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We find the conditions for a chaotic system to transmit a general source of information efficiently.
Transmission of information with very low probability of error is possible if the topological entropy
of the transmitted wave signal is greater than or equal to the Shannon entropy of the source message
minus the conditional entropy coming from the limitations of the channel~such as equivocation by
the noise!. This condition may not be always satisfied both due to dynamical constraints and due to
the nonoptimal use of the dynamical partition. In both cases, we describe strategies to overcome
these limitations. ©2003 American Institute of Physics.@DOI: 10.1063/1.1513061#
d

-

f i
il-
al
om
ys
g
ni
in
c

on
l
ts
ne
tio

is
on
ise.
ized
igh
or
and
or
s a
i-

the
ion
be-
on
dle

urce
t
noise
be
into

tem
ingle
the
el.
the

mu-
ple
is

sig-
ded
un-
e,
ns
bit

form
u-
In communication, one requires the source of informa-
tion to be efficiently transmitted. In other words, the in-
formation should be transmitted quickly and with very
low distortion. While in traditional communication
schemes, the upper bounds for high efficiency is impose
by the channel properties, in communication with chaos
this upper bound is dependent on the properties of the
dynamical system being used. In this paper, we classify a
dynamical system according to its ability to encode a gen
eral source of information that can be transmitted and
recovered by the receiver with very low distortion. So, in
general terms, we argue that transmission of information
with very low probability of error can be accomplished if
the dynamical rate at which the information is generated
by the chaotic system„i.e., the topological entropy of the
system… is greater than or equal to the rate at which the
source message is being generated„i.e., the Shannon en-
tropy of the source message… minus the conditional en-
tropy associated with channel limitations.

I. INTRODUCTION

We consider a communication system to be efficient i
transmitsquickly a source message with very low probab
ity of error. In communication, the source message is usu
encoded into another message, which is modulated in s
sort of wave signal, and then transmitted through the ph
cal medium. In a recent paper,1 we showed that the encodin
and the modulation processes in a chaos-based commu
tion system can be integrated in a single dynamical encod
process. In another words, given a source message, we
find an encoded trajectory which already obeys the c
straints of the channel and it is, therefore, the wavesigna
be transmitted. Thus, the encoding trajectory represen
chaotic wave signal which is then transmitted over a chan
It was also shown in Ref. 2 that chaos-based communica
1451054-1500/2003/13(1)/145/6/$20.00
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is highly efficient. In other words, the source message
transmitted carrying the maximum amount of informati
and with a high level of robustness in the presence of no

The fundamental argument that has been emphas
about using a chaotic-based communication system is h
efficiency at low cost. In fact, a nonlinear chaotic oscillat
that generates a waveform for transmission can be easily
efficiently built, while the electronics that is necessary f
encoding the information in the chaotic signal remains a
low-power and inexpensive microelectronic circuit. In add
tion, chaos-based communication can perform efficiently
main tasks that are expected from a digital communicat
system nowadays, as we have shown in Ref. 1. In fact,
sides transmitting information through a communicati
channel, a digital communication system must also han
the following two fundamental functions:~i! source encod-
ing, which compacts, compresses, and encrypts the so
message, and~ii ! channel encoding, which guarantees tha
the encoded message is robust against the presence of
in the channel. Traditionally, those two functions have to
done independently and each one encodes one bit stream
another. On the other hand, in a communication sys
based on chaos those functions can be performed in a s
shot by the subsystem that executes the modulation of
signal for transmission over the communication chann
Thus, we can have a communication system that inherits
most important advantages of the analog and digital com
nication system and, at the same time, is much more sim
and efficient. This integrated and high efficient scenario
possible because of the intrinsic properties of a chaotic
nal, which can be advantageously exploited to carry enco
messages efficiently. This efficient scenario can also be
derstood in terms of the flexibility that chaotic signals hav
allowing one to operate the usual communication functio
into the chaotic wavesignal, instead of operating on the
stream. So, in chaos-based communication, one can per
all the functions at the physical level while digital comm
© 2003 American Institute of Physics

euse of AIP content is subject to the terms at: http://chaos.aip.org/about/rights_and_permissions



he
x

nt
as
c
ti
m

t b
b
r

w
a
ti

e
g
n

b
e

o
os

ha
ur
d-

il

po
no
m

he
th

th
t

th
m
st

a
a
a
t
is
li
e
e

op
o
u
je
th

er
ime
ry

e

-
tra-

e is
oci-
ma-
ence
-
rce
e
ure
der-
ned

no

he
cal
he

rac-

f

n-

he

em.
ory,
s,

146 Chaos, Vol. 13, No. 1, 2003 Baptista, Macau, and Grebogi

D

nication might need to perform the various functions in t
software level, which might expend too much time. The fle
ibility of the chaos-based communication system is adva
geously used to create a fast cryptographic chaos-b
system.3 In addition to all these characteristics, we conje
ture that the understanding of chaos-based communica
can help us in the understanding of biological complex co
munication processes.

In this paper, we present a general condition that mus
obeyed by a particular dynamical system so that it can
used for efficient chaos-based communication. Our main
sult is that the transmission of information with very lo
probability of error can be accomplished if the dynamic
rate at which the information is generated by the chao
system~i.e., the topological entropy of the system! is greater
than or equal to the rate at which the source message is b
generated~i.e., the Shannon entropy of the source messa!
minus the conditional entropy due to the channel limitatio
~such as equivocation caused by the noise in the channel!. To
demonstrate this statement, we establish the connection
tween thetheory of information,4,5 that is used to measur
the amount of information of the source, and thetheory of
dynamical systems,6–10 that is used to measure the amount
information of the encoding trajectories. We treat cha
based communication as two separate problems:~i! We
specify the conditions under which a dynamical system
the potential to create trajectories that encodes the so
message.~ii ! We specify conditions under which the enco
ing chaotic trajectory, even in the presence of bounded
unbounded noise in the transmission channel, has the ab
to carry the information of the source.

We classify the dynamical system on whether the to
logical entropy is greater, equal, or smaller than the Shan
entropy. For the case in which it is equal we call the dyna
cal system as anoptimal encoder, because of its ability to
handle the information of the source just rightly. When t
topological entropy is greater than the Shannon entropy,
dynamical system has information to spare—a situation
is necessary when handling noise and dropouts. When
topological entropy is less than the Shannon entropy of
source message, we argue ways to encode the source
sage such that the nonoptimal dynamical system can
provide the encoding trajectories that are transmitted.

With respect to the encoding of the source, problem~i!,
it might be common to have a potentially optimal dynamic
system, whose capacity is not being fully utilized. In th
situation, we say that the system is being misused as it h
pens when one makes a wrong placement or choice of
phase-space partition~the partition of the phase space that
responsible for the encoding of trajectories into symbo
sequences, the basis for the dynamical process to encod
source message!. When that happens, the information of th
encoding trajectories is less than the topological entr
of the dynamical system. With respect to the second pr
lem ~ii !, the same procedure of choosing trajectories rob
against unbounded noise could be used in selecting tra
tories that could be transmitted over limited bandwid
channels.
ownloaded 10 Apr 2013 to 150.163.34.35. This article is copyrighted as indicated in the abstract. R
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II. INFORMATION OF A DYNAMICAL SYSTEM

Dynamically, in communication with chaos, we consid
the encoding trajectories to be derived from a discrete-t
dynamical process,xi 115 f (xi), whose state space trajecto
$xi% i 50

` , represented byxPR, where eachxi takes values on
the intervalJ5@0,1#, and each point is obtained from th
previous one. LetR5$r 0 ,r 1 ,...,r K% be theK11-symbols
each corresponding to one partition elementvk of the inter-
val J, with k50,1,...,K. By associating symbols to the tra
jectory x through the state space partition, we create the
jectory symbolic sequence,Z. Let qk be the probability
associated to the symbolr k . The probability of having the
trajectoryx within the partitionvk is r(vk).

In chaotic-based communication, the source messag
encoded in the trajectories. An encoding trajectory is ass
ated with a symbolic sequence containing the same infor
tion as the source message. So, while the symbolic sequ
represents the source message~which can serve as a refer
ence with which one has knowledge about how the sou
message is being encoded!, the encoding trajectory is the on
that will be transmitted over the channel. Thus, to ens
efficient encoding of the source message, we need to un
stand how to measure the amount of information contai
in the source and, hence, in the symbolic sequence. If
external manipulation is applied to the systemf , i.e., if there
is no control upon the trajectoryxi , the amount of informa-
tion generated by the dynamical system is measured by

Z~v!5 lim
K→`

1

K (
k50

K

r~vk!lnS 1

r~vk!
D . ~1!

Note that the above formula is partition dependent. T
maximum capacity of information generated by a dynami
system, without external manipulation, is given by t
Kolmogorov–Sinai entropy (HKS) ~Refs. 6, 7! ~also known
as metric entropy! defined to be

HKS5sup
v

@Z~v!#, ~2!

where sup is the supreme over all possible partitions. In p
tice, we calculateHKS by the probabilitiesQe ~with e
51,...,E(P)) of the numberE(P) of possible sequences o
P symbols, in the symbolic trajectoryZ, by using

Q~v!5 lim
P→`

1

P (
e51

E(P)

Qe ln
1

Qe
. ~3!

Note that this function is also partition dependent.
An approximately accurate calculation of the the KS e

tropy is thus given by

HKS5sup
v

@Q~v!#, ~4!

which is now partition independent. We call this quantity t
information rateof the dynamical systemf . TheHKS is con-
nected to the metric characteristics of the dynamical syst
If the Lyapunov exponents are independent of the traject
which is true for Lebesgue almost all initial condition
then11
euse of AIP content is subject to the terms at: http://chaos.aip.org/about/rights_and_permissions
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HKS< (
l i.0

l i , ~5!

where eachl i is a positive Lyapunov exponent of the d
namical system. For ergodic maps,HKS is an invariant quan-
tity for the dynamical system, calculated from its natu
invariant measurem.

In addition to the Kolmogorov–Sinai entropy, which
related to the probability of certain symbolic sequences
appear, we can measure the capacity of the system by
ability it has in generating a certain amount of symbo
sequences. So, the amount of information contained in
symbolic sequence, for a given partitionv, is given by the

W~v!5 lim
n→`

ln@E~n!#

n
, ~6!

where E(n) is the number of accessible~allowed! symbol
sequences of lengthn. We call this quantity theinformation
capacity of the dynamical system for a given partitionv.
Thus, Eq.~6!, like Eq. ~1!, is partition dependent. The max
mum capacity of information generation of a dynamical s
tem is then the supremum of Eq.~6! over all possible parti-
tions,

HT5supv W~v!, ~7!

which is now partition independent. We denominate t
quantity theinformation capacityof the dynamical systemf .
This quantity is equivalent and formally the same as
topological entropy8–10 of the dynamical trajectory. Becaus
of this equivalence,HT can be appropriately estimated by th
numberP(n) of unstable periodic orbits of periodn embed-
ded in the chaotic attractor. These two quantities are rela
by P(n);en* HT ~see Ref. 12 for an efficient method fo
detection of unstable periodic orbits!. In general,

HKS<HT . ~8!

III. INFORMATION OF THE SOURCE

We consider an information source that can be mode
by a discrete memoryless source as the following. Let
random ~memoryless! variable Xi be associated to th
2-symbol 0,1 of the alphabetS, through the partitionV0

5@0,X@ , and V15@X,1#. Furthermore, in this case, onc
X is uniformly distributed,p05p(s0)5X and p15p(s1)
512X are the probability functions for the discrete rando
variable X, considering the partitionV. We consider the
messageM to be a sequence of symbols 0 and 1 that rep
sents the variablesXi . The amount of information, based o
the chosen partition, is defined as the average informa
per source symbol, and is given by the Shannon entropy4

Hs~S,V!5 (
k50

k5K

pk lnS 1

pk
D . ~9!

One important property of the entropyHs is that 0
<Hs(S,V)< ln K, where the upper limit is reached if an
only if pk51/K for all k, which is the case forV50.5. This
upper limit is denoted byHs(S), where we omit the symbo
V in this representation. Note that the Shannon entrop
ownloaded 10 Apr 2013 to 150.163.34.35. This article is copyrighted as indicated in the abstract. R
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defined through the probabilitiespi of a discrete symbol
space. In the approach described in this work, for a be
analogy to the dynamical entropies, we define the Shan
entropy through the probabilitiespi with which the random
variable Xi (PR) visits the different partitionsVK within
the intervalI .

It is often convenient in practice to encode the sou
message both for security~encryption! and to reduce redun
dancy~compression!. The average code-word length^L& for
any source encoding is bounded as^L&>Hs(S), according
to the source-coding theorem, which states that informa
cannot be created by the encoding process itself. Ano
way of looking at the source-coding theorem, better sui
when one uses dynamical systems to encode source
sages, is by measuring the entropy of the encoded mes
Mc . This entropy is calculated by the encoded symbo
alphabetSc and is defined substitutingS by Sc in Eq. ~9!. It
is bounded as

Hs~Sc!<Hs~S!. ~10!

IV. ENCODING WITH DYNAMICAL SYSTEMS

Analogously to the source-coding theorem, as mentio
in the previous section, a general information source~source
message! can be encoded by the chaotic system~dynamic
symbolic sequence! with arbitrarily small error probability
only if the following condition holds:

Hs~S,V!<HT . ~11!

We call this relation as thedynamical source-coding condi
tion. If this condition is not satisfied, we may then try to co
the messageM using another alphabetSc such thatHs(Sc)
<HT . In fact, this was done in Ref. 13. Otherwise, if th
condition is satisfied, there must exist then an encod
scheme that allows the messageM to be encoded by the
trajectory$xj%.

Let us now use the concepts just outlined, obtained fr
the Information Theory and the Theory of Dynamical Sy
tems to analyze specific examples of chaotic-based com
nication systems in order to explore their limits, as spel
out in Eqs.~1!–~10!. Let us consider an information sourc
that can be modeled by a discrete memoryless sourceX,
where the random variablesXi are associated to th
2-symbol 0,1 of the alphabetS through the partitionV0

5@0,x@ andV15@x,1#. Furthermore, in this case, onceX is
uniformly distributed,p05p(s0)5x and p15p(s1)512x
are the probability functions for the discrete random varia
X, considering the partitionV. Consider, as an illustrative
example of a chaotic-based communication system, the
gistic map

xn115 f b~xn!5bxn~12xn!, ~12!

which is a discrete-time dynamical process, to be used
encode the source information. For the logistic familyf b ,
the attractive sets, when they exist, are located in the inte
J5@0,1#. For comparison between the use of informati
theory in a discrete memoryless source and in a dynam
system, we choose a binary alphabet to represent the var
x, so R5@0,1#, and we divide the intervalJ in two parti-
euse of AIP content is subject to the terms at: http://chaos.aip.org/about/rights_and_permissions
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tions, V05@0,x@ and V15@x,1@ (K51). Oncexn is not
uniformly distributed in the intervalJ, q0Þx and q1Þ1
2x.

We now calculateHs , by using Eq.~9!, and the partition
dependent quantitiesQ(x) andW(x), given by Eqs.~3! and
~6!, respectively. By varying the partition positionsx, we
find how Q(x) andW(x) approachesHKS andHT , respec-
tively. Initially, we analyze theb54 case whose logistic ma
is conjugate to the tent map14 which behaves as the Bernou
shift. In this case, the maximum capacity of generating
formation for a dynamical system takes place, i.e., a tra
tory through a generating partition creates all possible s
bol sequences. In Fig. 1, we plotHs , Q(x), and W(x)
versus the partition positionx. We use a trajectory of length
9 000 000 and sequences of lengthP520 for various pos-
sible values ofx. All entropies have the same maximu
value ln(2) forx50.5, because therep05p1 , andq05q1 .
For this partition value,HKS5Q(x)5HT5W(x)5 ln(2).
Some considerations can be drawn from this figure. For
x, Q(x)<W(x) andW(x)< ln(2). Note that Eq.~5! is sat-
isfied since the Lyapunov exponent for Eq.~12! with b54 is
equal to ln(2). A wrong placement of the partition positio
i.e., the xÞ0.5, produces symbolic sequences that do
reflect the whole dynamics of the system. In fact, in this ca
different orbits of Eq.~12! are coded by the same symbol
sequences, limiting the number of possible sequences,
thus reducing the information per symbol. Analogous
choosingx such thatp0Þp1 , Hs of the source is smalle
than that for p05p1 and, thus, reducing the uncertain
about the symbol generated by the source. Another impor
characteristic of the functionW(x) in Fig. 1 is that it is
nonmonotonic. The reason for this is that, as we changx,
some orbits are destroyed but others might appear in t
place. This phenomena is explained in Ref. 15.

For the case in which the system is not a Bernoulli sh
(b,4), the system dynamics impose limitations on the p
sible sequence of symbols that can be generated, and
HT, ln(2). To illustrate this case, we chooseb53.9 in Eq.

FIG. 1. The Shannon entropy, and the quantitiesQ andW, the information
measure of the symbolic sequence generated by the chaotic system wit
without control of the trajectory, respectively. The entropies, as defined
Eqs.~9!, ~4!, and~7!, respectively, are shown forx50.5. We setb54 in Eq.
~12!.
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~12!, and find HKS50.531 739 831 andHT50.562 321 723
~for x50.5). Not all the sequences are generated, since
~12! for b53.9 is not conjugate to a Bernoulli shift. Becau
of condition~11!, the dynamics of Eq.~12! cannot be used to
encode a discrete memoryless source for whichp05p1 and
Hs5 ln(2)50.693 147 180 6, for example. When conditio
~11! is not satisfied, we must code the alphabetS into Sc

such thatHT(R)<Hs(Sc), thus coding the messageM into
Mc . That can be done, for example, by eliminating possi
sequences of the source, like the authors did in Ref. 13,
to runlength constraints. Thus, say that the binary source
alphabetS and the characteristicsp05p150.5, so,Hs(S)
5 ln(2). Suppose that the trajectories are coded by a bin
alphabetR and the dynamics does not allow for the appe
ance of two zeros in a row, and that the other possible
quences of two symbols 01,10,11 are equiprobable. Th
using Eq. ~7! one findsHT(R)50.636 514 168 29. To use
such dynamical system to communicate under this condit
it is necessary to encode the source message into code-w
that does not allow the two-symbol sequence ‘‘00’’~codeS
into Sc). One encoding is by coding ‘‘0’’ into ‘‘01’’ and ‘‘1’’
into ‘‘1.’’ Doing this coding, the probability of appearance o
the symbol ‘‘0’’ in the coded source message isp05 1

3 and
the probability of appearance of the symbol ‘‘1’’ in the code
source message isp05 2

3. Therefore, Hs(Sc)5HT(R)
50.636 514 168 29, and then, the dynamical system can
be used to transmit the coded source messageMc . Another
way to overcome a forbidden sequence of symbols, tha
particular dynamical system might have, is by using a gra
lar partition like the one proposed in Ref. 1. However, t
information capacityHT of a dynamical system that uses
granular partition cannot be larger than the information
pacity of the same system when using a generating partit

V. COMMUNICATION WITH BOUNDED NOISE

Now, we show the limitations on the information tran
mission imposed by noise of the physical medium. For
ample, due to the presence ofe-bounded noise in the chan
nel, it is advantageous to avoid orbits that aree close to the
partition boundary. It makes difficult for the receiver to d
code the information of trajectories which eventually pa
close to the partition boundary if the trajectories are c
rupted by noise during the transmission. So, to have rob
encoding trajectories againste-bounded noise,16,17 we im-
pose a restriction that not all the chaotic attractor, but jus
subset of it can be used as the communication system.
discard the orbits that reach the open interval (x2e,x1e).
The remaining orbits, the ones used for encoding does
fall in this open interval and in all its preimages. They a
therefore, located in a nonattracting chaotic saddle embed
in the chaotic attractor. The return mapping of the nonattra
ing chaotic saddle of Eq.~12! is shown in Fig. 2 fore
50.05. Since the chaotic saddle is a subset of the cha
attractor, its entropyHT(e) is smaller than the one of th
corresponding chaotic attractor,HT . For example the en-
tropy of the set shown in Fig. 2 isHT(e50.05,b54)
50.534 824 014, whileHT(e50,b54)5 ln(2).

To ensure that the encoding trajectory can be deco

and
y
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with arbitrarily small probability of error, we need

HT~e!>Hs~Sc!, ~13!

similar to Eq.~11!, but with the topological entropy calcu
lated using the trajectories in the chaotic saddle. These n
attracting orbits have an entropy smaller than the trajec
of the chaotic attractor. Thus, the nonattracting orbits h
limited capacity to encode a source of information. Mo
over, the derivative of the topological entropy with respec
e is very likely to be zero, since the functionHT(e) versuse
is a devil’s-staircase-like function,16 as shown in Fig. 3. So
slight increases on the gap size does not affect the enco
capacity of the system. In other words, the chosen enco
orbits might be robust against variations of the noise am
tude. The calculation of the nonattracting chaotic set w

FIG. 2. A numerically calculated trajectory~using the triple PIM triple
method! of size 50 000 of the nonattracting chaotic saddle for a gap of
e50.05. We useb54 in Eq. ~12!.

FIG. 3. Topological entropy,HT(e) versus the gap sizee, usingb54.0 in
Eq. ~12!, and nonattracting saddle trajectories of length 200 000.
ownloaded 10 Apr 2013 to 150.163.34.35. This article is copyrighted as indicated in the abstract. R
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orbits that are robust againste-bounded noise is performed i
practice by eliminating some code-words which are kno
to lead the orbits to the gap.

In controlling a dynamical system to obtain a given r
sponse, in order to encode a message, it often happens
the perturbation is applied in critical situations. For examp
if a small perturbation is applied to Eq.~12! when the trajec-
tory is close to the boundaries of the intervalJ, the trajectory
might go toward the attractor at infinity. So, it is appropria
to work with trajectories that are sufficiently far from th
boundaries. This would be another reason for the reduc
of information generation in a dynamical system by elim
nating additional critical regions of the phase space.

VI. COMMUNICATION WITH UNBOUNDED NOISE

Let us model the channel by adding, to the encod
trajectory points, an independent noisy termh i with Gauss-
ian probability distribution of varianceh50.05 and zero
mean. So, every point of the transmitted trajectory rep
sented byxi , is corrupted by noise, i.e., the receiver ge
xĩ5xi1h i . Assuming that the source is a random proce
whatever is the probability distribution of the source symb
the probability distribution of the encoding chaotic trajecto
is given by the probability distribution on the chaotic se
This distribution, numerically obtained, using Eq.~12!, for a
trajectory of 2 000 000 points, is shown with the black line
Fig. 4. The knowledge of this distribution shape is advan
geous when communicating with chaos for the followi
reasons:

~i! For the purpose of security, the analysis of the dis
bution of the transmitted encoding chaotic trajecto
should not reveal any statistical particular behavior
the source symbols. So, whoever has no knowledg
the partitionv, with which it is possible to convert the
trajectory into symbols whose probabilities of appe
ance should be the same as the source symbols o
message, cannot decode the message.

e

FIG. 4. Probability distribution of the encoding trajectoryx ~black line! and
probability distribution of the received noisy trajectoryx̃ ~gray line!. The
horizontal axis represents eitherx or x̃.
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~ii ! The information contained in the chaotic trajecto
per point is given by the Kolmogorov–Sinai entrop
which can also be obtained through the probabi
density,m(x), of the distribution,r(x), shown in this
figure. Thus,

KKS5E
0

1

( l i
1m~x!dx. ~14!

As discussed before, if the positive Lyapunov exp
nents~denoted byl i

1) of the chaotic system does no
depend on the densitym(x), thusKKS5(l i

1 , which
in the case for the logistic mapHKS5 ln(2).

~iii ! For the purpose of filtering, when transmitting the s
nal through a noisy channel, the noisy trajectoryxĩ

has a distribution,g(xĩ), that differs fromm(x), as
one can see by the gray line of Fig. 4. As the info
mation is corrupted by the noise, the distributionm(x)
is changed intog(xĩ). Any nonlinear filter applied to
the trajectory or any other dynamical filter, based
the dynamical system dynamics,1,2 should work so to
make the distributiong( x̃) to be as close as possib
to r(x).

~iv! To understand how the channel affects the transmi
information, we have to define the condition probab
ity as

Hc52pr0,s1
ln~pr0,s1

!2pr1,s0
ln~pr1,s0

!, ~15!

where pr 0 ,s1
means the probability of sending th

symbol ‘‘0’’ and receiving the symbol ‘‘1.’’ If the
modeled channel is symmetric with respect to t
noise distribution, which also means thatpr 0 ,s1

5pr 1 ,s0
, thus Hc522pr 0 ,s1

ln(pr0,s1
). The condition

entropy describes the equivocation caused by
channel, in this case, due to noise. For this particu
noise variance~chosen in order to have a distributio
of the noisy transmitted trajectory very different fro
the distributionr!, the equivocation is very high,Hc

50.417 530 489. Therefore, in order to be able
transmit information with very low probability of er
rors ~under this noise condition!, one needs to encod
the source intoSc such that

HT>Hs~Sc!2Hc , ~16!

where HT2Hc is the amount of information tha
reaches the receiver.

VII. CONCLUSION

In conclusion, by using dynamical systems to gener
the encoding trajectories~which are the wavesignals that a
transmitted over the channel!, one creates a communicatio
system which inherits the characteristics of the respec
dynamical system, in addition to the constraints of the sou
and the channel. The optimal encoding of the source is p
ownloaded 10 Apr 2013 to 150.163.34.35. This article is copyrighted as indicated in the abstract. R
-

-

d

e
r

te

e
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s-

sible when the the information capacityHT of the chaotic set
used as the encoding wave signal is greater than or equ
the entropy of the sourceHs . A nonoptimal encoding arise
whenHTÞHs . When the encoding trajectories are transm
ted over a channel with bounded noise, a subset of the
otic set can be selected, a chaotic saddle, whose orbits
robust to the given noise amplitude, i.e., the noisy encod
trajectories of the saddle can be decoded into the orig
source message without losses. For this case, the cond
for an efficient communication is given byHT(e)>Hs ,
whereHT(e) is the topological entropy of the saddle co
structed for a gap of sizee. When the channel has unbounde
noise, efficient communication is possible whenHT>Hs

2Hc , whereHc is the condition entropy that measures t
information losses due to the existence of noise in the ch
nel.

In a channel with other physical restrictions, such a
limited-frequency bandwidth, efficient communication
possible if one finds a subset of the chaotic trajector
whose typical wavelength are high enough to be transmi
over this channel.

Finally, by combining Eqs.~5! and ~11!, we conclude
that a dynamical system can encode a source if(l i.0l i

>Hs(S), what can be used when one does not want to c
culate the information capacity. Note that this equation
also valid even for higher dimensional systems.
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