum Equation (4.2), we see that the quantity

(c2/4πσ) plays the same role for magnetic field as the kinematic viscosity ν = µ/ρm

plays for the fluid motion. Therefore we can now define the magnetic viscosity νm

as

σπ
ν

 4
 

2c
m =

From the solution of Equation (4.18), we find that at any given spatial position, the

magnetic field decays exponentially with time as







−=

dt

t
BB  exp0

where the e-fall time td is given by

(4.17)

(4.18)

(4.19)

(4.20)
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for a typical length scale L of the spatial variation of B. Thus, for σ ! ∞, νm ! 0

and td !∞, i.e., there is no decay, a result we have already seen in the conservation

of magnetic flux. The relative importance of the two terms in the evolution of

magnetic field (Equation 4.17) is decided by their ratio Rm given by

( )
mm

m
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L

B
L

UB
R

νν
=








=

2

where we have used dimensional analysis to arrive at Equation (4.22). For small

values of νm or large values of the ratio Rm, called the Magnetic Reynolds

Number, the magnetic field suffers very little diffusion and is simply carried away

by the fluid. We can also define the Kinetic Reynolds Number Rk as the ratio of

the convective term U)  .U (
ρρρ

∇  and the diffusion term U
ρ

2   ∇ν  to find

ν
UL

Rk =

Ideal conducting fluids have infinitely large values of Rm and Rk. Astrophysical

conducting fluids often satisfy the conditions Rm >>1 and Rk >>1, because of their

large characteristic spatial scales.

4.6- Conducting Fluid in Equilibrium

We have seen that a conducting fluid experiences inertial, gravitational, pressure

gradient, electromagnetic and viscous forces. A fluid can attain a state of

equilibrium if the net force on it vanishes. In the equilibrium state, all physical

quantities, including mass density, fluid velocity, pressure, current density and

magnetic field are independent of time. From the momentum Equation (4.2), we

study the various equilibria by neglecting viscous forces. The equilibrium condition

is:

(4.21)

(4.22)

(4.23)
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4.7. Hydrostatic Equilibrium

Perhaps the most familiar case is that of Hydrostatic Equilibrium for which

0=U
ρ

 and 0=× BJ
ρρ

and the pressure gradient force balances the gravitational force,

so that

gmñ       p ϕ
→→
∇−=∇

This equation is of great importance for many astrophysical situations such as stars

or galactic clouds. The gravitational potential ϕg for an extended mass distribution is

given by

r

rGM
g

)(−=ϕ

where M(r) is the spherically distributed mass producing the gravitational force on a

fluid element of mass density ρm. Equation (4.25) can be recast as:
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We can now take a general form of the equation of state
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(4.24)

(4.25)

(4.26)

(4.27)

(4.28)
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where Km and n are constants and n is known as the Polytropic Index. The case

n=∞ represents a constant temperature fluid and this equilibrium condition is called

the Isothermal Sphere. Other values of n give radial variations of temperature. After

substituting for pressure from Equation (4.28), Equation (4.27) is studied by

recasting it in dimensionless variables defined as:

n
m λθρ =

and

βξ=r

we get
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Equation (4.30) is known as the Lane-Emden Equation. Here λ is the central

density so that θ = 1 for ξ = 0 and ( dϕg/dr )=0 at r = 0 or θ = 1. The constant

2)31( rmsm UK =  for an isotropic velocity dispersion 2
rmsU . Equation (4.30) can be

solved for different values of n. For n = 0, we find:

6
1

2ξ−=è

from which we learn that the boundary of zero density lies at 6=ξ , ρm =λ and

p=Kmρm = constant. This equilibrium consists of a sphere of constant density λ and

radius equal to 
21

4
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(4.29)

(4.30)

(4. 31)
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Traditionally, the study of the equilibrium of self-gravitating systems is not

included in a section on MHD equilibrium, since these systems are believed to be

mostly neutral hydrogen. However, we see that even a conducting fluid can have

these mass configurations, provided the Lorentz force 0=× BJ
ρρ

, which implies that

the magnetic field must be given by:

0)  ( =××∇
→→→
BB

 )(  
→→→→

=×∇ BrB α

and 0) r (. =∇
→→→

αB . Why ?

Such a magnetic field is known as a Force-Free Magnetic Field for the obvious

reason that it exerts no force on a fluid. So, we reach the conclusion that a self-

gravitating conducting fluid in a force-free magnetic field can attain all the

configurations that a self-gravitating non-conducting fluid can!

Another type of hydrostatic equilibrium results when a fluid is in a gravitational

field of another object, e.g., the earth’s atmosphere in the earth’s gravitational field.

In such a case, one writes the gravitational potential ϕg as that due to a point mass

M situated at the center of the object of radius R. The potential at any point at a

distance r above the surface of the object is then

)  ( rR

GM
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−=ϕ

and the hydrostatic balance condition gives
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(4.32)

(4.33)

(4.34)
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4.8. Magnetohydrostatic Equilibrium

We now retain a non-zero Lorentz force, but investigate a static equilibrium, so

that 0=U
ρ

, and Equation (4.24) then gives:
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We see that the Lorentz force contributes to pressure balance in two ways: (1)

through (B2/ 8π ) which acts like pressure and is known as magnetic hydrostatic

pressure and (2) through B) .B (
ρρρ

∇ which acts like tension along the magnetic field

lines. If, for a certain magnetic field configuration, the magnetic tension term

B) .B (
ρρρ

∇  vanishes (when B does not vary in its own direction) and if the

gravitational effects can be ignored, we see that Equation (4.35) tells us that the sum

of mechanical pressure p and the magnetic pressure B2/ 8π must be a constant, i.e.,

space independent, or,

constant
8

2

=+
π

B
p

Equation (4.36) shows us a way of confining a conducting fluid by a magnetic field,

which acts like a container for the fluid. A low pressure region should have a high

magnetic pressure and vice-versa. The predominance of mechanical pressure over

the magnetic pressure can be expressed by a ratio, called the plasma βp, defined as:

2
8
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p
p πβ =

(4.36)

(4.36)

(4.37)
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A fluid is said to be confined by a magnetic field if βp < 1. A variety of loop like

structures seen in the solar corona have βp < 1 , whereas in the solar photosphere βp

> 1.

In cylindrical geometry, for example, an azimuthal current density Jθ crossed

with an axial magnetic field Bz can support a radial pressure gradient p’ . Such a

configuration is known as the θθθθ Pinch ( Figure 4.2 ); the

Figure 4.2. The θ Pinch

Applied magnetic field limits or pinches the radius of the fluid column. We can estimate

the current required to confine a fluid from the following considerations:
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where ⊥
→
J  is called the diamagnetic current, the same diamagnetic current that we

discussed in Chapter 3, being associated with the diamagnetic drifts of charged

particles. In a direction parallel to the magnetic field, we find
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(4.39)
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i.e., the pressure is constant along the magnetic field.

Another equilibrium called the Z Pinch (Figure 4.3) obtains when

Figure 4.3. The Z Pinch

an axial current density Jz, produces an azimuthal magnetic field Bθ to support a radial

pressure gradient p’. This can be seen from the equilibrium condition, Equation (4.35),

with ϕg = 0:
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Using the boundary conditions p = 0  at r = R, the external boundary of the fluid and p =

po at r = 0, we find
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Thus, for a given central pressure po, the radius R of the fluid is determined from

2
z

2
2
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π
cp

R o=

Bθ

P’

Jz ZR

(4.40)

(4.41)

(4.42)

(4.43)
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which shows the pinching effect produced by the current density Jz: the higher the

current density Jz, the smaller the radius R.

Figure 4.4. Solar Coronal Loops ( Bray et. al. 1991 )

The pressure balance condition Equation ( 4.46 ) also ensures that a fluid of pressure p1

with magnetic field B1 can be in equilibrium with a fluid of pressure p2 without

magnetic field, provided

2

2
1

1 8
p

B
p =+

π

which, for an isothermal equation of state states that the density ρ2 of the magnetic field-

free fluid must be larger than the density ρ1 of the magnetized fluid. Such magnetized

fluid elements being lighter than the surrounding heavier fluid, experience buoyant

forces in a gravitational field and rise up. The appearance of discrete and strongly

magnetized structures on the solar surface is attributed to this process. A high density

fluid overlying a low density fluid in a gravitational field pointing downwards, can be in

equilibrium, but it is an unstable equilibrium. It is the same mechanism due to which we

can invert a glass full of water (I haven’t tried with wine!) without the water flowing

down, but how well we know that a slight carelessness or an air current can destroy the

equilibrium.

(4.44)
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4.9. Magnetohydrodynamic Equilibrium

We will now discuss MHD equilibrium including flow, i.e., 0=
∂

∂
 t

U 
ρ

 but

0≠U
ρ

.Neglecting viscous effects, the equilibrium condition becomes:

gmm ñ    
c

BJ
    p U)  .U (ñ ϕ

→
→→

→→→→
∇−×+∇−=



 ∇

The inertial force can be balanced either singly or jointly by the pressure gradient, the

Lorentz force and the gravitational force. Either in the absence of magnetic field or for a

force free magnetic field, the equilibrium (4.45) can be expressed as

)  (
2

2 →→→
→

→
×∇×=
















++∇ UUh

U
gϕ

where we have written

hp m

→→
∇=∇ ρ

For adiabatic variations of pressure and density h is the specific enthalpy since from

thermodynamics

dpTdsdh
mρ

1+=

and the change in entropy, ds = 0 for adiabatic changes. The right hand side of Equation

(4.46) vanishes either for Irrotational Flows, i.e., when 0 =×∇ U
ρρ

, or for Aligned

Helical Flows, i.e., when U
ρ

 is parallel to ωρ
ρρ

=×∇ U ,where ωρ  is known as the vorticity

and ( ωρ
ρ

⋅U ) is called the helicity. Thus, for irrotational or fully helical flows, we get the

well known Bernoulli’s relation:

0
2

2

=++ gh
U ϕ

(4.45)

(4.46)

(4.47)

(4.48)

(4.49)
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We will say more on this equilibrium in a later chapter on Non-conducting Fluids.

Aligned helical flows, similarly to force free magnetic fields, satisfy the following

equation

   
→→→

=×∇ VV vα

Such flows are called Beltrami Flows. An equilibrium in which the pressure

gradients are balanced by a Beltrami flow has been shown to offer a good description of

a class of solar coronal loops, since gravitational effects are negligible and magnetic

fields are believed to be nearly force-free in solar corona (Krishan 1996).

We can find another equilibrium, if we rewrite Equation ( 4.55 ) as:





 ∇−∇=








++∇−

→→→→→→→
U)  .U (  4B) .B (

4

1
- 

8

2

mgm

B
p ρπ

ππ
ϕρ

This shows that

tcons
B

p gm tan
8

2

=++
π

ϕρ

If

( ) A

mñ

→
→

→
±≡±= V

  ð4

B
U 1/2

A

→
V  is known as the Alfven velocity and the equilibrium, which is nothing but the

magnetostatic equilibrium for a tension free magnetic field, corresponds to what is

known as the Alfvenic State. The alfvenic state is one in which a conducting fluid flows

parallel or anti-parallel to the magnetic field with the Alfven speed. We shall learn more

about the Alfven velocity in a later section.

(4.50)

(4.51)

(4.52)
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4.10. Magnetohydrodynamic Waves

In order to learn about a system, we must disturb or nudge it and watch how it

responds.For example, when we displace a pendulum, a little, from its equilibrium

vertical position and release it, the pendulum begins to oscillate. For small

displacements the oscillations are harmonic. The pendulum will oscillate forever, if

there are no retarding forces due to the surrounding environment. For large

displacements, the oscillations are nonlinear, i.e., the amplitude of the oscillations is no

longer a constant. The period of  oscillations gives us a relation between the

characteristics of the system; here, for example, the length of the pendulum, and the

forces trying to restore equilibrium, here, for example, the gravitational force. In the

same way, when a conducting fluid is disturbed form its equilibrium configuration we

see it set into oscillations. The period of the oscillations is related to the characteristics

of the conducting fluid such as mass density, pressure, temperature and the restoring

forces, which may include pressure gradient, Lorentz and gravitational. These

oscillations, also called Waves since they propagate in the fluid, have a great diagnostic

potential. We can estimate the fluid properties through the detection of these waves.

Further, in the presence of dissipative effects like viscous and resistive forces, the

amplitude of these waves decreases with time. The energy carried by waves is deposited

in the fluid as a result of which it may heat up. Magnetohydrodynamic waves have been

considered very favourably for heating the solar corona, which at a temperature of ~ 106

K, lies outside the solar photosphere with temperature ~ 6000 K, and therefore needs

sources of heat and mechanisms to maintain its temperature.

In the next section, we shall study different types of waves that a conducting fluid

exhibits, when disturbed by a small amount from its equilibrium. These waves are

called linear waves. We can introduce a small disturbance in the various parameters

singly or jointly, depending upon our interest. We may wish to know the response of the

conducting fluid to a perturbation in its, say, density. A change in density will produce a

change in the gravitational force, a change in pressure, a change in the fluid velocity and

a change in magnetic field such that the conservation laws of mass, momentum and

energy as well as the Maxwell equations always remain satisfied. In order to see the

restoring action of one particular force, we may ignore other forces. Of course, if we

include all the forces the problem becomes quite complex, though not intractable.

Anyway, it helps if we have some idea of the relative importance of the various forces.

In the study of linear waves, we get a dispersion relation which contains everything on
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propagation characteristics: the phase and group velocities as well as the polarization

characteristics. The only property we cannot determine is the amplitude of the wave, for

which we must learn to do nonlinear studies. However, for the present, we limit

ourselves to linear studies.

4.11. Dispersion Relation of Ideal MHD Waves

Let the equilibrium state of an ideal MHD fluid be described by the space and the

time independent mass density ρo ( for the rest of this chapter, the subscript m will be

dropped ), the fluid velocity 0=oU
ρ

, the uniform and time independent magnetic field

Bo, the uniform pressure po , the current density 0=oJ
ρ

and the inductive electric field

0=oE
ρ

. We now perturb this equilibrium such that

1ρρρ += o

1

→→
= UU

1

→→→
+= BBB o

1ppp o +=

1

→→
= EE

1

→→
= JJ

where all  the quantities with subscript 1 are much smaller than the corresponding

equilibrium values (except 1E
ρ

, 1J
ρ

 and 1U
ρ

). The linearized ideal MHD equations of mass

and momentum conservation, neglecting shear and, dissipative effects, the linearized

generalized Ohm’s law, and the Maxwell equations are:

0] .[ 1
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(4.53)
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We still have to use the energy conservation law to relate perturbations in density ρ1 to

perturbations in pressure p1. We recall that p is the sum of pressures due to each species

of fluid, i.e.

∑=
s

spp

For an adiabatic energy equation:

γρ ∝p

we find, to the first order,

s
s os

osp
pp 11 ρ

ρ
γ

→→→
∇=∇=∇ ∑

we then assume that the fractional change in density for all species is the same, i.e.:

oos

s

ρ
ρ

ρ
ρ 11 =

so that

1
2

1
1

1

  
   ρρ

ρ
γ

ρ
ργ

→→
→

→
∇=∇=∇=∇ ∑ s

o

o

s o
os C

p
pp

where 2
sC  is the adiabatic sound speed. We can use the general relation,

ρ
→→
∇=∇   2

sCp

(4.54)

(4.55)

(4.56)

(4.57)

(4.58)

(4.59)

(4.60)
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for adiabatic or isothermal cases and identity Cs with the corresponding sound speed.

What remains to be done is to eliminate all the first order quantities except one among

Equations (4.54) and (4.59). This is easy as we have six first order quantities (ρ1, 1U
ρ

,p1,

1E
ρ

, 1B
ρ

, 1J
ρ

) and six linearized equations. The elimination procedure becomes simple

when we assume a plane wave type variation for all the first order quantities. We write:









−=

→→→→→
tir.kiUtU  exp')  ,r ( 11 ω

and similarly for the other five quantities. 1U ′
ρ

 is the space and time independent

amplitude of the oscillating velocity )  ,r (1 tU
ρρ

. On the completion of the elimination

exercise, we find an equation of the form:

D( First order quantity ) = 0

Since the first order quantity ≠ 0, we obtain the dispersion relation D = 0, which is a

relation between the wave frequency ω and the wave vector k
ρ

. For the present case, we

find:

-   )'.( ).( - )'.( )  V  C (  ' ).( 11
2
A

2
s1

22
→→→→→→→→→→









++








+− kUVVkUkUVk AAAω

0 )'.( ).( - 1 =
→→→→→

AA VUkVk

Here, 
 ) 4 ( 1/2

oπρ
o

A
B

V

→
→

=  is the Alfven velocity. We can find different wave motions

corresponding to the roots of the dispersion relation.

Let θ  be the angle between the zeroth order magnetic field oB
ρ

( which we have

taken to be in the z direction ), and the wave vector k
ρ

, so that kx =k sinθ , kz = k cosθ

and ky = 0.We find that with this choice the motion in the y direction is decoupled from

the motion in the ( x , z ) plane. And we get a root

(4.61)

(4.62)

(4.63)
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θω 2222 cosAVk=

or

→→
±=±= AAz VkVk . ω

for 01 ≠′yU . Equation (4.64) is the dispersion relation of the Alfven Wave propagating

at an angle θ  to the zeroth order magnetic field oB
ρ

. For this wave

0 ,0. 11 ==′∇
→→

ρU

i.e., this wave does not produce any density and therefore pressure changes. Such a

wave is called Transverse and Non-compressional. The phase velocity Vph of the Alfven

wave is

θω
cos Aph V

k
V ±==

and the group velocity θω cos   Ag VkddV ±== . There is no Alfven wave for θ = π/ 2.

The Alfven wave has the maximum phase and group velocity parallel and antiparallel to

the field oB
ρ

. The polarization of the Alfven wave, i.e., the relative orientations of the

electric field 1E
ρ

, the magnetic field 1B
ρ

, can be determined from Equations (4.54). We

find 1B
ρ

 is in the y direction and 1E
ρ

 lies in the ( x, z ) plane, the plane containing the

wave vector k
ρ

and the magnetic field oB
ρ

, as shown in Figure (4.5). It is clear that in the

linear study of waves, we cannot estimate the absolute value of the

amplitudes, 1U
ρ

, 1E
ρ

, 1B
ρ

 etc. But we can estimate their relative values. Thus we find that

the electric energy density π82
1E  , the magnetic energy density π82

1B  and the kinetic

energy density 22
1Uoρ  are in the ratio 1: 

2

2

AV

c
: 

2

2

AV

c
.

(4.64)

(4.65)

(4.66)
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Figure 4.5. The Alfven Wave

The electric energy density is much smaller than the kinetic and magnetic energy

densities. Further the kinetic and magnetic energy densities are equal, this is again a

reminder of the field frozen to the fluid in the absence of dissipative effects.

The physical mechanism underlying the excitation of Alfven waves is identical to

that of the transverse oscillations of a plucked stretched string. A wavy disturbance 1B
ρ

curves the magnetic field lines, but the tension in the curved field tries to straighten the

field lines, and the Alfven oscillations set in.

Thus, we find that the velocity 1U ′ of the conducting fluid is given by

2

1
1

o

o

B

B  Ec 
U

→→
→ ×=′

This, combined with Faraday’s law of induction in a moving medium, again leads to the

conclusion that the fluid and the field remain together until dissipation parts them.

We find two more waves with dispersion relations:

[ ] 21222222
2

22
2

2 cos 4
22

/
ASSA

F
SA

F
F èVC ) C   ( V

k
 ) C  ( V

k
ù −+++=

and

[ ] 21222222
2

22
2

2 cos 4
22

/
ASSA

S
SA

S
S èVC ) C   ( V

k
 ) C  ( V

k
ù −+−+=

(4.67)

(4.68)

(4.69)



91

Here, the wave with frequency ωF and wave vector kF is known as the Fast

Magnetosonic Wave and the wave (ωS , kS ) is known as the Slow Magnetosonic

Wave. The fast and slow refer to the phase velocities of these waves. We notice that fast

wave has a phase velocity which is larger than both the Alfven speed VA and sound

speed CS . We can determine other properties of these waves now. First, since

0   '. 1 ≠
→→
Uk F

0   '. 1 ≠
→→
Uk S

Both these waves affect density variations, i.e., ρ1 ≠ 0. The restoring force for both the

waves is provided jointly by the gradient of kinetic and magnetic pressures; that is why

they are called Magnetosonic waves. These waves are neither transverse nor

longitudinal. They have mixed polarizations. For θ = π/ 2, ωS = 0, i.e., the slow wave

does not exist, whereas the fast wave has the maximum frequency and phase speed and

becomes purely longitudinal, i.e., 1U // 
ρρ

Fk . In this case the directions of the various

fields are oB
ρ

=Bz , 1B
ρ

=B1z , 1E
ρ

= E1y , 1U
ρ

= U1x  and  k
ρ

= kx . The fast wave produces

density as well as magnetic field condensations and rarefactions as shown in Figure (

4.6 ). For θ = 0, we find that there are two types of waves: (i) a transverse wave with

AVk.±=ω , 01 =⋅Uk
ρρ

; this is the Alfven wave, we have already studied and

Figure 4. 6. Magnetosonic Waves Produce Condensations and Rarefactions.

(4.70)
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(ii) a longitudinal wave with SCk.±=ω ,
→→

1 // Uk ; this is the ordinary sound wave. Thus,

we see that only for oblique propagation, i.e. at an angle to the ambient magnetic field

oB
ρ

, do all three waves, the Alfven and fast and slow magnetosonic waves exist.

The fluid and the magnetic field, in reality, do not keep oscillating forever, for there

are resistive forces: the fluid is viscous and the magnetic field decays due to the

electrical resistivity of the fluid. The magnetohydrodynamic waves suffer damping due

to finite viscosity and electrical resistivity. We can study the MHD waves in non-ideal

fluids by including the viscous force in the momentum equation, and the resistivity term

J
ρ

η  in Ohm’s law. We write the linearized momentum equation  sans gravitational force

as:

 ) U. ( )ì   
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Using Ohm’s law with conductivity σ, the linearized Faraday’s law becomes

→→→→
→
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 t
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mo ν

We can carry out the elimination procedure as before and determine the dispersion

relations of the three MHD waves. For Alfven waves, 0U. 1 =∇
ρ

 and the dispersion

relation including dissipative effects becomes for θ = 0;
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This equation has complex roots. Treating the dissipative effects as small, the roots of

equation (4.73) are:
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(4.71)
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Recalling that all the first order quantities have a time dependence te  ù i− , we see that

dissipative effects produce an exponential damping of the wave amplitudes ( 1U
ρ

, 1B
ρ

,

1E
ρ

). The damping rate ωIA equal to the imaginary part of the complex frequency ω, is :
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We see that high frequency or short wavelength waves suffer more damping than do the

low frequency waves, for constant values of the magnetic field oB
ρ

 and the mass density

ρo. The wave intensity decays to e-1 of its initial value in a time ( 2 ωIA )
-1 , which is the

same as the diffusion time td of the magnetic field oB
ρ

, in the absence of the fluid

viscosity. The distance Ld traveled by the wave in the time ( 2 ωIA )
-1 is:
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So, the high frequency waves have short damping lengths. Similarly, we can determine

the damping rates for other waves too.

The damping rate of the fast MHD mode propagating perpendicular to the magnetic

field oB
ρ

( θ = π/ 2 ) is found to be:
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ρ
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 )  (2 22

22

with the real part

)  ( 2222
SARF CVk +≅ω

in which corrections due to the dissipative effects have been ignored. Again, the

damping rate increases with frequency. The fast wave, being compressional, has an

additional contribution to its damping rate from compressibility of the fluid.

(4.75)

(4.76)

(4.77)



94

It is quite easy to excite MHD waves. All it takes is to shake the magnetized plasma

like one  shakes a string. One of the most favourable astrophysical sites for excitation of

MHD waves is the solar atmosphere. The outer layers of the solar atmosphere- the

chromosphere and the corona- are at a much higher temperature than is the photosphere

to which we owe our existence. Further, the chromosphere and the corona are highly

inhomogeneous media supporting a variety of filamentary structures in the form of

arches and loops Figure (4.4). A coronal loop is a bipolar structure whose foot points

are anchored in the poles of the subphotospheric magnetic field. The foot points

undergo a continuous turning and twisting due to convective motions in the

subphotospheric layers of the sun. This turning and twisting is enough to excite MHD

waves in coronal loops. These waves then dissipate and spend their energy in heating

the corona. Typically, waves of periods of a few seconds are believed to be excited in

the corona. These waves can be detected through the periodic variations in the

intensities of the continuum and line radiation as well as through the Doppler shifts of

the line radiation. The Alfven waves, which are purely velocity and magnetic field

oscillations without any accompanying mass density oscillations, do not produce any

changes in the intensity and are observed through the Doppler effect. The magnetosonic

waves, which are compressional, show up both as intensity and velocity oscillations.

Although the MHD waves have received a lot of attention from theoreticians for a long

time, their unambiguous detection in the solar atmosphere is still awaited.

At high frequency, the displacement current begins to contribute and we must use the

Ampere law as modified by Maxwell.

t
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c
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c
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The inclusion of the displacement current modifies the dispersion relation of the Alfven

wave to

(4.78)

(4.79)
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In low density, astrophysical plasmas, the Alfven speed VA can approach the speed of

light c. We can also define the refractive index nR for Alfven waves as:
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A conducting fluid has an index of refraction nR for electromagnetic waves of frequency

smaller than the electron-ion collision frequency when charge separation effects are

negligible.

4.12. Magnetohydrodynamic Instabilities

We have seen one type of response of a system to a small stimulus. The system

begins to oscillate about its equilibrium and never ventures too far from it. It could

happen, however, that the restoring forces are not strong enough to bring the system

back towards its equilibrium. On the other hand, there are forces which drive the

system farther and farther from its equilibrium. This is a circumstance of an

instability. The energy for driving a system unstable could be in any of the spatial

and/or temporal gradients of the fluid characteristics such as magnetic field, current

density, pressure, mass density, gravity or rotation of a magnetofluid. Thus the

inhomogeneous distribution of fluid parameters can lead to macroscopic or MHD

Instabilities. The system, in response, reconfigures itself to new equilibrium by

shedding the excess energy stored in inhomogeneities. There are two methods for

exploring whether a system is stable or unstable.

(i) The Normal Mode Method, where we perturb the system by a small extent,

linearize the mass, momentum and energy equations, find a plane wave solution for

them and explore conditions for complex roots of the frequency; since the complex

roots occur in pairs, one of the roots corresponds to the exponential growth with ime

(4.80)

(4.81)
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of the amplitude of the perturbation and we have a case of an instability. It is of the

utmost importance to identify the source of energy responsible for the excitation of

the instability.

(ii) The Energy Principle, where we perturb the system by a small extent,

linearize the relevant equations, calculate the potential energy of the perturbed

system; if the potential energy of the perturbed system is larger than that of the

unperturbed system, it is said to be stable against this perturbation and vice-versa,

since a system always likes to acquire a state o minimum potential energy. The

change in the potential energy can then be related to the frequency of oscillations of

the perturbed quantities. The normal mode method is used when we wish to include

more complex physical processes like the finite Larmor radius effect or the Hall

current, whereas the energy principle is used when the complexity lies in the

geometrical configuration of fluids.

4.13. The Rayleigh-Taylor Instabilities

The simplest example of the class of Rayleigh-Taylor (R-T) instabilities is the

inverted glass full of water where the heavy fluid, water, is supported by the light

fluid, air, at least for a few uncertain moments. This is a case of an unstable

equilibrium since it is easily lost by a small air current. Thus, a fluid with an

inverted density gradient, i.e., where the mass density increases in the direction of

decreasing gravity ( g
ρ

) is Rayleigh-Taylor unstable.

The frequency ω becomes purely imaginary if the density scale

height
dr

d
H o

o

ρ
ρρ
1= is smaller than the pressure scale height

dr

dp

p
H o

o
P

1
 =γ . The

perturbations therefore grow with time as exp[ ωI t ]. The imaginary part ωI of the

frequency ω is called the Growth Rate of the instability. This is a case of Rayleigh-

Taylor Instability for compressible perturbations for which 0. 1 ≠∇ U
ρ

. Expressing in

terms of the entropy γρo

op
s ≡ , the growth rate ωI becomes

2/1
1

ln 












=

sdr

dg
I γ

ω (4.82)
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and the Instability is driven for negative entropy gradient ( ds/ dr ) < 0 even when

(dρo/dr) < 0.

For γ Hp >> Hρ, i.e., for the incompressible case for which 0. 1 =∇ U
ρρ

, we get

ρ
ω

H

g
I =2

We again have a R-T Instability if the density scale height Hρ is positive, i.e., when

the density increases in a direction opposite to that of the acceleration due to

gravity. The growth rate is, now, ( ) 2/1

ρHg .

For an isothermal equation of state, γ = 1 and MTkp oBoo ρ=  . The scale height

HT for temperature is related to Hρ and H p as

Tp HHH

111 −=
ρ

and we find

T
I H

g−=2ω

We, again, have R-T instability for HT < 0,i.e., if the temperature decreases in a

direction opposite to g
ρ

 . The growth rate is, now, ( ) 2/1
THg .

In conclusion, in the absence of the Lorentz force, either due to the absence of

the magnetic field or due to the magnetic field being force free, the Rayleigh-Taylor

instability is excited (i) when a heavy fluid lies at the top of a light fluid, (ii) when a

cold fluid lies at the top of a hot fluid and (iii) when the upper fluid has lower

entropy than the lower fluid. The result of R-T instability is the mixing of either

different fluids or different parts of a fluid. The internal gravity waves in their stable

and unstable form (R-T instability) are believed to play an important role in the

mixing of elements and distribution of angular momentum in the radiative zones of

stars. The passage of a shock wave during a supernova explosion also creates

circumstances of R-T instability with a typical exponentiation time of ~104 sec.

(4.83)

(4.84)

(4.85)
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4.14. Rayleigh-Taylor Instability in Magnetized Fluid

Astrophysical fluids are, more often than not, magnetized. We study the effect

of magnetic field on the growth rate of the R-T instability for two cases: (i) when

the magnetic field B
ρ

is parallel to the acceleration due to gravity g
ρ

 and (ii) when

B
ρ

is perpendicular to g
ρ

. We shall neglect all non-ideal effects . We shall use what

is known as the Boussinesq Approximation to deal with density variations. Under

this approximation, we neglect all changes in density except where they are coupled

with external forces like gravity. It is valid when small changes in temperature lead

to small changes in density due to smallness of the coefficient of volume expansion.

So, we have 0. 1 =∇ U
ρρ

 along with 01 ≠g
ρρ .

(i) zgg ˆ−=ρ
; zBB ˆ=

ρ
 and )(zoo ρρ =

Assuming a spatial and time dependence of the perturbed quantities of the form:

 tù iy k i xk i
11

yx)( ++→→
= ezUU

We can find the linearized MHD equations including the gravitational forces.

We, now, need boundary conditions to solve these equations. Let the fluid be

confined between two boundaries at z = z1, and z = z2 (Figure 4.7).

Figure 4.7. Fluid Confined in the Region z1 ≤ z ≤ z2

If the boundaries are rigid, there can be no motion across them and U1z(z1) = U1z(z2)

= 0. If the medium (at z < z1 and z > z2) adjacent to the fluid is a perfect conductor,

Fluid

z1

z2

Perfect Conductor

Perfect Conductor

0
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then no magnetic field can cross the boundary (the fluid itself has been assumed to

be a perfect conductor) and B1z = 0 and E1x = E1y = 0 on the plane boundary. If the

medium adjacent to the fluid is non-conducting , then no current can cross the

boundary and Jz = 0; the magnetic field at z < z1 and z > z2 must correspond to a

vaccum field. The continuity of the tangential stresses requires that B1x and B1y are

continuous which implies the continuity of U’1z and U’’1z .

The dispersion relation is found to be:

( )[ ] ( )[ ]

[ ] 02

22

21
2

12
22

21
23

=−+

+−−++−−

αα

ααωααωω

AT

ATAT

Vgk

gkVkikVi

, (4.86)

We can look at the asymptotic solutions of the dispersion relation for 0→k .

Then we find

( ) ( ) 2
12

2
Igki ωααω ≡−→ , (4.87)

which corresponds to the hydrodynamic R-T instability for 12 αα > . This shows that

the large wavelength perturbations are unaffected by magnetic field.

For ∞→k

( ) I
ATV

g
i ωααω ≡−→ 12 (4.88)

i.e., the growth rate tends to a fixed value independent of k.

Thus the growth rate ωI increases the equation linearly with k for small values of

k and becomes independent of k for large values of k.

The case 12 αα <  represents a stable configuration. The system responds to

small perturbations by exciting Alfen oscillations. The growth rate ωI for this case is

found to be:

( ) ( ) ( ) 







−−

+
=≡

π
ρρ

ρρ
ωω

4

21 2
0

2

12
21

22 Bk
kgi x

I (4.89)
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We, first, notice that the growth rate ωI is reduced by the presence of the

horizontal magnetic field B0. As the heavier fluid of density ρ2 tries to sink into fluid

of lower density ρ1, it carries the magnetic field also with it, bending it in the

process. The tension in the magnetic field however tries to straighten the field lines

and inhibits the sinking tendency of the fluid (Figure 4.8). Thus, the horizontal

magnetic field can provide a support to a fluid with inverted density gradient in a

gravitational field, against perturbations propagating in the horizontal direction (kx ≠

0). This is one of the mechanisms proposed for the existence of high density and

low temperature structures, called Prominences, in the solar corona. The density of

the prominence is about 100-1000 times and the temperature is about 0.01 that of

the solar corona and they are embedded in a magnetic field of the order of 10 Gauss.

Figure 4.8. The Curved Field B
ρ

 Develops Tension Which Inhibits the Instability.

4.15. The Kelvin-Helmholtz Instability

So far, we have considered fluids of different densities lying over each other in

the presence of gravitational and magnetic forces. We can give several examples

where fluids of varying densities coexist in relative motion. Wind flowing over

oceans, cometary tails whizzing against the solar wind, accreting flows around

compact objects, propagating extragalactic jets and exploding supernovae ejecta are

a few familiar sites. Such configurations of streaming fluids may have

discontinuities in their flow speeds. This excess kinetic energy could drive the
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system unstable. The resulting instability is known as the Kelvin-Helmholtz (K-H)

Instability. We shall study the development of K-H instability including the

magnetic field. The direction of the magnetic field is specified in relation to the

direction of streaming. We shall consider two cases (i) when the magnetic field is

parallel to the flow velocity 0U
ρ

 and (ii) when it is perpendicular to the flow

velocity.

(i) xBB ˆ00 =
ρ

; ( )xzUU ˆ00 =
ρ

; ( )z00 ρρ = ; zgg ˆ−=ρ
(Figure 4.9)

Figure 4.9. The Kelvin-Helmholtz Instability for 0|| BU
ρρ

The dispersion relation is found to be

[ ] ( ) ( )[ ] 212
2121

222
212211 2 VVkVkgkVVk xAxx −−+−±+−= ααααααω    (4.90)

We notice that:

For 021 === AVVV , we recover the growth rate of the hydrodynamic R-T

instability for 12 αα > ;

For 021 ==VV , we recover the growth rate of the hydrodynamic R-T instability

for gB
ρρ

⊥0 . For excitation of the K-H instability, in the absence of the magnetic field,

i.e., for 0=AV , we must have

( ) ( ),21
2

2121
2 αααα −>− gkVVkx (4.91)
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for 12 αα < . For 12 αα > , the expression inside the square root is negative and we

have an imaginary part of the frequency ω. There is also a real part of ω. Thus this

is an oscillatory instability – the amplitude of the perturbed quantity oscillates as

well as grows in time. The real part ωR is

( )2211 VVkxR ααω +−= , (4.92)

4.16. Current Driven Instabilities

Util now, we have considered the effect of a uniform magnetic field. There is

another class of instabilities driven by an electric current flowing through a

conducting fluid. The presence of current is associated with inhomogeneous

magnetic field. The stability or otherwise of the fluid depends upon the magnitude

and apatial variation of the current density.

A pinch with sharp boundaries develops ‘waists’ or ‘necks’ at the surface as shown

in figure (4.10). This is known as The Sausage Instability. For a uniform surface

current density J0z for a total current I, the azimuthal magnetic field crIB /20 =θ  for

Rr ≥ . An axisymmetric perturbation  that causes  a reduction of the radius

enhances the magnetic field B0θ, which further enhances the magnetic pressure and

kinetic pressure p0. As a result, the fluid is forced to move out of this region into a

region of lower magnetic pressure. The whole column of fluid acquires bulges and

waists. The presence of an axial magnetic field B0z has a stabilizing effect. Thus,

depending upon the magnitude of B0z, the Sausage instability can either saturate to

finite values of the perturbed quantities like 1B
ρ

, p1 or totally quench to vanishing

values of 1B
ρ

 and p1.

The action of the sausage instability has been seen in cometary tails,

extragalactic jets and at other astrophysical sites showing filamentary structures. For

non-axisymetric perturbations the mode m = 1 is unstable for all 52>β . This

unstable m = 1 mode is refered to as the Kink Instability (Figure 4.11a). The m = 1

perturbation bends the magnetic field lines to produce convex and concave

curvatures. The lines of force experience a compression at the concave side (region

A) and an expansion at the convex side (region B). The magnetic pressure is,
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therefore, stronger at A than at B. The resulting force from A to B pushes this region

up to further enhance the bending and the perturbation grows. Again an axial

magnetic field B0z will try to straighten the bend, and the kink instability can either

be entirely quenched or it can attain a final saturation level. The perturbation with

high m values attribute a multistranded form to the cylindrical fluid (Figure 4.11b).

Figure 4.10. The Sausage Instability, the Arrow Represent the Flow Into the

Low Magnetic Pressure Regions.

Figure 4.11. (a) The Kink Instability (m = 1 mode); (b) Multistranded Fluid

Column for m = 4.
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4.17. Resistive Instabilities

The presence of electrical resistivity allows a certain degree of freedom to

the magnetic field to depart from the flow of the conducting fluid. The field and the

fluid no longer remain frozen. The advantage is that the energy contained in

complex fluid flow and fluid configurations can now be dissipated in the system, as

a result of which the system becomes hot and may begin to radiate electromagnetic

radiation. This is believed to be what happens, for example, during a solar flare.

Enormous amounts of energy are released, in the form of mass motions and

electromagnetic radiation over a wide spectral range, in an explosive manner. The

magnetic field and the conducting fluid on the solar surface are continuously

subjected to stresses caused by a variety of convective and wave-like motions.

Beyond its endurance limit, the fluid-field configuration becomes unstable, and then

relaxes to a lower state of energy, throwing out the excess energy in various forms.

The genaric name for this class of instability is the Tearing Mode Instabilities.

They can occur due to any non-ideal MHD circumstances such as electron inertia,

charge separation or displacement current in addition to the resistivity.
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Chapter 5

TWO-FLUID DESCRIPTION OF PLASMA

5.1. Electron and Proton Plasmas

We have learnt in Chapter 1 that an electrically quasi-neutral system of negative and

positive charges qualifies to be a plasma and that a plasma exhibits cooperative

phenomena on certain spatial and temporal scales. Some of the consequences of the

quasi-neutral nature of a plasma can be studied by treating each of its constituent

components as a fluid. Thus, at this level of description, an electron-proton plasma

consists of two fluids – the electron fluid and the proton fluid. Each fluid is allowed to

have charge density fluctuations about the overall mean density. This is the most

significant deviation from the MHD description. The charge density fluctuations

produce current density fluctuations. The associated electric and magnetic fields can be

determined from Maxwell’s equations. The space and time dependences of these fields

can manifest themselves in the form of longitudinal and transverse waves.

In the presence of free sources of energy, such as a relative streaming motion

between the electron and the proton fluids or a temperature inequality and/or an

anisotropy, the electric and magnetic fields may begin to grow exponentially with time

or distance. Such circumstances produce instabilities. The energy contained in the

growing fields could either leave the system as radiation, or be damped within the

system. The periods of the waves and the growth rates of the instabilities carry

information on the plasma parameters such as density, temperature and electric and

magnetic fields. So, the observations of waves and instabilities help us to diagnose

plasmas. We may wonder, if the quasineutrality, which exists over short space and time

scales, has any role to play in the huge expanse of typically long-lived astrophysical

plasmas. The very fact that most of the high energy astrophysical sources emit more

radiation than their temperatures would permit is a pointer to the cooperative plasma

phenomena. Further, the extremely short temporal variability of radiation (with or

without polarization changes) can sometimes only be accounted for by plasma processes

occurring over short time scales. So, if we wish to look for plasma phenomena in

astrophysical sources, we must study the spectral, temporal and polarization

characteristics of their radiation.

In this chapter, we will first study the static and dynamic equilibria of the electron

and the proton fluids in the presence of electric and magnetic fields and then their
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stability under small departures from these equilibria. The mathematical tools needed

for this investigation have already been developed in Chapter 2.

5.2.  Static Equilibria of Electron and Proton Fluids

We begin with the two fluid equations derived in Chapter 2. The mass and

momentum conservation laws of the electron fluid are:

( ) 0=⋅∇+
∂

∂
ee

e U
t

ρρ
ρρ

(5.1)

and

( ) ei
ege

e

e

e
ee

e
e c

BU
E

m

e
UU

t

U
Γ+Π⋅∇−∇−







 ×+−=







∇⋅+

∂
∂ ρρρρρρρρρρ

ϕρρρ    (5.2)

The static equilibrium of the electron fluid ( 0=eU
ρ

) is described by:

0=
∂

∂
t
eρ

, (5.3)

and

0=Γ+Π⋅∇−∇−− ei
ege

e

e E
m

e ρρρρρ
ϕρρ

(5.4)

Similarly, the static equilibrium of the proton fluid ( 0=iU
ρ

) is described by

0=
∂

∂
t

iρ
, (5.5)

and
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0=Γ+Π⋅∇−∇− ie
igi

i

i E
m

e ρρρρρ
ϕρρ

(5.6)

In Chapter 2, we discussed one model of the collision term ieΓ
ρ

. According to this model

0=Γ ie
ρ

 for a zero relative velocity of the two fluids. In static equilibrium the stress

tensors eΠ and iΠ have only their diagonal parts non-zero representing the pressures.

Now expressing the electric field E
ρ

 in terms of the electric potential ϕ, we find, by

integrating equations (5.4) and (5.6), that

( )[ ]eBge
e

e
e TKmen

m
n /exp0 ϕϕρ

−== , (5.7)

and

( )[ ]iBgi
i

i
i Tkmen

m
n ϕϕρ

+−== exp0 . (5.8)

Thus, in static equilibrium, the electron and proton densities ne and ni follow the

Maxwell-Boltzmann Distribution, where n0 is the particle density in the absence of

forces. We find that the electron density ne increases with an increase of electric

potential ϕ whereas the proton density ni decreases. Under the circumstances that the

two fluids have equal temperatures (Te=Ti) – though in the absence of collisions, unless

there is some other plasma mechanism acting, the two temperatures can remain unequal

– we see that the two fluids can sustain a net charge density given by:

( )
TK

e

n

ne

n

nne

B

ei ϕ2

00

2=∆=−
(5.9)

for weak potential eTK B /<<ϕ . Here, we have used the isothermal equation of state

TnKp B=  and the temperature T is assumed to be space and time independent. This is

essentially the content of the energy conservation law of each fluid.

From Poisson’s equation, we can estimate the electric field E
ρ

 produced by the net

charge density (e∆n) over a region of length x as
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( )xneE ∆= π4 (5.10)

For a 1% change in electron density over a length x = 1 cm in a plasma of density n0, we

get

2
0 104 −×= enE π C.G.S. units (5.11)

In a solar coronal plasma with 10
0 10≈n  cm-3, 6.0≈E  C.G.S units or 1.8 x 104 volt/m;

but in high density plasmas such as in the accretion disk of the X-ray binary source

Cygnus X-1, where 20
0 10≈n  cm-3, the electric field could be as large as ~ 9 x 1013

volt/m. This exercise shows us that in dense plasmas, the charge separation must be

extremely small and that plasmas are quasi-neutral.

Now, in the absence of electric potential ( 0=ϕ ), we see from Equations (5.7) and

(5.8) that the gravitational potential can also create a charge imbalance due to the

different scale heights of protons and electrons. However, while studying plasma

phenomena, the relevant spatial scales are generally much less than/both the scale

heights, and therefore the difference between them may not be of much significance.

5.3.  Wave Motions of Electron and Proton Fluids

Analogous to the excitation of waves in a single conducting fluid, there are a variety

of wave motions exhibited by two conducting fluids. We shall follow the standard

procedure for the study of waves, i.e., we shall study the response of the fluids under

small departures form their equilibria. There are essentially two major types of wave

motions – high frequency waves governed by the response of the electron fluid and the

low frequency waves governed by the response of the proton fluid. The presence of the

magnetic field 0B
ρ

 introduces two more characteristic periods – the gyroperiods of the

electrons and protons. The collisions between the two fluids result in the dissipation of

these waves. We shall now consider the following cases.
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Electron-Plasma Oscillations

In the absence of magnetic and gravitational fields, the static equilibria of the

electron and the proton fluids are described by:

.000 ctennn ie ===

00 =E
ρ

.000 cteppp ie ===

.000 cteTTT ie ===

.000 cteUUU ie ===
ρρρ

0=B
ρ

The perturbations ne1 in the electron density and 1eU
ρ

 in the electron velocity satisfy the

linearized mass and momentum conservation laws as

[ ] 010
1 =⋅∇+

∂
∂

e
e Un
t

n ρρ
(5.16)

and
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U ρρρρρ
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∂
∂ ν , (5.17)

where we have substituted for Γei . The perturbation in electric field 1E
ρ

 is related to the

perturbation in charge density through Poisson’s Equation:

( )114 ie nneE −−=⋅∇ π
ρρ

(5.18)

The perturbations in the proton density ni1 and the proton velocity 1iU
ρ

 satisfy the

linearized mass and momentum conservation laws as:

[ ] 010
1 =⋅∇+

∂
∂

i
i Un
t

n ρρ
(5.19)

and
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U ρρρρρ
−+∇−=

∂
∂ ν (5.20)



110

We now assume a plane wave type of variation for all the first order quantities and

write:

( ) [ ]tirkintrn ee ω−⋅′= ρρρ
exp, 11 (5.21)

In order to determine the dispersion relation ( )kω  of these waves, we substitute the

solution, Equation (5.21), in Equations (5.16) – (5.20), subtract Equation (5.20) from

Equation (5.17), take a dot product with k
ρ

, subtract Equation (5.19) from Equation

(5.16) and use Equation (5.18) to get

( )( ) ( ) 211
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Bie
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−=−+ πνωω (5.22)

If we assume 01 =′in  and use ei mm >> , we find:

( ) 22 k
m

TK
i

e

B
peei +=+ ωνωω (5.23)

where

212
04









=

e
pe m

enπω

is known as the electron-plasma frequency. Equation (5.23) is the dispersion relation of

the Electron Plasma Waves also called Langmuir waves. These waves represent

oscillations of the net charge density ne1.

The physics of these oscillations can be understood by referring to Figure (5.1). In a

quasi-neutral plasma, local charge density fluctuations can arise. If there is an excess of,

say, positive charge at some place, the negative charges would rush to that place and try

to cancel it. However, in this attempt, the negative charges, due to their kinetic energy,

may overshoot
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Figure 5.1. Oscillations Set Up Due to Localized Regions of Excess Charge Density

the place of excess positive charge and create an excess of negative charge elsewhere,

from where they will be pulled back by the positive charge. Thus, in an attempt to

maintain quasi-neutrality, charge density oscillations set in. The protons form a static

positively charged background. We see from the dispersion relation that the frequency

ω of the electron plasma waves is a function of the ambient electron density n0 and the

temperature T. Further ω  is a complex number due to the presence of collisions. In the

limit ων <<ei , we find the real part ωR of ω is given by:

2

2

2

2

1
Dpe

R

k

k+=
ω
ω

(5.24)

where ( )TKenk BD /4 2
0

2 π=  and the imaginary part ωI of ω  is given by:

eiI νω −= (5.25)

The collisions, therefore damp the wave amplitude. The variation of ωR with wave

vector k is shown in Figure (5.2). The damping rate ωI is nearly directly proportional to

the electron density n0 and inversely proportional to the cube-root of the temperature T,

a behavior resulting from of the Coulombic binary collisions. The electron plasma

waves are longitudinal in their polarization – the displacement, and the electric field 1E
ρ

are both parallel to the direction of the wave propagation vector k
ρ

.
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The cooperative behavior of electrons is contained in the term 2
peω . The temperature

dependent term is responsible for dispersion. We learnt in Chapter 1 that the condition

for the collective behavior is that the characteristic spatial scale must be larger than the

Debye

Figure 5.2. Dispersion Relation of the Electron-Plasma Waves (Equation 5.24)

wavelength. This implies that in Equation (5.23)

22 k
m

TK

e

B
pe >ω , (5.26)

from which we see that the largest wavevector allowed for the electron plasma waves is

the Debye wavevector kD.

The electron-plasma waves have been observed in laboratory plasmas. It is

impossible to see these waves in astrophysical plasmas since they are localized

oscillations and can only be picked up by in-situ probes. However, their presence has

been inferred in otherwise inaccessible regions by indirect methods. One way, for

example, is through the conversion of electron-plasma waves into electromagnetic

waves which can leave the heavenly plasma and impinge on our telescopes. This is how

some of the radio radiation from the sun is believed to originate.

The first simultaneous detections of the electron-plasma waves as well as the

attendant radio emission were done by the solar orbiting Helios1 and Helios2

spacecrafts.
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Ion-Plasma Oscillations

We now study low frequency oscillations in which electrons and protons both

participate. In the absence of magnetic and gravitational fields the static equilibria of the

two fluids are described by:

.000 ctennn ie ===

00 =E
ρ

.

000 eBe TKnp = .

000 iBi TKnp = .

000 == ie UU
ρρ

.

We assume that the mass em  of an electron is vanishingly small, i.e., 0→em . In this

limit, Equation (5.17) for the linearized motion of the electron fluid becomes:

01
0

0
1 =∇−− e

eB n
n

TK
Ee

ρρ
(5.27)

where we have ignored the collisional forces. The solution of Equation (5.27) gives:

0

10
1

eB
e TK

en
n

ϕ
=       (5.28)

where we have expressed 11 ϕ∇−=
ρρ

E . For a plane-wave variation of the perturbed

quantities, the mass conservation laws of the two fluids give:

ω
1

01
e

e

Uk
nn

ρρ
⋅=     (5.29)

and

ω
1

01
i

i

Uk
nn

ρρ
⋅=     (5.30)

The ion equation of motion dotted with the wave vector k
ρ

 gives:
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(5.31)

Finally, Poisson’s equation relating the perturbations in charge density with the

potential 1ϕ  is:

( )111
2 4 ie nnek −−= πϕ (5.32)

Substituting for 1eU
ρ

, 1iU
ρ

 and 1en  in Equation (5.31), we find the dispersion relation for

01 ≠in  as:
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where 
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enπω  is the ion-plasma frequency and
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is the Debye wave number. Equation (5.33) is the dispersion relation of the Ion-Plasma

Waves. In the short wavelength limit, i.e., for ( ) 1/ 22 >>Dkk , the dispersion relation of

the ion-plasma waves becomes:

222 k
m

TK

i

ioB
pi += ωω (5.35)

which looks very much like the dispersion relation of the electron-plasma waves. In the

large wavelength limit, i.e., for ( ) 1/ 22 <<Dkk , the dispersion relation of the ion-plasma

waves becomes:

( ) 222
00

2 kckTT
m

k
sei

i

B =+=ω (5.36)
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Figure 5.3. Dispersion Relation of the Ion-Plasma Waves (Equation 5.33) for 00 ei TT =

which looks like the dispersion relation of the sound waves. Here, cs, is the isothermal

sound speed. For this reason, these waves are also known as the Ion-Acoustic Waves.

In contrast to the case of the electron-plasma waves where ions from a static and

uniform background, during ion-plasma wave excitations, the electrons and  ions both

play a dynamic role. Electrons are pulled by a bunch of ions and they screen the electric

field produced by the bunching ions. As for sound waves, here too, the ions form

regions of high and low density. The ion thermal motion produces a spreading of the

condensation. Due to the thermal motion of electrons, only a partial screening of the

electric field is achieved. These two effects are contained in the temperature dependence

of the dispersion relation (Equation 5.36). The full dispersion relation of the ion-plasma

waves is illustrated in Figure (5.3).

Electron-Plasma Waves in Magnetized Fluids

We now investigate the effect of a uniform ambient magnetic field 0B
ρ

 on the

characteristics of the electron plasma waves. The static equilibria of the electron and

proton fluids are the same as before except that, now, ( )00 ,0,0 BB =
ρ

. We, further, take

for electron plasma oscillations, 011 == ii Un  and 0/ →ie mm . The wave vector 1|| Ek
ρρ

makes an angle θ  with the magnetic field as shown in Figure (5.4). The mass

conservation for electron fluid gives:
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Figure 5.4. Electron-Plasma Waves Propagating at an Angle θ with 0B
ρ

.

ω
1
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1 ee Uk

n

n
ρρ

⋅= (5.37)

Poisson’s equation gives:

11 4 eeniEk π=⋅
ρρ

    (5.38)

The addition of x and z components of the momentum conservation laws for electron

and ion fluids gives ( Here eU  stands for 1eU ):
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xeyce
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eei nk
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e
Uki −−⋅−=⋅+− ωνω

ρρρρ
(5.39)

The addition of the y component of the momentum conservation laws for the electron

and ion fluids gives:

( ) exceeyei UUi ωνω =+−
ρ

(5.40)

From equations (5.37) – (5.40), by eliminating the various first order quantities, we get

the dispersion relation:
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Here, ( )cmeB ece /0=ω  is the electron cyclotron frequency. We see that for 0=θ , i.e.,

for propagation along the magnetic field, we recover the dispersion relation of the

electron-plasma waves (Equation 5.23) in the absence of a magnetic field. For oblique

propagation, the dispersion relation is modified by the presence of the magnetic field. In

the absence of collisions and temperature effects, Equation (5.41) simplifies to:

θωωω 2222 sincepe += (5.42)

This wave is known as the Upper Hybrid Wave, since its frequency ω is higher than

the electron plasma frequency ωpe. This is due to the additional restoring Lorentz force.

The group velocity of these waves is zero in the absence of thermal effects.

Ion-Plasma Waves in Magnetized Fluids

In the presence of a uniform zeroth order magnetic field 00 =B
ρ

, we write the first

order mass and momentum conservation laws for the hot electrons ( 0≠eT ) and cold

ions ( 0=iT ) assuming a plane wave for space and time dependence for the

perturbations:

( ) ( ) ( )0111 BU
c

e
kieUim iii

ρρρρ
×+−=− ϕω (5.43)

( ) ( ) ( ) ( )011
0

11 BU
c

e
nki

n

TK
kieUim ee

eB
ee

ρρρρρ
×−−=− ϕω (5.44)

( ) 0011 =⋅+− nUkini ee

ρρ
ω (5.45)

and

( ) 0011 =⋅+− nUkini ii

ρρ
ω (5.46)
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We take ( )0,0,xkk =
ρ

 (Figure 5.4) and use the plasma approximation 11 ie nn = , but

011 ≠∇= ϕ
ρρ

E . Mass conservation then demands 11 ie UU
ρρ

= . From the x and y

components of Equation (5.43), we find

( ) 1

1

2

2

1 1 ϕ
ω
ω

ω

−







−= ci

i

x
xi m

ek
U
ρ

(5.47)

where cmeB ici /0=ω  is the ion-cyclotron frequency. For 0=eT , from the x and y

components of Equation (5.44) we find:

( ) 1

1

2

2

1 1 ϕ
ω
ω

ω

−







−−= ce

e

x
xe m

ek
U
ρ

(5.48)

Using ( ) ( )xixe UU 11

ρρ
= , we find, in the limit ( ) 0/ →ie mm ,

( ) 21
ciceωωω = (5.49)

This is the dispersion relation of the Lower Hybrid Waves. They have frequencies

lower than the electron cyclotron frequency ωce but higher than the ion cyclotron

frequency ωci. They propagate perpendicular to the magnetic field B0. For a propagation

vector k
ρ

 parallel to 0B
ρ

, we recover the dispersion relation of the ion acoustic wave.

We now investigate the case of oblique propagation, i.e., for ( )zx kkk ,0,=
ρ

 in the

limit 0→em .

The ion Equation (5.43) furnishes:

( )
1

2

2
1

1 1

−







−=

ω
ω

ω
ϕ ci

i

x
xi m

ek
U ,

ω
ϕ

i

z
iz m

ek
U 1= (5.50)

The electron Equation (5.44) furnishes:
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( ) 01 =xeU ; ( ) 01 =yeU and
eB

e

TK

e

n

n 1

0

1 ϕ= (5.51)

The continuity equations for electrons and ions under the plasma approximation give:

0

11

0

1

n

nUk

n

n eii =⋅=
ω

ρρ
(5.52)

Eliminating ( )xiU 1  between Equations (5.50) and (5.52) using Equation (5.51), we find:







−

+=

2

22

22
22

1
ω

ωω
sz

sx
ci

ck

ck
(5.53)

This is the dispersion relation of the electrostatic Ion-Cyclotron Waves. In the limit

( ) ( )xixi UkUk 11

ρρρ
≅⋅ ,       (5.54)

the dispersion relation for ion-cyclotron waves resembles the dispersion relation of the

upper hybrid waves and predictably so, as the ‘acoustic’ motion of the ions is now

modified by their cyclotron motion. We must, here, appreciate the need for 0≠zk . In

order to preserve charge neutrality 11 ie nn = , the electrons must move along the magnetic

field, since their motion across the magnetic field is highly restricted. Thus, during the

ion-cyclotron wave motion, the motion of the ions is predominantly perpendicular to the

magnetic field while that of the electrons is essentially parallel to the magnetic field.

Electromagnetic Waves in  Electron-Proton Fluids

So far, we have studied two examples of longitudinal waves which propagate only

in a matter medium. We will now study the excitation of transverse electromagnetic

waves which, though, they can propagate in vacuum, are modified in the presence of a

medium. The static equilibria of the two fluids are described by:
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.000 ctennn ie ===

00 =E
ρ

.

000 eBe TKnp = .

000 iBi TKnp = .

000 == ie UU
ρρ

.

Using Maxwell’s equations, the wave equation for the electric field is found to be:

( )
2

2

22
2 14

t

E

ct

J

c
EE

∂
∂−

∂
∂−=⋅∇∇+∇−

ρρρρρρ π
, (5.55)

where J
ρ

 is the current density.

The linearized current density is given by

[ ]1101 ei UUenJ
ρρρ

−= (5.56)

We wish to study transverse waves, for which

011 =⋅=⋅∇ EkiE
ρρρρ

(5.57)

therefore we must put 11 ie nn = . The mass conservation equations, then, could be

satisfied with 11 ie UU
ρρ

= . The wave equation (5.55) then describes propagation of

electromagnetic waves in vacuum ( 0=J
ρ

) with dispersion relation

222 ck=ω (5.58)

The linearized forms of the momentum conservation laws of the two fluids, describe a

Boltzmann distribution of the density perturbations as
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(5.59)

The other way of satisfying Equation (5.57) is by putting 011 == ie nn . Mass

conservation then gives:

011 =⋅∇=⋅∇ ie UU
ρρρρ

(5.60)

i.e., the motion of the particles is transverse to the direction of the propagation vector

k
ρ

.

Figure 5.5. Dispersion Relation of the Electromagnetic Waves in an Electron-Proton

Fluid.

From Equations (5.17) and (5.20), we find for the current density

( )
( )ei

ie

i

Emmen
J

νω +−
+= 1

2
0

1

/1/1
ρρ

(5.61)

On substituting for 1J
ρ

 in the wave equation (5.55), we get the dispersion relation for the

transverse electromagnetic waves as:
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22
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ck
i ei

pipe +





 +

+
=

ω
ν
ωω

ω (5.62)

Again assuming that ων <<ei , we find the real part Rω  from:

22222 ckpipeR ++≅ ωωω (5.63)

and the imaginary part

( )22
22 pipe
R

ei
I ωω

ω
νω +−≅ (5.64)

We see that the phase and the group velocities of the electromagnetic waves become

different in a plasma as there is a minimum value of 2122 )( pipeR ωωω +=  below which

the waves cannot propagate in a plasma (the wave vector k
ρ

 becomes imaginary). The

waves suffer damping due to collisions between electrons and ions. The dispersion

relation of the electromagnetic waves is plotted in Figure (5.5).

We can define the refractive index n of a plasma for electromagnetic waves from the

dispersion relation as:






 +

−=




=

ω
νω

ω
ω ei

pe

i

kc
n

1

1
2

22
2 (5.65)

where we have neglected 2
piω  as it is much less than 2

peω . Equation (5.65) provides the

basis for reflection of short wavelength radio waves in the earth’s ionosphere facilitating

communication around the earth. The ionosphere, itself, has been studied through the

reflection of the radio pulses. The reflection occurs at a place, where the frequency of

the radio pulse equals the electron plasma frequency. By this technique, the electron

density in, as well as the distance to, the reflection region can be estimated. Electron

densities of 105-106 cm-3 have been inferred at an altitude of 500 km in the ionosphere.

These densities corresponds to electron plasma frequencies of 17-54 MHz.
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A note of caution is in order here. The reflection of electromagnetic waves with

frequencies near the electron-plasma frequency is true only for low intensity radiation.

High intensity radiation can change the properties processes or novel conditions for

reflection or transmission may set in.

The dispersive properties of the interstellar medium have been put to good use for

determining the distances of pulsars.

Since, a plasma has an index of refraction which is less than unity, electromagnetic

waves diverge while passing through it. However, by tailoring the density, a part of the

plasma can be made to work as a focusing device. The self-focusing of Laser beams

results from such processes which fall in the category of nonlinear processes.

Electromagnetic Waves in Magnetized Fluids

For plane-wave-type space and time variations of all the first order quantities, the

wave Equation (5.55) becomes:

( ) 12
0

11
2

2

2 4
eU

c

eni
EkkEk

c

ρρρρρ ωπω =⋅+





− , (5.75)

where we have assumed the ions to form a static positively charged back-ground so that

011 == ii nU
ρ

 and the current density

101 eUenJ
ρρ

−= , (5.76)

is provided only by electrons.

All we have to do now is to determine the electron velocity 1eU
ρ

 in the presence of a

uniform magnetic field, substitute it in the wave equation and



124

Figure 5.6. Oblique Propagation of Electromagnetic Waves.

we get the dispersion relation for electromagnetic waves in a magnetized plasma.

Let us take the propagation vector ( )kk ,0,0=
ρ

 and the magnetic field

( )αα cos,,0 000 BsinBB =
ρ

 where α is the angle between k
ρ

 and 0B
ρ

 (Figure 5.6). The

electron velocity in then found to be:
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and
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c
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11 , (5.79)

where we have removed the subscript e from 1U
ρ

. We can, now, solve for 1U
ρ

 in terms of

1E
ρ

 and substitute in Equation (5.75). We get three homogeneous equations in xE1

ρ
, yE1

ρ

and zE1

ρ
:

0
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11

1 111
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−

−
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+





−
−− zyx Esin
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X
n αα (5.80)
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By putting the determinant of these equations to zero, we get the dispersion relation:
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(5.83)

where we have followed the notations usually used while studying wave propagation in

the earth’s ionosphere, i.e.,

2

2

ω
ωpeX = ,

2

2

ω
ωceY =  and

2

22
2

ω
ck

n = (5.84)

We shall study a few special cases using Equation (5.83). First,, notice that for

0=Y , the dispersion relation (Equation 5.63) for electromagnetic waves in the absence

of magnetic fields and collisions is recovered.

For waves propagating perpendicular to the magnetic field i.e., for 2πα = , we get:

( )
( ) 0
11

1
1

11
2

2
22 =








−

−






−
−







−
−−−−

Y

YX

Y

X

Y

X
nXn (5.85)

The two roots of n2 given by Equation (5.84) describe two types of waves. The root

2

2
2 11

ω
ωpeXn −=−= , (5.86)
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describes what is known as the Ordinary Wave, since it remains unaffected by the

presence of the magnetic field. By substituting for n2 in Equation (5.80 – 5.82), we find

011 == zx EE  and 01 ≠yE . Thus the ordinary wave is linearly polarized with its electric

field parallel to the ambient magnetic field.

The other root of n2 is:

( ) ( ) ( )
( )2222

22212
2 1

1

11

cepe

pepe

Y

YXYXYX
n

ωωωω
ωωω
−−

−
−=

−
−−−−−=

−

   (5.87)

This is the dispersion relation of what is known as the Extraordinary Wave. From

Equations (5.80) and (5.82), we find:

( ) YiX

Y

Y

X

Y

X
nY

YiX

E

E

z

x −







−
−−=








−
−−−

= 1

1
1

1
11 21

1 , (5.88)

from which, we, again recover the dispersion relation of the extraordinary wave,

Equation (5.87). Thus, the extraordinary wave is elliptically polarized with its electric

field ( zx EE 11 ,0, ) perpendicular to the magnetic field ( )0,,0 00 BB = . We must also

acknowledge that this wave is not purely transverse as it has an electric field ( zE1 ) in

the direction of propagation vector k
ρ

 (Figure 5.7).
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Figure 5.7. Polarization of the Extraordinary Wave.

Form the dispersion relation of the extraordinary wave, we notice that the refractive

index n becomes infinite for

222
cepe ωωω += (5.89)

which, we reckon, is the dispersion relation of the Upper Hybrid Wave. The frequency

at which ∞=n  is known as the Resonance Frequency. At this frequency, the

wavelength becomes zero. Had we included collisions, we would have found that the

wavevector k
ρ

 is purely imaginary at the resonance. This implies that the wave is

completely absorbed within the plasma and its group and phase velocities are zero. We

further see a transformation of the nature of wave. The electromagnetic extraordinary

wave has become an electrostatic upper hybrid wave. When we substitute Equation

(5.89) in Equation (5.88), we find that 01 =xE  and the extraordinary wave has become

purely longitudinal with only 01 ≠zE .

The extraordinary wave also has a Cutoff Frequency. This is the frequency at which

the refractive index vanishes, so that the wavelength, the group and the phase velocities

all become infinite. The wave at the cutoff frequency suffers a reflection. Although

Equation (5.87) for 02 =n  gives four roots, we retain only the two positive frequency

roots given by:
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( )[ ]2122 4
2

1
pececeRP ωωωω ++= , (5.90)

and

( )[ ]2122 4
2

1
pececeLP ωωωω ++−= . (5.91)

At the cutoff frequency RPω , the polarization of the extraordinary wave is found to be

(Equation 5.88):

i
E

E

z

x =
1

1              (5.92)

and at the cutoff frequency LPω , the polarization of the extraordinary wave is found to

be (Equation 5.88):

i
E

E

z

x −=
1

1 (5.93)

Obviously the subscripts R and L denote the right-handed and the left-handed circular

polarizations. The pass band or the region of propagation of the extraordinary wave can

be seen in a plot of n2 vs. ω (Figure 5.8). We see that as ∞→ω , 12 →n . As ω

decreases from ∞ , n2 decreases from 1 and becomes zero at RPωω = , the higher cutoff

frequency. For RPωω < , 02 <n  until hωω = , the upper hybrid frequency at which

−∞=2n . From hωω =  to peω , 2n  increases from ∞−  to 1. From peωω =  to LPω , n2

decreases from 1 to zero. For LPωω < , n2 remains negative. Thus, the regions

hLP ωωω <<  and RPωω >  for which 02 >n  are the pass bands of the extraordinary

wave. It is circularly polarized at LPωω =  and RPω ; elliptically polarized at peωω =

and hωω >  and longitudinal at hωω = . So, we, now, know all about the extraordinary

wave except its amplitude.

Let us now consider the case 0=α  for the propagation of wave along the magnetic

field, so that ( )kk 0,0=
ρ

 and ( )00 ,0,0 BB =
ρ

. We find from Equation (5.83):
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Figure 5.8. Pass-Band of the Extraordinary Wave

We write
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and






 +

−=
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pe
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1

1
1

1
2

2 (5.96)

for the two roots of n2 from Equation (5.94). These are the dispersion relations of the

two waves propagating parallel to the magnetic field. The polarization of these waves

found (from Equations 5.80 – 5.82) is
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( )( ) XnY

YiX

E

E
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−−−
−=

2
1

1

11
(5.97)

and 01 =zE .

By substituting for 22
Rnn =  in Equation (5.97) we get

i
E

E

y

x −=
1

1       (5.98)

Referring to the coordinate system shown in Figure (5.6) we see that Equation (5.98)

represents a right-handed or an anticlockwise circular polarization which is also the

sense of polarization of the extraordinary wave at the cutoff frequency RPω .

By substituting for 22
Lnn =  in Equation (5.97) we get:

i
E

E

y

x =
1

1 (5.99)

which represents a left-handed or a clockwise circular polarization which is also the

sense of polarization of the extraordinary wave at the cutoff frequency LPω .

We, now investigate the pass-bands of the R-wave (Equation 5.95) and the L-wave

(Equation 5.96), the way we did for the extraordinary wave.

Figure 5.9. Pass-Band of R-Wave.
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The cutoff frequency of the R-wave is given by 0=Rn  and is found to be RPω

defined in Equation (5.90). The resonance frequency of the R-wave is given by ∞=2
Rn

and is found to be at ceωω = . A plot of 2
Rn  vs. ω  is shown in Figure (5.10). We find

that 2
Rn  has a minimum at 2/ceωω = . There is a low frequency pass band for

2/0 ceωω <<  in which 2
Rn  decreases with an increase in ω and therefore the phase

velocity is an increasing function of the frequency. It can be easily checked that the

group velocity in this region is also an increasing function of ω. The waves in this pass-

band have been named Whistler Waves. These waves propagate along the earth’s

magnetic field between the Northern and the Southern hemispheres and were detected in

the ionosphere as radio waves in the audible range, producing a whistling sound. Due to

the increase of the group and the phase velocities with ω, the low frequencies arrive

later giving rise to descending tones. Thus, the pass band for the R-wave is ceωω <<0

and RPωω > .

The cutoff frequency of the L-wave is given by 0=Ln  and is found to be LPω

defined in Equation (5.91). The resonance frequency of the L-wave is zero. A plot of 2
Ln

vs. ω (Figure 5.10) shows that L-waves propagates only for LPωω > .

Figure 5.10. Pass-Band of L-Wave

The propagation of electromagnetic waves at values of α other than zero and 2/π

can be studied by using the general dispersion relation given by Equation (5.83). In real

situations, such as in stellar atmospheres, the plasma density and the magnetic field
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continuously vary with distance. In such a medium, an electromagnetic wave undergoes

continuous refraction and the angle α itself becomes position dependent. Under such

circumstances, we could either divide the medium into small homogeneous regions and

use the results obtained above in each region or go to full-throttle numerical

computations.

Another important consequence of the propagation of electromagnetic waves in a

magnetized plasma is the attendant variations of the polarization. We have seen that

parallel to the magnetic field, waves with right and left-hand circular polarization

propagate with different phase speeds since LR nn ≠ . Due to this effect, a plane

polarized wave propagating parallel to the magnetic field suffers rotation in its plane of

polarization. Let us represent the electric field of a plane wave polarized in the x̂

direction as:

[ ]LR
tkzi

x EEeExE
ρρρ

+== −

2

1
ˆ )( ω , (5.100)

where ( ) ( )tkziiEEE yxR ω−+= exp
ρ

 and ( ) ( )tkziiEEE yxL ω−−= exp
ρ

 as the

superposition of a right ER and a left EL circularly polarized waves. The wave vector of

the R-wave becomes kR and that of the L-wave becomes kL, in the magnetized medium.

After propagating a distance s in the medium, the electric field of the R-wave is given

by

( ) ( )tskiiEEE RyxR ω−+= exp
ρ

, (5.101)

and of the L-wave by

( ) ( )tskiiEEE LyxL ω−−= exp
ρ

(5.102)

If, we now superimpose the two waves, we find

( ) ( ) ( ) 



 −+×



 −+−=+ t

s
kki

s
kksinE

s
kkEEE RLRLyRLxLR ω

2
exp

22
cos

ρρ
(5.103)
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which represents a plane-polarized wave with its electric field at an angle θ to the x-axis

where

( )
2

2

22 ω
ωω

θ cepe
RL c

ss
kk =−= , (5.104)

where kL and kR have been determined from Equations (5.96) and (5.95). Thus, the

propagation through a magnetized medium of size s rotates the electric vector of the

electromagnetic wave by the angle θ. This effect is known as the Faraday Rotation of

the plane of polarization. This is an observable effect. We can estimate that 1≅θ  radian

when radiation at 8106×=ω  sec-1 passes through the interstellar medium of dimensions

1910≈  cm, the electron density 210−≅n  cm-3 and the magnetic field 6
0 103 −×≅B

Gauss. The observations of polarization of radiation from a single source, for example,

the Crab Nebula, at different frequencies can confirm the presence of the Faraday effect

in addition to providing the parameters of the intervening medium.

With this we end our discussion of waves in a magnetized medium.

5.4. Instabilities of Electron and Proton Fluids

If the electron and or the proton fluids contain free energy in the form of density,

temperature and pressure gradients or a relative streaming motion between them, the

equilibrium of such a system could become unstable against small perturbations. The

excess energy is released through the growth of electric and magnetic fields, leading to

macroscopic configurational changes or heating of plasma with or without emission of

radiation. We illustrate the excitation of instabilities through a few simple examples.

Instabilities in Unmagnetized Fluids

Relative streaming between the electron and the proton fluids is the most common

occurrence, especially in space and astrophysical environs, where the electrons and

protons subjected to common acceleration mechanisms, end up with unequal velocities.

The excess streaming energy is consumed by waves with their amplitudes growing at an

exponential rate with time. Let us assume that in the equilibrium the proton fluid

streams with a uniform velocity iV
ρ

 and the electron fluid with a uniform velocity eV
ρ

.
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We neglect the random component of motion and take Te = Ti = 0 . For a plane wave

space-time variation of all the perturbed quantities, we obtain the linearized equations of

mass and momentum conservation for the electron and the proton fluid as:

( ) 0101 =⋅+⋅+− eee UkinnVkii
ρρρρ

ω (5.105)

( ) 110 EenUVkiimn oeee

ρρρρ
−=⋅+− ω (5.106)

( ) 0101 =⋅+⋅+− iii UkinnVkii
ρρρρ

ω (5.107)

and

( ) 1010 EenUVkiimn iii

ρρρρ
=⋅+− ω (5.108)

Poisson’s equation becomes

( )111 4 ei nneEki −=⋅ π
ρρ

(5.109)

Carrying out the usual elimination exercise, we find the dispersion relation:

( ) ( ) 01
2

2

2

2

=
⋅−

−
⋅−

−
i

pi

e

pe

VkVk
ρρρρ

ω

ω

ω

ω
    (5.110)

We can solve this polynomial, look for complex roots of ω; since they occur in pairs,

one of them has a positive imaginary part. This root represents the instability as all the

perturbed quantities grow exponentially with time in this case. We shall, here, illustrate

an approximate way of solving. Equation (5.110). We know that if one of the terms in

Equation (5.110) becomes very large, the equation will have complex roots. Let us take

0=iV
ρ

, so that eV
ρ

 stands for the relative velocity between electrons and ions. Let us

further assume that
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( ) peeVk ωω ±≅⋅−
ρρ

; eVk
ρρ

⋅<<ω (5.111)

Equation (5.110) then gives:

( )33

2 e
i

e Vk
m

m ρρ
⋅−=ω     (5.112)

from which, we find the real part

pe
i

e
R m

m ωω
31
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=    (5.113)

and the imaginary part

pe
i

e
I m

m ωω
31

42
3 





=    (5.114)

The growth rate of the instability is ωI. This is the Two-Stream Instability also called a

Buneman Type Instability. We must remember that Equation (5.114) is valid only if

peeVk ω≅⋅
ρρ

. The source of energy for this instability is the kinetic energy density

(men0Ve
2/2) of the electrons. Thus, the growth rate ωI = 0 if Ve = 0.

There is another approximate way of solving Equation (5.110). We solve Equation

(5.110) in the limit ( ) 0/ →ie mm  to find ( ) peeVk ωω ±≅⋅−
ρρ

, and substitute this in the

term proportional to ( )ie mm / . We get

( )
( )
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The complex root with positive imaginary part is now given by
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Thus, depending upon the approximations used, we get different values of the growth

rate.

We see that in the approximate methods used above to determine the growth rate,

we have used a matching of the Doppler shifted frequency ( )eVk
ρρ

⋅−ω  with the

frequency peω  of the normal mode – the electron plasma wave. Therefore, it appears

that it is this resonance that drives the instability. There is the electron plasma wave

associated with the motion of the electrons and there is the ion-plasma wave associated

with the motion of the ions. The Doppler shift of the proper sign brings these otherwise

well separated frequencies to be nearly equal. It can be shown that in the presence of

streaming, the electrons support what is known as a Negative Energy Wave i.e., the

average energy density of the system in the presence of the wave is less than that in its

absence or

( )( )2

110
2

0 2

1

2

1
eeeeee UVnnmVnm

ρρ
++> ,    (5.117)

where the bar represents the average over space and time. This results due to the phase

relation between the perturbed density ne1 and the perturbed velocity 1eU
ρ

 given by the

mass conservation requirements. In the same way, the ions are associated with a positive

energy wave. During the growth of the two stream instability, both the negative energy

as well as the positive energy waves grow maintaining the constancy of the total energy.

The presence of finite amplitude low frequency waves plays an important role in

modifying the electrical resistivity of the plasma. The usual Coulomb collisions among

electrons and protons are replaced by the scattering of electrons by the low frequency

waves which are manifestations of the collective behavior of the ions. The resistivity in

these circumstances could be larger by several orders of magnitude than for normal

Coulombic interactions. An actual estimate of the resistivity would require a knowledge

of the amplitudes of these low frequency waves. A large resistivity facilitates a fast

release of magnetic energy through an ohmic dissipation type of mechanism. This kind

of energy release, also known as flaring has been proposed to take place in situations as

diverse as the Sun and accretion disks around compact objects.

The Beam-Plasma Instability is another instability of great importance for different

astrophysical objects. This is excited when a beam of electrons propagates through a
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non-streaming two-fluid plasma of electrons and protons. The equilibrium of this

system consists of a beam of electron density nb beaming with a velocity bV
ρ

 through a

plasma of density n0. We take the massive protons to only provide the positively

charged uniform background. In order to determine the dispersion relation for this case,

we can use Equations (5.105) and (5.106) with 0=eV
ρ

 for the electron fluid. The

linearized equations for the electron beam are:

( ) 011 =⋅+⋅+− bbbb UkinnVkii
ρρρρ

ω ,      (5.118)

and

( ) 11 EenUVkiimn bbbeb

ρρρρ
−=⋅+− ω (5.119)

The Poisson equation is

( )111 4 eb nneEki +−=⋅ π
ρρ

    (5.120)

It is a simple task to find that the dispersion relation of the beam-plasma instability is

given by:
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     (5.121)

Where 
e

b
b m

en 2
2 4πω = .
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Figure 5.11. Variation of Oscillation Frequency Rω  and Growth Rate Iω  with

( )pebkV ω/  for Beam Plasma Instability for ( ) 1.0/ =peb ωω .

We can use the cues described during the discussion of the two-stream instability to

approximately solve Equation (5.121) for complex roots. Thus, for bVk
ρρ

⋅<<ω  and

( ) ( ) 2
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For peIb iVk ωωω <+⋅=
ρ

 and peI ωω << , we find

bR Vk
ρρ

⋅≅ω (5.123)

and

21

2

221

0

1

−











−





≅

ω
ω

ωω pe
pe

b
I n

n



139

The physical mechanism described for the excitation of the two-stream instability

also holds for the beam-plasma instability except that, presently there is relative

streaming between the two species of electrons instead of between electrons and

protons.

Variations of Rω  and Iω  with the ratio ( ) 1−⋅ pebVk ω
ρρ

 for the beam-plasma instability

are shown in Figure (5.11). The beam-plasma instability has the maximum growth rate

Iω  for peR ωω ≅ . This means that electrostatic waves at the electron plasma frequency

are produced. These Langmuir waves can be converted into electromagnetic waves

through nonlinear scattering on the plasma particles, specifically the protons. The

frequency of the electromagnetic waves so produced is again near the electron-plasma

frequency peω . This is believed to be the mechanism for the generation of type III radio

bursts form the Sun. An electron-beam accelerated during a solar flare propagates

outwards in the solar corona (density n0) with typical values of ( ) 4
0 10/ −≈nnb  and

cVb 2.0≅ . As the electron beam passes through the corona with continuously

decreasing density n0, electromagnetic waves of lower and lower frequency are excited.

This gives rise to a drift rate of the frequency of radio emission. Drifting radio emission

is taken as the signatures of the beam-plasma instability. The type III radio bursts have

also been inferred to be emitted at twice the electron-plasma frequency. The emission at

the second harmonic is believed to be generated by nonlinear interactions among the

Langmuir waves.

In high energy sources, such as pulsars and quasars, relativistic electrons are

expected to exist along with an ambient non-relativistic plasma. Such a system gives

rise to the Relativistic Version of the beam-plasma instability. We can determine the

dispersion relation by using the relativistic equation of motion for the beam electrons.

The linearized form of the relativistic equation of motion is found to be:

( ) ( ) 11
2
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2
000 1 E
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e
Uckii

e
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ρρρρ
−=+⋅+− βγγβω    (5.124)
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The other equations [(5.105) and (5.106) with 0=eV
ρ

 and (5.119) and (5.120)] remain

unaltered. The dispersion relation (Equation 5.121) is modified to:

( ) 01
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3
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2

2

2

=
⋅−

−−
βωγ

ω
ω
ω

ρρ
kc

bpe (5.125)

where cVb /0 =β  and ( ) 212
00 1

−
−= βγ .

We have already learnt how to solve this equation.
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Chapter 6

KINETIC DESCRIPTION OF PLASMAS

6.1. Back to the Vlasov-Maxwell Way

We have come back full circle! In Chapter 2, we started with the phase-space

description of N discrete particles and then transformed it into a continuum two-fluid and

finally one fluid description using several averaging processes. After investigating some

characteristics of the one-fluid and two-fluid descriptions, we now deal head-on with N

discrete particles, electrons and protons, using the Vlasov equation. In this description, we

work with particle distribution  functions in the phase space of velocities and positions. The

time evolution of the distribution function defines the stability or otherwise of the system.

Plasmas are particularly interesting because they often submit to, or support, or generate,

nonthermal (non-Maxwellian) and non-equilibrium distributions for finite durations of

time. In other words, different species of particles can have unequal temperatures. Even a

single species of particles can have different temperatures corresponding to different

degrees of freedom. The free energy contained in these non-equilibrium distribution

functions is then released in the form of heat and radiation. Plasmas are valued for their

intrinsic cooperative nature due to which the transport, dissipate and radiative processes

proceed at anomalously large rates as compared to single particle processes. Several

astrophysical sources with extremely high luminosities with spectral energy distribution far

from that of the blackbody, often showing variability on extremely short time scales,

warrant the operation of coherent plasma processes. In this chapter, we shall study what is

known as the kinetic or microscopic equilibrium and stability of an electron – proton

plasma.
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6.2. Kinetic-Equilibrium of an Electron-Proton Plasma

The equilibrium is now determined from the Vlasov equation, one each for electron and

proton species, and Maxwell’s equations. Neglecting collisional processes, we write the

Vlasov equation for electrons as (Chapter 2):

( ) ( ) ( )
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(6.1)

In the absence of electric and magnetic fields, in equilibrium, Equation (6.1) reduces to:

0=
∂
∂
⋅

r

f
V eρ
ρ

(6.2)

which implies that the equilibrium single particle electron distribution function, ef , must

be independent of the space and the time coordinates and is a function only of velocity. For

example, the Maxwell-Boltzmann Distribution of velocities expressed as:

( ) 





−





=

eB

e

eB

e
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2
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0 π
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, (6.3)

is a solution of Equation (6.2). As a matter of fact, we can choose for ef , any function

which depends only on the constants ia , of motion of a particle, since

( ) 0,..., 21 =
∂
∂

=∑
dt

da

a

f
aaf

dt

d i

i i

e
e (6.4)

We must remember that constants of motion are functions of ( )Vr
ρρ

, and are independent of

time only for each single particle’s motion. In general, ia are functions of ( )tVr ,,
ρρ

. When ia

are independent of time, so is ef  – the equilibrium distribution function.
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The first example, perhaps, of a constant of motion independent of time is the total

energy. For a free particle, the total energy is ( )22mv  and the Maxwell-Boltzmann

distribution function (Equation 6.3) is realized. For electrons executing circular motion in a

uniform magnetic field, the total energy, the energy associated with motion perpendicular

to the magnetic field and the angular momentum are all constants of motion. Thus, the

electron distribution function in the presence of magnetic field could be represented as:

( )
( ) ( ) 
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e
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e
e 22
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2

//

2
//

21
//

23
0

ππ

ρ
, (6.5)

where // and ⊥ are with respect to the direction of the magnetic field.

In slowly varying fields, the adiabatic invariants play the role of the constants of

motion. We have studied in Chapter 3 that in a magnetic mirror, charged particles with

velocities inclined at small angles to the magnetic field escape from the system; the

resulting phase space distribution of the particles is known as the Loss-Cone Distribution.

The condition for the escape of particles from a magnetic mirror has been derived in

Chapter 3. It says that for a given value of zV , particles with zpVV <⊥  are absent from the

system, and the loss cone angle Mθ  is given by pM
1tan −=θ .

One representation of the Loss-cone distribution function is (Figure 6.1):

Figure 6.1. Representation of the Loss-Cone Distribution Function feL.
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which reduces to a Maxwellian for 0=p . Here Θ  is the unit step function which is unity

if its argument is greater than zero and zero otherwise.

6.3. Kinetic Description of Electron-Plasma Waves and Instabilities

After determining the kinetic equilibrium, we would like to find out if this equilibrium

is stable or not. For this purpose, we perturb the plasma so that its two distribution

functions, one for electron ( )ef  and the other for protons ( )if , are given by

( ) ( ) ( )tVrfVrftVrf sss ,,,,, 10

ρρρρρρ += , (6.7)

where the species index s  stands for e  (electrons) and p (protons). The linearized Vlasov

equation
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(6.8)

is then obtained by assuming 01 ss ff << . Here, 1E
ρ

and 1B
ρ

 are the first order electric and

magnetic fields to be determined from Maxwell’s equations. There are no zeroth order

electric and magnetic fields.

In order to get familiarity with the kinetic approach, we first consider the simplest and

the most instructive case of electrostatic oscillations ( )01 =B
ρ

. We treat protons as a

positively charged background providing charge neutrality to the plasma. The Vlasov

equation for the electronic component of the plasma, therefore, becomes:
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The electric field 1E
ρ

 is determined from Poisson’s equation:

VdfE e

ρρρ
∫−=⋅∇ 11 4π . (6.10)

Again assuming a plane-wave type variation for 1ef  as

( ) ( ) ( )[ ]trkiVftVrf ee ω−⋅= exp,, 11

ρρρ
, (6.11)

we find from Equations (6.9) and (6.10):
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where for electrostatic perturbations, 1// Ek
ρρ

and 
k

k
k

ρ
=̂  have been used.

The evaluation of the integral in Equation (6.12) is a trifle tricky since the integrand

diverges for ω=⋅Vk
ρρ

. It was the Russian physicist Lev Landau (Landau 1946) who

realized the importance of the singularity at ω=⋅Vk
ρρ

and showed a way to handle it. He

stressed that this problem must be treated as an initial value problem, which means that the

perturbations can be Fourier decomposed in space but we must use the Laplace transform

for the time coordinate.

We shall consider first some special cases.

High Phase-Velocity

The case with high phase velocity i.e., for >>kω  the thermal velocity thV , one can

carry out the integration by parts to find the dispersion relation

( ) 0
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2

2

1 〉−〈= −kV
k

x
e ω

ωρ (6.13)
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where the 0<>  is calculated using 0ef . In the limit ∞→
k

ω
 the dispersion relation

becomes
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For a stationary plasma 00 =〉〈 xV  and for an isotropic distribution eof , 
m

Tk
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x =〉〈 2  for T

as the temperature of the plasma. Thus the dispersion relation reduces to:
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This is known as the Bohm-Gross Dispersion Relation. This is identical to the dispersion

relation of the electron-plasma waves obtained in the fluid description.

Landau Damping

The major difficulty in evaluating the integral in equation (6.12) is the pole at kVx
ω= .

One way out is to include collisions using the krook collision model. The Boltzmann

equation then reads

1
1
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e
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and the dispersion relation becomes
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The Landau prescription for handling this integral after taking the Laplace transform in

the time coordinate and using the causality condition ( ) 0=tf  for t < 0, consists of using

Plemelj formula

( )x
xx

kVi
kV

P
ikV

−−
−

=
+−

ϖπδ
ϖνω

11
, (6.18)

where P stands for the Cauchy’s Principal value integral. We find a new contribution to the

dispersion relation due to the Dirac-delta term and it is
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and the complete dispersion relation becomes:
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We find the real part  Rω of the frequency  ω  to be:
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under the approximation that the thermal term ( ) 222 23 peTe
Vk ω<<  and the imaginary part 1ω

to be:
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The value of Rω  is identical to that obtained with the two-fluid description of plasmas. But

we now have an imaginary part Iω  with a negative value even in the absence of collisions.

This is a major outcome of the kinetic approach. The electron-plasma waves suffer
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damping, known as Collisionless or Landau Damping. It has originated from the presence

of electrons with velocity equal to the phase velocity of the wave. Such electrons are called

Resonant Electrons. They move with the phase velocity of the wave and therefore see an

almost static electric field 1E
ρ

. Under such conditions, electrons and the wave can exchange

energy between themselves: the electrons can gain energy from the wave, resulting in the

damping of the wave, or the electrons can lose energy to the wave, resulting in the

amplification of the wave. Which of the two processes occurs is decided by the electron

distribution function ( )Vfe

ρ
0 . We have found that the wave damps for the Maxwellian

distribution function because it has
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A velocity distribution with
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gives a positive value of 1ω  and the wave amplitude 1E
ρ

 grows as ( )tIωexp . This produces

the circumstances of an Instability. We have seen earlier that an electron beam passing

through an electron-proton plasma gives rise to an instability. The one dimensional velocity

distribution function of an electron beam of velocity 0V  in the x direction and temperature

bT  can be represented by the drifted Maxwellian as:
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The total equilibrium electron distribution function 0ef  is, therefore, given by (Figure 6.2):

Figure 6.2. The Electron Distribution Function Consisting of a Superposition of Two

Maxwellian Velocity Distributions has a Region of Positive Velocity Gradient (e.g.

Equation 6.26).
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Following the procedure outlined alone, we can find the dispersion relation and the

imaginary part of the frequency is the growth rate of the beam-plasma instability. We can

also study kinetic instabilities in magnetized plasmas, but at a price and the price is the hard

work that one has to do to deal with this much more complex system.
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