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ABSTRACT 
This paper presents a new statistical analysis of the least mean 
fourth (LMF) adaptive algorithm behavior. Nonlinear recursive 
equations are derived which predict the behavior of the first and 
second order moments of the adaptive weights for Gaussian in- 
puts. These recursions can be used to predict the mean square er- 
ror (MSE) behavior. The new model improves the available mod- 
els in that it predicts both the transient and steady-state behaviors 
for measurement noise having any zero-mean probability density 
function (pdf) and for any signal-to-noise ratio. This is important 
because the LMF algorithm is known to outperform the LMS al- 
gorithm for non-Gaussian noise distributions and for large signal- 
to-noise ratios. In addition, the new model explicitly shows the 
dependence of the algorithm's dynamics on the initial weight con- 
ditions. Computer simulations illustrate the accuracy of the new 
model in predicting the algorithm behavior. 

1. INTRODUCTION 

The LMS adaptive algorithm is the most employed adaptive algo- 
rithm in a variety of practical applications, maily due to its sim- 
plicity of implementation [l]. Analytical models for the LMS al- 
gorithm behavior under different input conditions are available. 
This facilitates the design and adds to its popularity. Adaptive al- 
gorithms based on higher order moments of the error signal have 
been shown to perform better than LMS in some important appli- 
cations. However, the practical use of such algorithms has been 
restricted due to the lack of accurate analytical models to predict 
their behavior. 

The LMF algorithm seeks to minimize the mean fourth error, 
which is a convex function (and thus unimodal) of the weight vec- 
tor [3], [2]. It has been shown in [3] that the LMF algorithm 
outperforms the LMS algorithm when the additive noise in non- 
Gaussian. In such cases, the LMF algorithm can lead to much 
lower noise in the weights for the same speed of convergence. In 
[4], it was shown that the LMF algorithm can outperform LMS 
with gaussian noise for a sufficiently high signal-to-noise ratio 
(SNR). 

Reference [3] presented a stochastic analysis of the LMF al- 
gorithm behavior about the optimum weigth error. Thus, the an- 
alytical model derived in [3] is accurate in steady-state. In the 

transient phase of adaptation, the model in [3] is accurate only for 
very small SNR, an uncommon practical situation. The simulation 
results in 131 also revealed that the algorithm's stability is depen- 
dent on the initial weight conditions. The analytical model derived 
in [3], however, cannot predict this dependence. [5] extended the 
analysis in [3] to include the transient behavior, but the analysis 
considered only the case of Gaussian noise. More recently, [6] 
presented an analysis based on energy arguments for a class of al- 
gorithms that use nonlinear error functions for weight adaptation. 
This class includes the LMF algorithm. The analysis is restricted 
to the development of a recursive equation for the quadratic norm 
of the weight error for Gaussian noise. No expression is derived for 
mean weight behavior or for MSE. [6] also shows that the stability 
of the LMF algorithm depends on the initial conditions, although 
this dependence is not explicitly determined. 

This paper presents a new stochastic model for the behavior of 
the LMF adaptive algorithm. The new model assumes a zero- 
mean, wide-sense stationary Gaussian input and any zero-mean 
symmetric probability density function for the additive noise. Re- 
cursive equations are derived for the mean weight, for the weight 
error correlation matrix and for the MSE. The new model accu- 
rately predicts the algorithm behavior in both transient and steady- 
state for any SNR. It also clearly shows the dependence of the con- 
vergence properties on the initial conditions. Monte Carlo simula- 
tion results are presented to illustrate the accuracy of the proposed 
model. 

2. MEAN WEIGHT BEHAVIOR 

Figure 1 shows the block diagram of the problem studied. I@ = 

system. W(n)  = [wo(n), ~ ( n ) ,  ...,w~-l(n)]~ is the adaptive 
weight vector. z(n)  is assumed stationary, zero-mean and Gaus- 
sian with variance 0,'. X(n)  = [z(n),z(n - l), ...,z(n - N + 
1)IT is the observed data vector. z ( n )  is the measurement noise, 
assumed stationary, white, zero-mean with variance 02 and uncor- 
related with any other signal. y(n) is the adaptive filter output and 
e(n )  is the error signal. 

[wol 0 0  w1, ..., ~b-~]' is the impulse response vector of a linear 

The LMF algorithm weight update equation is [3] 
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where p is the adaptation constant. Defining the weight error vec- 
tor V(n)  = W(n)  - Wo about optimal solution, (1) can be written 
as 

~ ( n  + 1) = ~ ( n )  + pe3(n)x(n) (2) 

From Fig. 1, e(.) = z (n)  - XT(n)V(n) .  Using this expres- 
sion in (2), yields: 

V ( n  + 1 )  = V(n)  

As z ( n )  is zero-mean, i.i.d. and has zero odd moments (sym- 
metric pdf), the expected value of (3) is given by 

E[V(n + l )]  = E[V(n)] 

- 3pE[z2(n)lE[X(n)XT(n)V(n)l (4) 

- p ~ [ ( ~ T ( n ) v ( n ) ) 3 ~ ( n ) ~  

To proceed with the calculations, it is assumed that X ( n )  and 
V(n)  can be considered independent for sufficiently small p [I]. 
Thus EIX(n)XT(n)lV(n)] = E[X(n)XT(n)]  = R (correla- 
tion matrix of X ( n ) ) .  The first expectation in (4) is then given 
by 

E[X(n)XT(n)V(n)] = RE[V(n)] ( 5 )  
The second expection, conditioned on V(n) ,  can be written as 

E[(XT(n)v'(n))3X(n)IV(n)1 
= E[(XT(n)V(n))2X(n)XT(n)V(n)lV(n)l (6)  

= E[(XT(n)v(n))2X(n)XT(n)IV(n)lV(n) 

Using the same methodology as in [7], (6) can be written as 

E[(y l )2X(n )XT(n ) lV(n ) l  = 

EIX(n)XT(n)Iv(n)lE[(Yl l2 IV(n)l (7) 

+ EIYIX(n)IV(n)lE[ylXT(n)lV(n)lB(Yl IV(n)) 

where B(YlIV(n)) = E[v&(n)l (* E[v41V(n)l - E[yTIV(n)l) 

and yl = XT(n)V(n).  Note that for z(n)  zero-mean Gaussian, 
yl (n) is also zero-mean Gaussian when conditioned on V(n) .  Us- 
ing again the independence assumption, the terms in (7) are given 
by 

Using the above results in (6) leads to 

Averaging (9) over V ( n )  requires extra approximations, since the 
pdf of V ( n )  is not known. Assuming slow learning and N suffi- 
ciently large, the following approximations are used: 

i. E[VT(n)RV(n)RV(n)] 

ii. E[RV (n) VT (n) RV( n)] 

x E [  vT (n)RV (n)]RE[ v (n)] = t T (RK(  n) )RE[ V (  n)] 

x RE[V( n)]E[ VT (n)RV(n)] = RE[ V (  n)]tr (RK( n) ) 

where K(n)  = E[V(n)VT(n)] is the correlation matrix of V ( n )  
and tr( .) represents the trace of a matrix. Approximations (i) and 
(ii) are based on the fact that each component ~ ( n )  of V(n)  con- 
tributes to only N of the N 2  terms in VT(n)RV(n).  Thus, for 
lar e N, each vi(n) can be considered weakly correlated with 

Using these approximations, the expected value of (9) becomes 

v P (n)RV(n). 

E[(XT (n)  V(n))3X(n)] x 3tr(RK(n))RE[V(n)] (10) 

Using (10) and ( 5 )  in (4) yields an expression for the mean 
weight behavior 

Note that the model of [3, Eq.(21), for K=2] reduces to 

The two models (1 1) and (12) tend to coincide for very small 
SNR. For moderate and large SNR, the contribution of K ( n )  in 
(1 1) will improve the model accuracy during the transient adapta- 
tion phase. Finally, (1 1) evidences the dependence of the LMF 
algorithm dynamic behavior on the initial condition K ( 0 )  = 

The next section presents the derivation of a recursive model for 
K(n)  = E[V(n)VT(n)],  which is required for (11). This result 
will also be used to determine the MSE behavior. 

V (  0)VT (0) .  

3. SECOND MOMENT ANALYSIS 

Multiplying (3) by its transpose and taking the expected value 
yields 

The same technique used in (3)-(9) can be used to determine 
the expected values in (13). Assuming independence of X ( n )  and 
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V(n) ,  the expectation in the second line of (13) yields 

E[e3(4(V(73)XT(4 + X(n)VT(n))l 
= -30: (RE[V( n) VT (n)] + E [  v (n) vT (n)] R) 
- 2RE(V (n) VT (n)RV(n) VT (n)] 

- E [  vT (n)RV( n)RV( n) vT (n)] 
- 2E[V( n) V T  (n)RV (n) VT (n)]R 

- E[  V (  n)  VT (72) VT (n)RV( n)] R 

(14) 

Using the same reasoning used to obtain (lo), the moments of 
V(n)  with order higher than 2 in (14) can be approximated by: 

i. E[V( n) VT (n)RV (n) VT (n)] 

= E[ VT (n) RV(n) V(n)VT (n)] 
x E[VT (n)RV(n)]E[ v (n) VT (n)] = t r ( RK( n) ) K (  n) 

x E[VT(n)RV(n)]RE[V(n)VT(n)] 
= tr(RK(n))RK(n) 

x E[V (n) VT (n)]E[ VT (n)RV( n)] = tr  (RK (n))  K (  n) 

E[e3(n)(V(73)XT (n) + X(n)VT(n))l  

i i .  E[VT (n)RV(n)RV( n)VT (n)] 

222. E [  V (  n) VT (n) vT (n) RV( n)] 

Using these approximations in (14) yields 

x -3(0: + t r (RK(n)) )  (RK(n)  + K(n)R) 
(15) 

In determining the last expected value in (13), the terms 
E [ ( X T ( n ) V ( n ) ) 2 k X ( n ) X T ( n ) ]  are neglacted fork > 1. These 
terms represent moments of order higher than two which are mul- 
tiplied by p2. Thus, their influence can be neglected. With this 
consideration, 

E[eG(n)X(n)XT(n)] x E[.6(n)]R 

+ 15E[z4(n)] (tr(RK(n))R + 2RK(n)R) 
(16) 

Using (1 6 )  and (15) in (1 3), a recursive expression is obtained 
for the correlation matriz K ( n )  = E[V(n)VT(n)]: 

K(n + 1) = K(n)  

- 3p(0: + t r (RK(n)) )  (RK(n)  + K(n)R)  

+ p2 (15E[z4(n)](tr(RK(n))R + 2RK(n)R)) 

+ p2E[z6(n)]R 
(17) 

Eq. (1 7) can now be used in ( 1  1) to determine the mean weight 
behavior. Some interesting comments are in order regarding (17). 
First, note that the term controlling the dynamics of K(n)  is itself 
a function of K(n).  This shows that the convergence depends on 
the initial conditions. Second, (17) shows that, contrary to what 
happens with the LMS algorithm, the transient behavior of the 

LMF algorithm behavior is affected by both the noise power an 
by the noise pdf. E[z2(n)] = a: and E[z4(n)] affect the transient 
behavior (stability and convergence speed). E[z6(n)] affects the 
steady-state behavior. 

Using the results just derived, it is also possible determine the 
MSE for the LMF algorithm, since [ 11 

t (n)  = 0; + tr(RK(n)) (18) 

The new analyhcal model for the LMF algorithm behavior is 
then composed by expressions (1 1), (1 7) and (1 8). 

4. EXAMPLES 

The model derived in this paper has been tested in several simu- 
lations using different noise distributions. This section presents a 
simulation example to illustrate the accuracy of the model. Con- 
sider the system in Fig. 1 with W o  = [0.3030; 0.8081; 0.5051IT, 
WoTWo = 1. z(n) is uniformly distributed with 03 = 0.1. 
The input signal is an autoregressive process defined by ~ ( n )  = 
az(n - 1) + y(n) (0 < a < 1). The variance 0; of y(n) was 
chosen equal to 1. The weights were initialized at W(0) = 0. Fig. 
2 shows the mean behavior of the first weight derived from (1 1) 
and (1 7), as well as from the model in [3] (Eq. (1 2)), for two val- 
ues of p: p1 = 0.0035 M and pa = 0.00035 z w, for 
a = 0.6, yielding an eigenvalue spread of R equal to 6.55. Simu- 
lations are averaged over 50 runs. The other weights have similar 
behavior. The value for hax was obtained by simulation. Fig. 3 
shows the MSE derived from (17), (1 8), by simulation (50 runs) 
and also from the model in [3], for the same values of p~ and p2. 
Fig. 3 also shows the mean square error during transient, averaged 
over 200 runs, for the same values of p1 and p2. Fig. 4 is equiv- 
alent to Fig. 3, but for a = 0.875, yielding an eigenvalue spread 
of R equal to 30.60. The MSE is shown again for two values of 
p: p3 = 0.0013 x and p4 = 0.00013 x w.  The 
value for pmax was again determined by simulation. Note that the 
new model accurately predicts the algorithm behavior, even for p 
as large as pmao/2. 

5. CONCLUSION 

This paper presented a new statistical analysis of the LMF algo- 
rithm. The new analysis improves previous results in that higher 
order moments of the weight error vector are not neglected, but 
approximated using assumptions valid for a large number of filter 
weights. Recursive equations were derived for the first and second 
order moments of the adaptive weights for a stationary Gaussian 
reference signal. The model accurately predicts the algorithm be- 
havior in both transient and steady-state phases. It is valid for any 
zero-mean noise probability density function and for any signal- 
to-noise ratio. Computer simulations illustrate the accuracy of the 
new model in predicting the algorithm behavior for different val- 
ues of step size. 

Though the analysis was based on assumptions of slow learn- 
ing and large number of weights, the results show excellent match 
between theory and simulations even for reasonable large p and 
small number of taps. Nevertheless, a small p is usually preferred 
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in practical applications, where only one realization of the pro- 
cess is available and the fluctuations about the mean weight values 
should be as small as possible. 
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Fig. 2. Mean Value of First Weight (a = 0.6). 
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Fig. 3. Mean Square Error (a = 0.6). 

Fig. 1. Block Diagram. 

Fig. 4. Mean Square Error (a = 0.875). 
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