
26

&KDSWHU��

&RQFHSWV�RI�$UWLILFLDO�,QWHOOLJHQFH

���� ,QWURGXFWLRQ

Artificial Intelligence (AI) is an area of research that is concerned with designing and

programming machines to realise tasks that are usually achieved by intelligent organisms.

More specifically it attempts to model the cognitive process of human beings in solving

problems. According to Chandrasekaran [Chan90], intelligence is a process of

manipulating representations of the world and ideas. In this respect, workers in AI have

produced a variety of tools and techniques to assist in domain oriented applications.

The field of AI can be subdivided into three broad areas: natural language processing,

robotics, and knowledge-based systems [Owen87]. The last two areas are of interest for

behavioural animation and therefore this chapter will concentrate on relevant topics in

these areas. Firstly the terminology used in AI will be considered, followed by

discussions on the nature of actions performed by intelligent beings. Then we present

some principles of problem solving methods employed in knowledge-based systems. It

also includes some issues relating to data representation and control.

���� $,�1RPHQFODWXUH

In order to present a common language for the readers of this thesis and to explain the

approach of the current framework in future chapters, some AI concepts and methods

will be reviewed and whenever possible exemplified.

It is important to observe that there are some differences among AI practitioners in

explaining terms and concepts that have been used for many years in AI. Authors of

27

several AI books and papers [Wilk88, Camp86, Part86] do not hide their frustration at

this problem. Not uncommonly concepts are introduced to the readers through the use

of examples before addressing to the main topic. Others simply assume in advance that

the reader is familiar with the nomenclature used. Evidence of the trouble in defining or

formalising some of the AI terms is given by Wilkins [Wilk88]:

“Reasoning about actions is a necessary element of intelligent behaviour. A
person can scarcely participate in a conversation or go to the store for
groceries without reasoning about how actions taken will affect the
surrounding world... Decades of research in Artificial Intelligence (AI) and
related disciplines have shown this particular human capability to be
extremely difficult to formalize...”

Perhaps this difficulty stems from the following realisation by Campbell [Camp86]:

“Many of the uncertainties about the exact nature of AI are consequences of
the fact that it is a science which does not quite fit in with other categories of
sciences... One of the features which distinguishes AI from most other
sciences is that it refers to objects (programs or conceptual structures
capable of being realized in programs) which are created by humans rather
than objects having a prior natural existence... The psychological or
cognitive-modelling side of the subject is a popular area for debate among AI
workers, but the debate generates more heat than light. Seen from the
viewpoint of most other sciences, the experimental testability of the
computational models’ predictions or behaviour against human behaviour is
extremely doubtful except in a limited area (e.g. parts of the study of vision)
where at least as much neurophysiology as psychology seems to be involved.
This is a controversial opinion!”

Finally, difficulties with terminology is not an exclusive problem of AI, Bergeron

[Berg83] has acknowledged the same problem in computer animation in the early stage:

“...Animation is probably the most ‘esoteric’ field of computer graphics.
From place to place, computer animators do not speak the same language...”

���� 5HDVRQLQJ�DERXW�$FWLRQV

One of the most evident characteristics of the real world is that it is inhabited by

organisms with the capability to perform DFWLRQV. These organisms, which can be

animals, robots, etc.,�are called DJHQWV if they can carry out activities. For our purposes,

the agent in question is a robot with humanoid appearance and implemented as a

program. In contrast, there is a sub-field in AI that uses the concept of DFWRU in a close

28

context of the DJHQW�[Hewi73]. The denomination of DFWRU has been used since the early

stage of computer animation [Reyn82] and currently is used synonymously with DJHQW.

Both are equivalent terms in the sense that they perform actions.

As Georgeff [Geor90] explains that in the course of actions, at any given moment, the

world is in one of a potentially infinite number of VWDWHV or VLWXDWLRQV. A ZRUOG�VWDWH may

be viewed as a snapshot of the world at a given instant of time. And because a state is a

description of the world for an instant of time, there is potentially a collection of facts

that can be observed from a state. More specifically, amidst all these infinite states, the

LQLWLDO and the ILQDO�VWDWHV of an action are the relevant ones for that action. It can be

understood that the LQLWLDO�VWDWH gives some of the condition for an action to be initiated

and the ILQDO�VWDWH contains the outcome at the conclusion of the action. The final state is

also called the JRDO�VWDWH of the action, or simply the JRDO, because that state of the world

will include the results achieved by that action.

According to Georgeff, an HYHQW is any behaviour that occurs in anytime, while an DFWLRQ

is a special case of an event in the sense that it is caused by the agent itself in an

intentional way. From the agent point of view, any other action that is not caused by

that agent or that is caused unintentionally in the nature is called HYHQW. For example,

-RKQ�VWDQGLQJ�XS within the environment is an event for Mary. Thus, Mary may decide

to sit down as a consequence of the event -RKQ�VWDQGV�XS. In nature, a tree shedding its

leaves is an event but not an action. Despite this differentiation, events and actions can

be used interchangeably as synonymous.

The simplest actions are accomplished by a single RSHUDWRU�� for example the 675,36

RSHUDWRU1. An example of a typical STRIPS operator is shown in Figure 3-1 [Tate90].

The SLFNXS operation has a parameter [on which it will be executed if the precondition

holds. The precondition is a logical formula specified by a conjunction of facts, or

relationships, that must be satisfied to allow the lifting of an object [. If the precondition

is satisfied the operator is said to be DSSOLFDEOH�to that world description, thus the object

1 STRIPS is one the first problem-solving systems which introduced the state-based representation used

in planning for big number of system.

29

[is lifted and, as a result of the operation, some facts are deleted and new facts are

added to the world state at the conclusion of the operation. The accomplishment, or

goal, of an operator is the change thus obtained in the world state (e.g., HOLDING(x)).

Such an operation is a deterministic one, since the operator is not interrupted as it

executes.

3LFNXS��[��

3UHFRQGLWLRQ� ONTABLE(x) ^
HANDEMPTY ^

CLEAR(x).

'HOHWH�/LVW� ONTABLE(x),
HANDEMPTY,
CLEAR(x).

$GG�/LVW� HOLDING(x).

)LJXUH�������$�W\SLFDO�675,36�RSHUDWRU�

From the example in Figure 3-1, it is understood that an action stretches for a period of

time where the initial state, the precondition of the action, remains the same from the

beginning of the action until near its conclusion. When the action ends, a list of facts are

deleted and replaced by another; and facts resulting from this update may take part of the

initial state of subsequent actions. Such an assumption about discrete changes of states

is known as WKH� 675,36� DVVXPSWLRQ. In a dynamic world where events are typically

continuous this assumption may not work perfectly because of the mutual interference

that might occur during the performance of an action and the assumptions about the

world may no longer be valid. Georgeff acknowledges that no one has yet provided

adequate semantics for this problem. However, this assumption works well if we restrict

to domains with agents performing non-concurrent activities.

A simple example in which the change of states may be observed is in shown in Figure 3-

2. Suppose that John is in the VHDWHG state and he is ordered to perform a VWDQG� XS

action. At the end of the action he will be in the VWDQGLQJ�XS state. Additionally, it can

be observed that both the action “to stand up” and the goal state “to be in the standing

up position” can be used interchangeably. In this sense both, the pair of states (initial

30

and goal) and the action, are dual to each other in that one does not exist without the

other. That is, there are occasions that it seems to be easier to ask what to do rather

than to ask what we want the world states to be, and vice-versa.

John is seated John is VWLOO seated John is standing up

John, stand up !$FWLRQ

-RKQ¶V�VWDWH

7LPH
change of state

start of the action
goal state

)LJXUH�������&KDQJHV�LQ�-RKQ¶V�ZRUOG�VWDWH�DV�KH�DFFRPSOLVKHV�DQ�DFWLRQ�

More common actions are accomplished by a sequence of operations, specially when the

goals pursued are not so evident as in the single operator case. These operations form a

SODQ of action which give an agent a more complex behaviour. A plan is said to be a

solution to a given problem if it is applicable in the problem’s initial state and, if after

execution of the plan, the goal is true [Tate90]. The applicability of a plan as a whole is

equivalent to that of a single operator with the exception of the number of operators.

That is, if all the conditions of the first operator in a plan hold then the plan is said to be

applicable. Figure 3-3 compares the applicability of both a single operator action and a

multiple operators action for a given world state. The successive application of the

operators produce intermediate state descriptions, until eventually the last operator yields

the states specified as goals.

 Action

Operator

initial state

initial
state

a)

b)

final state

final
state

intermediate
states

 Action

Operator 1 Operator 2 Operator N

)LJXUH�������$SSOLFDELOLW\�RI�VLQJOH�DQG�PXOWLSOH�RSHUDWRUV�FDVHV�

31

���� 3ODQ�6\QWKHVLV

Plan synthesis concerns the construction of a course of action for an agent to achieve

some specified goals [Geor90]. This process is commonly known as SODQQLQJ. The

system that has the capability to construct plans is called a planning system or planner. It

is also called SUREOHP�VROYHU because its activity is to find sequences of actions that solve

problems, that is, goal satisfaction.

There is a diversity of problem solving systems. Generally what differentiates one

planner from another is the reasoning method (search mechanism) that operates in the

construction of plans. Cohen et al. [Cohe83] identify four main approaches to planning

which are found in most of AI problem-solving system: QRQ�KLHUDUFKLFDO� SODQQLQJ,

KLHUDUFKLFDO�SODQQLQJ, VFULSW�EDVHG�SODQQLQJ, and RSSRUWXQLVWLF�SODQQLQJ. Most of the

planning approaches are typically hierarchical with the exception of non-hierarchical

planning. Hierarchy in this context implies a relationship of dependence between one

element with a few other sub-elements.

������ 1RQ�KLHUDUFKLFDO�3ODQQLQJ

Non-hierarchical planning is the most primitive approach in which the planner only deals

with a simple form of actions (the operators) without resorting to any form of abstraction

as in the hierarchical case. Given a set of one or more goals, the planner chooses the

actions with goals that match with those sought. These actions form the initial plan from

which a consistent plan will be developed by the planner. This is attempted by re-

ordering the actions or interleaving new actions into the working plan if there are gaps

between goals.

Figure 3-4 shows a simple example of planning in the blocks world [Wilk88]. For

example, to achieve the result of a block A on top of a block B a robot must put block

A on block B. The condition to accomplish this action is that the top of both blocks are

clear. In the case where the condition is not completely satisfied (a block C is on top of

a block B), it is necessary to create a new goal to satisfy the condition of having the top

of B cleared. This kind of planning blindly attempts a number of alternatives and, if it

32

succeeds, it may create an excessively long sequence of operations to achieve a simple

goal.

$

%

*RDO�VWDWH�
 A on top of B

,QLWLDO�VWDWH�
 C on top of B
 A on table

&

%$

action: Put A on B
goal: A on top of B
condition: clear A,

 clear B

$

&%

)LQDO�VWDWH�
 A on top of B
 C on table

action: Unstack B
goal: clear B
condition: box(x),

 x on top of B

%$ &

&RQGLWLRQ�FOHDU�%
�LV�QRW�VDWLVILHG�
6DWLVI\�FOHDU�%��ILUVW�

action: Put A on B
goal: A on top of B
condition: clear A,

 clear B

6HTXHQFH
RI�DFWLRQV

)LJXUH�������([DPSOH�RI�WKH�QRQ�KLHUDUFKLFDO�SODQQLQJ�DSSURDFK�

������ +LHUDUFKLFDO�3ODQQLQJ

Hierarchical planning overcomes the problem of lack of co-ordination in the non-

hierarchical case through the introduction of abstraction into the action plan. The plan

for an action is composed of a sequence of sub-actions rather than solely of operators.

Therefore an abstract, or complex, action can be represented by a plan composed of a

few simpler actions rather than a long sequence of operators. Moreover, by doing so,

the building of the plan evolves in several stages but in a controlled way until a complete

plan is developed. At the first stage a sketch of a general but vague plan, composed of a

few abstract actions, is created. In the second stage, the vague parts of the plan are

further replaced by more specific actions. These changes are thus successively

incorporated into the evolving plan until a complete sequence of operators is achieved.

Figure 3-5 shows the development of a high-level plan of one action down to a full

sequence of operators. The shaded nodes form the partial plans of each stage and they

are replaced by blank nodes as they are expanded into new nodes. The new nodes are

numbered according to the stage at which they are created. However, the choice of a

node to expand depends on the established criteria. If at any moment the expansion

process fails it has to backtrack, that is, undo the latest expansion, and attempt another

alternative. One way to avoid excessive backtracking is by imposing constraints in the

earlier stages of plan expansion rather than testing the operator’s preconditions.

33

� ���

�

� � �

� ���

�

� � �

��

��

�G��*RDO�IXOO\�GHYHORSHG

� �

� �

�E��5HSODFH�*RDO�E\�WKUHH
VLPSOHU�VXE�JRDOV

�D���*RDO�DFWLRQ

�

�F��'HYHORS�WZR�VXE�JRDOV

)LJXUH�������(YROXWLRQ�RI�D�SODQ�LQ�DQ�KLHUDUFKLFDO�PRGHO�

������ 6FULSW�EDVHG�3ODQQLQJ

Script-based planning approach is similar to hierarchical planning. Plans are expanded in

successive levels but instead of working out a plan for a vague node, the planner selects

a suitable plan from a collection of predefined plans for that goal. That is, an action is

stereotyped by a limited number of pre-defined plans, each plan is prescribed to deal with

one typical situation. The choice for a plan is made as the constraints attached to it are

satisfied. Each step of the plan is then further refined into a more detailed frame. This

kind of plan is called a VNHOHWDO�SODQ because it formulates a general strategy of how an

action is to be solved. Because the number of alternative plans is limited the planning

process is fast. This kind of approach is suitable for stereotyped situations or ones which

are difficult to deduce by automated reasoning, therefore, a solution must be explicitly

specified within the plan and this task is done by a human expert.

34

+LJKHVW

OHYHO
JRDO

�E� �F� �G�

)XOO\�GHWDLOHG�SODQ�������

�� �

�

��

�� �

�

�� �

�

�� ��

�

�D�

6NHOHWRQ�SODQV�FKRVHQ

)LJXUH�������([DPSOH�RI�6FULSW�EDVHG�SODQQLQJ�

������ 2SSRUWXQLVWLF�3ODQQLQJ

Opportunistic planning is characterised as a bottom-up process in contrast to the ones

discussed above. However, hierarchy is preserved. As the data and facts about events

are put in the system memory, patterns of these data are recognised as new facts or

goals, as opportunities arise. In this process new facts are included in the memory and

others are removed. This clusters, or reduces, existing information into a smaller number

of facts (an analogy to the “agglutination” of smaller islands into bigger ones can be

made).��Eventually no more pieces of data are left in the system memory or no pattern is

recognised. Figure 3-7 presents a sequence of goal reductions that are performed until

the sought goal is achieved. Starting from a configuration given in the frame (a), frame

(e) can be obtained as a process of reduction (or pattern recognition) by applying the

operators provided on the left of Figure 3-7.

2YHUDOO
5HGXFWLRQ
6HTXHQFH

��

�

�

� ��

�

�

�

� �

�

�

�

�

��

�

�

�

�

�

�

*RDO

�

�

�

3UREOHP
,QLWLDO�6WDWH

�D� �E� �F�

�G� �H�

6HOHFWHG
2SHUDWRUV

�� �

�

��

�

�

�

�

�3DUWLDO�UHGXFWLRQ
µ�¶�LQWR�µ�¶�QRGHV

�3DUWLDO�UHGXFWLRQ
µ�¶�LQWR�µ�¶�QRGHV

�3DUWLDO�UHGXFWLRQ
µ�¶�LQWR�µ�¶�QRGHV

35

)LJXUH�������([DPSOH�RI�RSSRUWXQLVWLF�SODQQLQJ�

���� .QRZOHGJH�%DVHG�6\VWHPV

Knowledge-based systems (KBSs) are computer programs that implement the cognitive

model of a human expert to solve problems in specific domains of application. Usually

they are designed to help people with tasks involving uncertainty and imprecision, and

which require judgement and knowledge [Hart92]. In the case of an application in

animation, the system comprises the computational model of the animated objects, the

knowledge about the behaviour of the objects, and the coordination of the activities of

the animation environment. In KBS the knowledge and the concepts about a domain are

conveniently represented as symbols which are readable by humans and suitable for

manipulation by a program.

The problem with typical KBSs applications is that the knowledge about their domain is

well known but the description or representation may not be straightforward. Such

knowledge is in a constant process of refinement, updating, or re-organisation; as

experience is gained. Nevertheless, the way the knowledge is used usually remains the

same. A KBS is thus characterised by two main components: the DSSOLFDWLRQ

NQRZOHGJH�EDVH and the FRQWURO�IUDPHZRUN [Brow89]. The application knowledge-base

is typically GHFODUDWLYH in the sense that knowledge is stated, or explicitly represented.

Whereas the control framework is comprised of application-oriented procedures that

know how to manipulate that knowledge. These issues are reviewed in the next sections.

Furthermore, a KBS commonly runs under a shell environment that provides features

and functionalities of a working environment such as the inference capability and the

workspace for data storage (Figure 3-8).

6KHOO�(QYLURQPHQW
��,QIHUHQFH�(QJLQH���:RUNVSDFH��

$SOLFDWLRQ

&RQWURO

)UDPHZRUN

$SSOLFDWLRQ

.QRZOHGJH�

%DVH

)LJXUH�������7\SLFDO�FRPSRQHQWV�RI�D�NQRZOHGJH�EDVHG�V\VWHP�

36

���� .QRZOHGJH�5HSUHVHQWDWLRQ

The aim of knowledge representation is to write down descriptions of the world in such a

way that the system’s inference mechanism can come to new conclusions about the

application domain by manipulating these descriptions [Fike85, Ring88]. It is equally

important that the human operator can readily enter new information and interpret the

conclusions. One requirement is the choice of the language that permits knowledge to be

expressed symbolically. Languages like Lisp and Prolog are suitable for symbolic

manipulation. The other requirement is to organise the knowledge in a structure that

permits the problem solver to process it effectively.

In AI, the knowledge about the problem it is solving is basically represented in terms of

predicates, frames, rules, and procedures.

������ /LWHUDOV

Literals are symbolic names that identify or represent objects, concepts, or meanings.

The literal is the basic element which are nodes in the composition of other knowledge

representation structures such as predicates, rules, frames, semantic networks, etc.

Examples of literals are JODVV��FRXQWHU��ORFDWLRQBRI��IURQW, SHUVRQ��LVBD, etc.

������ 9DULDEOHV

Variables can store simple data such as literals or complex data structures such as lists

and predicates. A variable name is denoted by a word in which at least the first letter is

capitalised. Variables accept instantiation and consequently they may connect predicates

with common variables. For example, in the predicates, FRQGLWLRQBRI��*ODVV��FOHDQ���and

LVDBJODVV�*ODVV���*ODVV could be substituted by any literal that satisfies both predicates,

for instance, WDOOBJODVV or P\BJODVV.

������ 3UHGLFDWHV

Predicates, or facts, are synonymous with the relationships that associate one or more

literals in the representation of knowledge. These relationships connect symbolic

objects, or concepts, and associate them with semantic information. Such relationships

can be represented in different forms denoting the same fact. Therefore, a naming

37

discipline has to be adopted and the arity and ordering must be consistent throughout the

application domain. The manifestation of a relationship occurs once it has been�inserted

into�the working memory, so that future operations can consider it for inference. �In the

light of subsequent events, facts may be deleted. Some examples of sentences with the

corresponding predicates are given:

given sentence: JODVV�LV�DQ�REMHFW
in predicate form: REMHFW��JODVV�� or LVD��JODVV��REMHFW��

given sentence: WKH�JODVV�LV�LQ�WKH�FOHDQ�FRQGLWLRQ
in predicate form: JODVV��FRQGLWLRQ��FOHDQ�� or FRQGLWLRQBRI��JODVV��FOHDQ��

given sentence: WKH�P\BJODVV�LV�RQ�WKH�FRXQWHU�RQ�WKH�OHIW
in predicate form: ORFDWLRQBRI��P\BJODVV��FRXQWHU���OHIW��

������ 6HPDQWLF�1HWZRUNV

A semantic network is a net or graph of nodes joined by links. The nodes of the net are

literals and the links are labelled with semantic information representing relations. This

representation not only captures definitions of concepts but also provides access to other

concepts across the net [Rand88]. Facts are examples of simple nets with one item of

semantic information and the connection of a diversity of facts builds up a semantic

network. Much research has been done in semantic networks because of its potential

complexity, however, despite many developments, Randal [Rand88] pointed out that

semantic networks are not sufficient for knowledge representation as new “extensions”

to its notation are constantly being added. A simple example is shown in Figure 3-9.

VLGH

FRQGLWLRQ

DFWLYLW\

LVBD

PDQ JODVV

KROG

KHOGBE\

FRXQWHU�

ORFDWLRQ

3HWHU
EURWKHU

GULQN

EDUBPDQ

DFWLYLW\ LVBD

OLNH

LVBD

FXVWRPHU

FOHDQ

OHIW

P\BJODVV-RKQ

)LJXUH�������)UDJPHQW�RI�D�VHPDQWLF�QHWZRUN�

38

������)UDPHV

Frames, also known as schemata, are knowledge representations widely used in AI and

robotics. They are a very useful form of stereotyping knowledge about objects, or

concepts, in terms of attributes that are inherent. The frame groups these attributes

which are individually described in terms of the VORW and the ILOOHU. A VORW is a literal that

identifies one feature, or attribute, of the modelled concept and the ILOOHU is the value

assigned to the slot. The knowledge stored in a frame constitutes a variable number of

slots filled with default values. New attributes are added to the frame as the application

evolves. A frame structure is thus very similar to the VWUXFW data type in the C language

or the UHFRUG in the Pascal language. The value held by a slot can also be a frame name

or an object name. In these cases, when a frame has links to other frames, a VWUXFWXUDO

OLQN is established. Both the structural link and the relational link have considerable

importance in the reasoning process because the chaining of these links gives access to

new information.

The GHIDXOW�YDOXHV are chosen as typical values a frame might assume. In Figure 3-10,

for example, the FRORXU slot of the frame HQWLW\ has the default value EOXH. An example

of a typical situation occurs in the usage of the SODFH� slot of an action. The SODFH

attributes may have different uses depending on the situation it is used. For example,

FRXQWHU and WDEOH are places that a person can go to have a drink if he is a customer, or

to serve if he is a barman. During the reasoning process if the retrieval of an item of

information from a slot occurs before its updating, that is, if no current values had

previously been set, then the default values will be retrieved instead.

39

frame entity;
 default name is nobody and
 default colour is blue and
 default location is pos(0,0,0) and
 default direction is 0 and
 default place is world .

frame glass is an entity;
 default type is glass and
 default place is counter and
 default condition is clean and
...

frame counter is an object, surface ;
 default type is counter and
 default state is available and
 default colour is blue and
...

frame person is an entity;
 default type is person and
 default posture is stand_up and
 default holding is nothing and
....

frame barman is a person;
 default activity is barman and
 default counter is counter and
...

frame waiter is a person;
 default activity is waiter and
 default counter is counter and
...

frame object is an entity;
 default user is nobody and
...

)LJXUH��������)UDPH�

,QKHULWDQFH

Frames are an important mechanism for inheritance that permit the organisation of

classes and sub-classes of objects and concepts in a similar way to the object-oriented

approach. That is, the hierarchical organisation of classes of objects can be reflected in

the frames by establishing parent/children relationships (links) as shown in the Figure 3-

10. Child frames are derived from parents frames and, in this process, the slots with

default values of the parent frames are inherited. Furthermore, the addition of slots in

the child frames turn them into a specialisation of the parent frame. For example, a

generic frame, such as the HQWLW\ frame in the Figure 3-10, has some attributes (or slots)

which are common to a group of frames, such as the SHUVRQ frame and the REMHFW frame.

These frames structure classes into a hierarchy such as that shown in Figure 3-11. In

another example, both frames EDUPDQ and ZDLWHU are specialisations of the SHUVRQ frame,

differing in the default DFWLYLW\ and in the addition of some slots that characterise their

activities.

40

entity

person

barman waiter

surface

object

glass counter

)LJXUH��������)UDPH�LQKHULWDQFH��DUURZV�SRLQW�WR�QHZ�LQKHULWHG�FODVVHV�

,QVWDQFHV

An instance of a frame is an object that is an exact copy of the frame and has the

functionalities conceived for the original frame. � In the absence of current values, the

default values are fetched from the original frame. There is no difference between frame

and instance with regard to default values, but the creation of instances for each new

object becomes necessary because: distinct objects require the allocation of distinct

storage for holding distinct current values; the original frame is preserved when new

objects of the same class are needed; frames stereotype classes of objects and cannot

change. For example, two characters are created in an animation scenario, -RKQ and

0DU\. Both can be instances of the ZDLWHU frame, -RKQ might be KROGLQJ a glass while

0DU\ is empty-handed.

������ 3URGXFWLRQ�5XOHV

Production rules, or rules, are a form of knowledge representation that associate one

collection of facts with another. If the facts of the first part of a rule are true then the

action in the second part is made to occur. The format of a rule varies from one

implementation to another. For example, the STRIPS operator is a kind of rule that is

fired when its preconditions are satisfied. The structure of a rule is typically represented

as:

41

RULE Rk

IF A1, A2, ..., AM THEN C1, C2, ..., CN

where the first part of the rule, Ai (i = 1, 2, ..., M) is the FRQGLWLRQ�part; and, Cj (j = 1, 2,

..., N) are the DFWLRQV part of the rule named Rk. The condition part, also known as the

DQWHFHGHQW� is the requirement for the selection of the rule. The condition part can also

be regarded as a pattern to be matched with items from the system database. The action

part, known as the FRQVHTXHQW� is the change to be applied to the environment database.

One of the main applications of rule representation is to find answers to a problem

(goal). The other example is the use of a rule as a data operator, that is, patterns of data

in the environment database are recognised by rules and transformed. The

transformation can be data composition, decomposition, or modification, etc. In such

cases, the process stops when no pattern can be recognised.

������ 3URFHGXUHV

Procedures as a form of knowledge representation are typically written in declarative

programming languages such as Lisp and Prolog. Procedures are small programs that

know how to do specific things, how to proceed in well-specified situations [Barr81].

More specifically, a procedure in Prolog is a conventional rule that works backwards,

that is, the consequent is true if the antecedents can be verified (Figure 3-12). Such a

kind of rule is a Prolog procedure called a FODXVH� The head (goal) of a clause is

equivalent to the consequent part of a rule and the body is equivalent to the antecedents.

Therefore, the body of a Prolog clause is a sequence of facts that chains a series of

relationships and the information thus obtained is sent out. The head is a fact that acts as

an interface that has a variable number of parameters that either flow in or out.

body

 <goal> :-
 <fact1>,
 <fact2>,

 <fact N> .

$�3URORJ
FODXVH

antecedents
if <fact1> and <fact2> and ... and <fact N> then <conclusion>

)LJXUH��������3URORJ�FODXVH�DV�UXOH�

42

���� 7KH�5HDVRQLQJ�3URFHVV

The reasoning process is carried out by an inference engine. The inference engine, in its

turn, is the active program in a knowledge-based system that interprets the queries, or

commands, input by the user. For each (non-trivial) query entered, the inference engine

starts a series of rule chaining operations that eventually come up with an answer. That

is, the inference engine is provided with an automatic mechanism that is triggered in

response to every individual operation being considered throughout the inference

process.

Rules are organised in bundles called UXOHVHWV and each ruleset has an associated control

strategy. The main components in overall rule control are UXOH� FKDLQLQJ and FRQIOLFW

UHVROXWLRQ.

������ 5XOH�&KDLQLQJ

The control of rule chaining determines how the process of reaching solutions is

achieved. The two main types of chaining control in the reasoning process are IRUZDUG�

FKDLQLQJ and EDFNZDUG�FKDLQLQJ.

)RUZDUG�FKDLQLQJ is also referred to as the GDWD�GULYHQ or ERWWRP�XS process and it is

typically used in expert systems. Rules are triggered as the patterns formed by facts in

the condition parts are matched in the context. The execution of rules modifies the

context database by adding new facts and removing old ones. Thus, every newly created

context can in turn be used by rules to derive new facts. The forward process chains a

succession of rules and stops when either the goal is achieved or no more rules can be

triggered. As Figure 3-13 shows, the inference engine triggers rules systematically until

the goal is eventually found as part of one of the context database.

43

&XUUHQW
�VWDWH

Ruleset 1

rule 1

rule 2

rule 3

Ruleset 2

rule 4

rule 5

rule 6

Ruleset N

rule a

rule b

rule c

��������

fact 1
fact 2
...

fact 8
fact 2
...

fact 8
fact 9
...

fact f
fact k
...

�JRDO
 fact z
...

)LQDO
�VWDWH

Time

select
rule 2

select
rule 5

select
rule a

)LJXUH��������([DPSOH�RI�IRUZDUG�FKDLQLQJ�SURFHVV�

%DFNZDUG�FKDLQLQJ is also referred to as the JRDO�GULYHQ or WRS�GRZQ process. In the

trivial case, if the goal to be achieved is found in the context database then the goal is

successful and no further chaining is required. Otherwise, it attempts to find a rule

whose consequents contains the goal. If such a rule is found then the antecedents of the

rule will be the “new goals” (or sub-goals) to be achieved and the process continues until

all antecedents can be verified in the environment. The purpose of the backward-

chaining is to support or refute a goal by searching facts in the database. Figure 3-14

exemplifies the backward chaining from a goal. In this case it takes two steps to infer

that G is supported by the context.

*RDO

 Context + Goal G

 Context + Sub-Goal G1

 Context + new fact G1

���������

fact N

���������

���������

fact 1

f 1 G

f 1 G1 f 3f 2

f 1 f 3f 2

f 3f 2 f N

f N

f NG1

VWDJH�������,)� ������7+(1f 1 G1 G ILQG G1

VWDJH�������,)� ������7+(1f 2 f 3 G1 ILQG G1

Context = f1 + f2 + ... + fN

)LJXUH��������([DPSOH�RI�EDFNZDUG�FKDLQLQJ�IURP�D�JRDO�

44

������ &RQIOLFW�5HVROXWLRQ

&RQIOLFW�UHVROXWLRQ is required in situations where more than one rule has its condition

satisfied, in this case a rule selection scheme must be used. The selection scheme

controls the order in which the rules are considered. Examples of these schemes are

ILUVW� FRPH� ILUVW� VHUYHG, FRQIOLFW� UHVROXWLRQ� VFRULQJ� V\VWHP, FRQIOLFW� UHVROXWLRQ� ZLWK� D

WKUHVKROG�YDOXH, etc. The first-come-first-served scheme simply considers rules in a fixed

order until finding the first rule whose condition is satisfied. The conflict resolution by

scoring system assesses the scores of the rules whose conditions are satisfied and triggers

the highest scored rule. The conflict resolution with a threshold value is similar to the

previous one except that it triggers the first rule whose score is greater than the threshold

value. Both conflict resolution schemes depend very much on the particular heuristics

employed to score the rules.

As a result of the conflict resolution scheme, the search in the reasoning process is

conducted in two directions: GHSWK� ILUVW and EUHDGWK� ILUVW (Figure 3-15). In the GHSWK

ILUVW search order, the reasoning process branches to the first node of the level and

proceeds in this fashion until the goal is reached or a terminating condition is satisfied.

The traversal proceeds by backtracking up to the next node of the previous level and the

depth first search is applied to this next node. In the case of EUHDGWK�ILUVW search order

the inference engine sweeps all the applicable rules in that level of the hierarchy before

pursuing the sub-goals of the following level. Figure 3-15 exemplifies the branching

(search) in a backward-chaining process but it can also be applied to the forward-

chaining process.

� �

� � �� ���� ��� �

� ��

� �

(a)

� �

� � �� ���� ��� �

� ��

� �

(b)

)LJXUH��������%DFNZDUG�FKDLQLQJ���D��GHSWK�ILUVW�RUGHU����E��EUHDGWK�ILUVW�RUGHU�

45

����)UDPHZRUNV�LQ�.%6

In this section two typical AI approaches for KBS are summarised, namely, expert

systems and blackboard systems. Expert systems (ESs) are briefly presented as they are

essentially built as a collection from the AI paradigms reviewed in this chapter. The

blackboard model (BBM) is a new approach that complements the ESs in areas of

applications which are not sufficiently assisted by the ES model. In fact, the BBM is a

conceptual model that subsumes the ES and has additional features that permit it to deal

with problems more complex than those covered by ESs. The BBM is probably the most

general model for building knowledge system architecture because it accepts nearly all

engineering tools (ES, chaining control) [Enge88]. A special attention is given to the

BBM as this model has inspired the proposed animation framework.

������ ([SHUW�6\VWHPV

ESs are synonymous to knowledge-based systems as they have been the most widely

known programs in AI for problem solving [Tzaf90]. Thus, the AI paradigms reviewed

in this chapter are also part of the ESs in general. According to Barr et al. [Barr89], the

two broad classes of problems addressed by ESs in general are:

• Problems of interpreting data to analyse a situation

• Problems of constructing a solution within specified constraints.

Barr et al. have also pointed out three reasons for using the methods of expert systems:

• complexity - in the initial stage of the development of the system the description of

the problem is oversimplified and its feasibility becomes known as the first prototypes

are built to solve a small scale version of the problem. In a second stage, the expert

system evolves incrementally with the better understanding of the problem.

• interpretation - any data or program can be computed (evaluated) by the running

system or can be queried by users to examine information during run-time session.

• knowledge - the ability to specify knowledge in a declarative fashion (symbolic

encoding of the knowledge) provides considerable advantage in the manipulation of

the knowledge over hard-coded subroutines in conventional programming.

46

According to Willians et al. [Will88], there are three main components in an ES

execution cycle which is depicted in Figure 3-16:

• The ZRUNLQJ�PHPRU\�contains facts about the world which are either given or inferred

at run-time. These facts are tested as the conditional parts of rules, and they can be

asserted or deleted by rules as the tests succeed.

• The UXOH�PHPRU\ contains a number of rules that define the system’s behaviour.

• The LQWHUSUHWHU, also called the inference engine, selects rules from the rule memory

and triggers them if the conditions match the content of the working memory.

Working
memory

Rule
memory Interpreter

fire
output

observed
data

select modify

)LJXUH��������([SHUW�V\VWHP�H[HFXWLRQ�F\FOH�

������ %ODFNERDUG�6\VWHPV

The complexity of the problems in certain applications and the increasing demands for

KBS facilities in a wider variety of areas of applications have pinpointed limitations with

the ESs. The BB model has emerged as a general model for implementing KBSs more

comfortably than the ESs. It retains most of the features of the ES and adds to it a more

structured organisation. It represents a major innovation over the traditional structure

which is mostly based on search methods. Nevertheless, the BBM does not replace the

ES in its original role. There is some overlap in their scope of application but the focus

of the BBM is slightly shifted away from the profile of the ESs which are typically

advisory or consulting systems.

Historically the idea of the blackboard originated from the HEARSAY-II system

[Enge88]. HEARSAY-II is a speech-understanding system that recognises connected

speech in a limited vocabulary. There, an organisational model was developed to

47

overcome the difficulties with ill-defined sources of knowledge. Thus, because of the

uncertainty in recognising words directly from acoustic signals, a space of candidate

solutions is created. By applying some strategic knowledge, only a few points in the

solution space need be examined and developed before a solution is found. It was

observed that such uncertainties are typical to many domain problems and that the

problem-solving model was a quite general strategy to solve these problems.

The blackboard model is analogous to a group of experts with different skills that co-

operate to solve a problem. Nii [Nii86] makes an interesting analogy with a hypothetical

problem of a group of people in a room trying to put together a jigsaw puzzle on a large

blackboard. At the start some people volunteer to place their most promising pieces.

Each member of the group holds a number of pieces and sees if any of them fit into the

pieces that are already on the blackboard. The whole process is effected silently without

direct communication among the members. The analogy to the blackboard model can

even be further extended. For example, suppose that there is a supervisor to monitor the

access to the blackboard by the members because of the layout restrictions of the room

such as a centre aisle which allows only one person to come through to the blackboard at

once.

A typical blackboard model is described by the diagram in the Figure 3-17 [Nii86].

Basically it consists of three major components: NQRZOHGJH� VRXUFHV, EODFNERDUG� GDWD

VWUXFWXUH, and FRQWURO.

���.6

���.6

���.6

���&RQWURO
���&RQWURO

'DWD

%ODFNERDUG�'DWD

Data flow

Control flow

48

)LJXUH��������1LL
V�*HQHULF�%ODFNERDUG�)UDPHZRUN�

The knowledge employed in the solution of a domain problem is partitioned into

knowledge sources. Each knowledge source (KS) is a specialist that solves one aspect

of the problem in a domain (analogous to members of a group of experts in the previous

example). These KSs are invoked whenever a process in the blackboard requires them to

proceed, then they produce changes to the blackboard data structure that incrementally

contributes to a solution. Similar to production rules, the KSs are composed of two

parts: the preconditions and the body of action. The KS becomes active as the

preconditions are matched (Figure 3-18). A KS is similar to a rule, however, the action

performed by a KS body is implemented as procedures or as a set of rules.

��7ULJJHULQJ
��&RQGLWLRQ

.QRZOHGJH
6RXUFH�%RG\

)LJXUH��������7KH�JHQHUDO�IRUPDW�RI�D�NQRZOHGJH�VRXUFH�

The EODFNERDUG� GDWD� VWUXFWXUH is a shared global data structure of the system that is

accessed by the knowledge sources. It is also analogous to the (unstructured) working

memory of the expert systems. It contains information about the state of the world and

the partial solution effected by the KSs.

The FRQWURO constantly monitors the blackboard context and decides which knowledge

sources should be called in at each step of the problem-solving and schedules them for

execution. This component is analogous to the chaining mechanism in the production

system. The solution of a goal generally requires successive application of KSs.

Whether the goal is solved in top-down or bottom-up order will depend on how the

knowledge is structured in the blackboard.

The description of a blackboard model is quite flexible and permits different

implementations ranging from simple to very complex [Nii86, Haye85]. The complexity

of the design of blackboard systems in specifying and combining each of the three

components depends to a great degree on the nature of the application problem itself.

The blackboard model is an alternative reasoning control model for those problems that

49

production rules alone cannot solve properly. In essence the blackboard subsumes the

production rules in a structured way and one of the most important features of the

blackboard model is its capability to “discipline” the control mechanism.

Penny Nii notes the problem with the flexible definition of the blackboard model:

“The difficulty with this description of the blackboard model is that it only
outlines the organizational principles. For those who want to build a
blackboard system, the model does not specify how it is to be realized as a
computational entity, that is, the blackboard model is a conceptual entity, not
a computational specification. Given a problem to be solved, the blackboard
model provides enough guidelines for sketching a solution, but the sketch is
a long way from a working system. To design and build a system, a detailed
model is needed.”

���� 6XPPDU\

In this chapter we have reviewed the concept of DFWLRQ which is described as a transition

between VWDWHV. Simple actions are accomplished by simple RSHUDWRUV while more

complex (abstract) actions are accomplished by a sequence of operators. The problem of

finding such a sequence of operations is called SODQQLQJ. Different actions and situations

normally require different sequences of operations. Knowledge-based systems are AI

programs that reason about the application domain. They are characterised by two

components: knowledge representation and reasoning methods. The most general model

for implementing knowledge-based systems is the blackboard as its structure can be

effectively organised in a way that reflects the nature of the application problem.

50

&+$37(5����&21&(376�2)�$57,),&,$/�,17(//,*(1&(��

3.1 INTRODUCTION..26

3.2 AI NOMENCLATURE ..26

3.3 REASONING ABOUT ACTIONS..27

3.4 PLAN SYNTHESIS ...31

������1RQ�KLHUDUFKLFDO�3ODQQLQJ��

������+LHUDUFKLFDO�3ODQQLQJ ��

������6FULSW�EDVHG�3ODQQLQJ���

������2SSRUWXQLVWLF�3ODQQLQJ���

3.5 KNOWLEDGE-BASED SYSTEMS...35

3.6 KNOWLEDGE REPRESENTATION..36

������/LWHUDOV ���

������9DULDEOHV ��

������3UHGLFDWHV���

������6HPDQWLF�1HWZRUNV��

������)UDPHV��

Inheritance..39

Instances...40

������3URGXFWLRQ�5XOHV ��

������3URFHGXUHV��

3.7 THE REASONING PROCESS..42

������5XOH�&KDLQLQJ���

������&RQIOLFW�5HVROXWLRQ ���

3.8 FRAMEWORKS IN KBS ...45

������([SHUW�6\VWHPV��

������%ODFNERDUG�6\VWHPV ��

3.9 SUMMARY...49

FIGURE 3-1: A TYPICAL STRIPS OPERATOR. ...29

FIGURE 3-2: CHANGES IN JOHN’S WORLD STATE AS HE ACCOMPLISHES AN ACTION...................................30

FIGURE 3-3: APPLICABILITY OF SINGLE AND MULTIPLE OPERATORS CASES. ..31

FIGURE 3-4: EXAMPLE OF THE NON-HIERARCHICAL PLANNING APPROACH. ..32

FIGURE 3-5: EVOLUTION OF A PLAN IN AN HIERARCHICAL MODEL..33

FIGURE 3-6: EXAMPLE OF SCRIPT-BASED PLANNING. ..34

FIGURE 3-7: EXAMPLE OF OPPORTUNISTIC PLANNING. ..35

FIGURE 3-8: TYPICAL COMPONENTS OF A KNOWLEDGE-BASED SYSTEM. ..36

51

FIGURE 3-9: FRAGMENT OF A SEMANTIC NETWORK. ...38

FIGURE 3-10: FRAME..39

FIGURE 3-11: FRAME INHERITANCE: ARROWS POINT TO NEW INHERITED CLASSES.40

FIGURE 3-12: PROLOG CLAUSE AS RULE. ..42

FIGURE 3-13: EXAMPLE OF FORWARD CHAINING PROCESS...43

FIGURE 3-14: EXAMPLE OF BACKWARD CHAINING FROM A GOAL. ..44

FIGURE 3-15: BACKWARD-CHAINING: (A) DEPTH FIRST ORDER; (B) BREADTH FIRST ORDER.....................44

FIGURE 3-16: EXPERT SYSTEM EXECUTION CYCLE..46

FIGURE 3-17: NII’S GENERIC BLACKBOARD FRAMEWORK. ..48

FIGURE 3-18: THE GENERAL FORMAT OF A KNOWLEDGE SOURCE...48

