
157

&KDSWHU���

&RQFOXVLRQV�DQG�)XWXUH�:RUN

����� &RQFOXVLRQV

In this thesis we have presented a knowledge-based framework for computer animation,

focusing specifically on the aspect of behavioural animation. Behavioural animation is

concerned with animated entities which can develop autonomous behaviours in dynamic

environments. The aim of this approach is to shift most of the control to the entities

themselves because dynamic environments involve an overwhelming number of detailed

motions which are too difficult to be controlled, or scripted, by human animators. We

have thus developed AI techniques to produce control mechanisms that implement

autonomous behaviour.

The framework integrates a number of control structures with features stemming from

some important requirements:

• use should be made of libraries of motions provided in existing animation systems

(Chapter 4) and these motions can be used as basic units in the composition of more

elaborate motions;

• the animated entities are to possess autonomy in developing their motion;

• reasoning about actions is a necessary element of intelligent behaviour [Wilk88];

• the role of the animator should be simplified, concentrating on co-ordinating the

overall animation and giving minimum directions to individual animated objects.

As presented in Chapters 3 and 6, actions representing behaviours can be regarded as

simple statements involving a verb and a number of attributes. The requirements listed

above are basically concerned in transforming such statements into full sequences of

158

known motions that would otherwise be specified by an animator. The implementation

of the framework as an animation system composed by two interacting blocks (Chapter

5) can achieve the transformation mentioned above. This separation into two blocks

occurs because the block comprising the libraries of motions already exists in animation

systems and involves numerical computation which can be adequately programmed in

conventional languages (Chapter 5). While the other block known as the &RQWUROOHU,

which controls the behaviour of the animated entities, deals with concepts or knowledge

which are written and processed as symbols in AI languages. The latter block of

particular interest in our work and it is the focus of the following discussion.

The�&RQWUROOHU solves the problem of motion control of the animated entities. The use of

the blackboard model to implement the &RQWUROOHU permits the structuring of the

components of the problem solving into independent but related modules. Both control

entities, the LQVWUXFWLRQ and the WDVN� are types of structures that implement a conceptual

model of action which are operated by the respective modules. These modules are

procedures of the domain knowledge called NQRZOHGJH� VRXUFHV. The inclusion of

PHVVDJH as a type of entity further extends the capabilities of the agents to effect

interaction between them which results in co-operation. In order to co-ordinate the load

of activities of the animated entities, an additional module to schedule future activities is

added to the &RQWUROOHU. The scheduler starts the instructions in the script in the

specified times and holds the excess of actions generated during the execution of the

animation.

As described above, each module of the &RQWUROOHU implements one specific activity

which can be easily identified and modified when needed. The capabilities of the

&RQWUROOHU can be further extended by adding new modules to the system requiring little

change in the overall control. Such a modular organisation permits the components of

the conceptual framework be represented as computational constructs and be executed in

a specified order.

The concept of the LQVWUXFWLRQ is IOH[LEOH, SRZHUIXO, and XQLIRUP in representing actions

performed by animated entities. It is flexible because it can accommodate a number of

features found in conventional languages such as recursion and parameterisation, and use

them as needed. It is powerful because the representation of an instruction, as being

159

composed of sequences of instructions and other conceptual structures, permits

increasingly complex actions to be represented and to be applied in different contexts.

This also emphasises the re-use of existing instructions as a way of saving work. It is

uniform because the instructions entered by the animator are similar to those started from

within the system during runtime, allowing them to blend naturally. The only distinction

between these types of instructions is that they are annotated with the origin of their

respective source for the purpose of priority rating.

The animation system serves as a tool that assist the animator in the task of generating

animation sequences. As its input the animation system receives the script of high level

commands (e.g., 5 LQVWUXFWLRQV) prepared by the animator. As its output it generates a

detailed script with a sequence of motions commands (e.g., 500 simple motions) that can

be readily performed by the animated entities. The animator can modify the script as

many time as necessary until a satisfactory animation is achieved. The degree of control

over the animation is obtained by modifying the start times, changing the scripted

commands and parameters, or specifying more detailed commands in place of a higher

level one. At the lowest level, “fine tuning” can be made to the detailed script and then

run this directly in the %DVLF�$QLPDWLRQ�6\VWHP. For example, it is possible to change the

definition of the colour of an object or insert commands to set the camera viewpoint and

execute the detailed script without generating it again from the animator’s script. Fine

tuning is an expedient accessible to the animator but it is rarely used. Direct editing of

the detailed script is typically used for the post-processing stage of the animation

process.

As the animation becomes more elaborate so does the motion vocabulary, the simple

adjustment of the animator’s script may become ineffective and the re-evaluation of the

instruction may become necessary. Some of the animator actions can be: the

composition of new instructions or re-structuring the existing instructions at the level of

the &RQWUROOHU, or the programming of new skills performed by the figures at the level of

the BAS. In this thesis we have exemplified a number of instructions reflecting actions

employed in a bar scenario which serve as examples for other scenarios. We have also

presented a number of features related to its implementations such as recursion, grouping

of instructions, parameterisation, etc.

160

The focus of this work has been on developing a framework that provides the animator

with facilities to organise and re-use the high-level motion specification. We employed a

Prolog environment for handling symbolic processing, rule inferencing, and interactive

capabilities. As an important extension to this work we strongly recommend the building

up of a dialogue interface with which the animator could be assisted in the specification

and experimentation of new instructions, or its debugging. The problem is not with the

underlying language that the animator could not be familiar with, but the number of

instructions the animator might have to inspect. Each instruction has a number of

parameters, rules, relations, alternative plans, etc. And the hierarchical tree yielded by

the execution of high-level instruction is complex. Thus, such an interface could be

regarded as an additional layer to be placed on top of the Controller. Consequently the

task of the animator is even easier. Instead of recalling the name of a specific instruction

and its parameters from his memory, he would simply browse the dialogue interface,

select item, and fill slots. As a system developer, the animator may wish to add new

instructions and new tasks, or even extend the current instructions with new alternative

plans. Further discussion is given in the next section.

This framework has the main characteristics of the Calvert’s ideal system [Calv91]. At

the highest level, high-level directions are input in the system through a script. At the

intermediate level, the high-level input gives rise to a detailed script. This script contains

details of movements for the figures to perform which are specified by goal actions: one

part originates from the animator’s script itself; and the other part originates from the

system in the form of default actions, reactions to the environment, and interactions

between agents. These goal actions are developed into full plans that generate simple

commands to input to the BAS. In order to allow editing these simple commands are

stored in a file and run off-line by the BAS. Such a file contains the commands of the

lowest level of the ideal system.

�����)XWXUH�:RUN���7KH�$QLPDWRU¶V�,QWHUIDFH

Currently the debugging of the animation is very awkward because of the poor

interpretative environment provided by the LPA’s IOH[/Prolog. The strategy to solve a

problem, if an unexpected behaviour occurs, is to insert several break points and obtain

161

printouts of the procedures that might give clues about the problem. Thus, the animation

is run and pauses at the break points when data may be displayed through the use of on-

line commands. As the data structures are linked to each other, the links are followed

and displayed one by one. Normally this process must be repeated several times before

the problem is found!

The experience with the current prototype made us to realise that a dialogue interface

would be extremely useful in developing new instructions as well as in their debugging.

The envisaged interface should therefore provide facilities that combine both editing of

the instructions and monitoring their execution. This is important because a process is

composed of pieces of connected instances of data. With such an interface the animator

would not need to find each connection by hand. With the click of a button the piece of

data would be brought up to the screen without interrupting the program. Thus, the

animation program could be run step by step.

The editing capability is important because an instruction is comprised of several pieces

of data (rules, relations, plans, and frames) which are scattered in different files, thus an

editor would help to bring these loose but related components together, allowing the

animator to have an overall view of the instruction under consideration. Thus, the

animator would be able to test and organise the instructions, for example, by composing

a plan, and modifying its parameters, testing the relations used in context identification,

including new slots in the frames, etc. The editor can also be regarded as an interpreter

which would call the correspondent KS (instruction, task, or message) to perform a

“controlled execution” of an “isolated instruction process”. It would allow the links

established between an instruction instance and the nodes of its plan to be observed. The

possibility of changing values in an instance and retrying it would enable the animator to

make a variety of tests. This would be helpful, for example, to spot a wrong parameter

in an instruction plan or a mistyped parameter name.

It is equally important that the interface can monitor the execution of the instructions in

the actual animation context. Because of the amount of data generated, the interface

should organise, in a dialogue window, a number of buttons to display different types of

instances: instruction, task, message, root (process), agent, object, etc. A click on a slot

of an instance containing a name of an instance would pop up a new dialogue window or

162

re-use the same one to show the attributes of that instance. For example, starting with a

list of agents the animator could select an agent from it and display the attributes of that

agent, then the animator can pop up the process currently being executed, and so on. It

is also interesting to display the processes which are currently active or idle. Therefore,

the interface would be useful for browsing the information about processes and for

navigating through linked instances.

Such interactivity would significantly accelerate development work, perhaps by a

hundredfold! The fact that animators do not need to guess or to keep in mind the name

of the instance would be of considerable help. The browsing of a data attributes together

with the display of a 2-D view of an executing instruction is ideal. The interface would

help in the planning or in re-structuring instructions. This is particular important as the

animation vocabulary evolves. The interface can be the third block of the animation

system along with the Controller and the BAS.

�����)XWXUH�:RUN���&RRUGLQDWLRQ�RI�DFWLRQV

The ability to organise opportunistically two or more actions into a single coordinated

one is an important feature that could be included in the Controller as a new knowledge

source or as an additional part of the Scheduler’s activity. This feature is intended to

provide the capability to the agents to display intelligent behaviour automatically. For

example, suppose that a waiter is carrying out his work. He is currently holding one

used glass and he is on the way to collect another one, but suddenly he receives an order

from a customer to bring a drink. At this point a decision can be made with the purpose

of co-ordinating several related actions: either he collects the second used glass because

it is quite near and would not cause too much delay before serving the customer; or he

could put the glass down on the nearest table or counter, and serve the customer; or he

could immediately serve the customer because one of the hands is free. Another example

is a barman serving a customer. If another customer arrives in the meantime and places

an order, the barman continues to serve the first customer, but instead of bringing one

drink he will bring two. Basically it is necessary to identify the activities currently being

carried out along with those still to be carried out by the agent. This is very similar to

the context identification in the sense that the rule identifies the actions to be performed

163

and decides on a plan of action. Thus, possible contexts related to an action are grouped

into a ruleset.

The identification of possible patterns of actions requires the testing of a large number of

rules and this is costly if it is done when every action is scheduled to execute. The

solution is to invoke the specific ruleset for co-ordinating actions when one

corresponding action has been scheduled.

164

&+$37(5�����&21&/86,216�$1'�)8785(�:25.�� ���

10.1 CONCLUSIONS ... 157

10.2 FUTURE WORK: THE ANIMATOR’S INTERFACE ... 160

10.3 FUTURE WORK: COORDINATION OF ACTIONS ... 162

