Chapter 4

The Basic Animation System

4.1 Introduction

In this chapter we present a platform for an animation system that has been developed to
provide the facilities essential for generating animation. These facilities are the
computational structures which comprise the animated figures and the control modules
that manage them. Such a platform functions as a black box in which a variable number
of figures are created, managed and visualised. Computer animation is an application
that is naturally suited to the object-oriented paradigm [Mahi90]. Every entity, be it an
animation figure or a control module, is a computational structure identified as an object
with inherent behaviour. These objects communicate with each other through messages
as in ASAS [Reyn82], that is, an object activates the behaviour of another by sending
messages. The animated objects are the cast of the animation environment and usually
are called synthetic actors, or Smply actors [Reyn82, Magn85, Maio90, Magn90]. The
concept of actors has its origin in artificia intelligence [Hewi73, Agha86] and fits in well

if we consider the animator as being the director of atheatre [Rids37].

Currently in our animation, the cast comprises synthetic human actors and secondary
objects such as tables, chairs, counters, and glasses. The human actor is the man
animation data type and will be presented in detail later in this chapter. The secondary
objects provide the surrounding where the actors will develop their activities, that is,
these objects are considered as obstacles, places, landmarks, or as a loads. The
environment space is divided into areas which define different places accessed by the

actors. The virtual camerais an object that provides different views of the scenario.

50

4.2 The Human Figure

The human figure is perhaps the most complex object to model and animate. Because of
the multiplicity of figures performing in an environment, there is a greater motivation that
each of these figures be viewed as an integra entity that combines both the body
structure with motion in a single structure [Magn91]. In this section the basic structure

of the human synthetic actor is presented.
4.2.1 The Representation of Articulated Bodies as a Chain of Links

The human figure is built around the skeleton which can be regarded as a chain of
articulated links. These links are segments that are connected to each other at the
extremities by joints. Denavit and Hartenberg [Denab5] formulated a 4x4 matrix
representation for alink in a 3-D coordinate system. This matrix represents the position
and orientation of a link which Paul calls a coordinate frame [Paul8l]. In a simple
configuration, a chain of links can be regarded as having two ending links: the proximal
link and the distal link [Kore82]. The proximal link can be thought as being rigidly
affixed to a body external to the chain, serving as a reference or attachment (Figure 4-1).
The body is represented in the world coordinate system. The link following the proximal
link, is based on the coordinate system of the proximal link. The same arrangement
applies to the other links that follow in succession until the distal link, which is the free
end of the chain. In this way, because of the dependence of one link on the other, any
disturbance along any point of the chain affects the coordinate systems of the remaining
links up to the distal. Robotic manipulators are typically chains of links where tools such
as grips can be attached to the distal links making up a new distal end which is usually
caled the end effector. The final location and orientation of the end effector in an
operation is called the goal.

proximal - fixed end

distal
free end

joints

Figure 4-1: Chain of links.

51

The dependency of one link on another in the chain is therefore represented by a product

of matrices,
T = A*A* ... *Ay (1)

where the coordinate frame of the link N, Ay is dependent on the coordinate frame Ay.;.
Alternatively, T represents the coordinate system of the distal link given by a sequence
of small rotations starting from A, to Ay. As Paul explains, six degrees of freedom, three
for position and three for orientation, permit the manipulator to reach anywhere within
its range of motion. For the sake of simplicity, each degree of freedom (DOF) can be
assumed to be represented by an A matrix. The matrix T can be written as a six-by-six
meatrix which is caled the Jacobian. Details of the mathematical development are
discussed by Paul. Thus, an object or atool at the tip of the distal end of the manipulator

has its position determined by computing the expression,
ObjWond =T* ObjManipulator (2)

which is simply an extension of the expression given in (1). The Objwog IS basically a
meatrix with the position and orientation of a specified object in world coordinates and
Objmanipuaior 1S the coordinate of the object at the tip of the manipulator. Such
expressions are called direct or forward kinematics. In fact, what is really useful is the
inverse of this expression. That is, the question now becomes, what is the sequence of
differential rotations that adjust the configuration of the chain so that the tip of the chain
can be in the neighbourhood of the object. So, the problem turns out to be the
determination of the inverse of that chain of matrices, which is called the Inverse
Jacobian. The inversion of a Jacobian is by no means trivial [Paul81, Nagy87] and much
research has been done in the field of inverse kinematics. Inverse kinematics has also
been used in computer animation for determining the configuration of an articulated
figure [Gira87]. The solution to this problem is in general determined numerically or
symbolically. This is particularly difficult in the case of the human body because of the
large number of degrees of freedom yielding many possible body configurations.

52

4.2.2 Representation of the Human Figure

Most animation systems [Zelt82b, Magn85b, Cach86, Badl87b, Miro89] involving
human-like bodies have described the articulated body as composed by several chains of

linkage organised hierarchically as a tree. Our human figure is composed of two main
linkages uniting in the region of the centre of gravity. Figure 4-2a presents a model of a
human-like figure while Figure 4-2b is the equivalent tree hierarchy of the figure. The

node body joins both nodes, pelvis and spine, behaving as an abstract limb. Although the

body node is not “physically” represented by a particular limb, it operates as if it were.
The change of the figure’s direction is affected by the change of direction applied to the

body node.

/ root

(_body
pelvis spine
[Lfemur | [r_femur | [torso |
[1knee | [r_knee | [1Larm | [rarm |
[1 foot | [v foot | [1 biceps | [r_biceps |
[1Ltwe | [rtoe | [1 hand | [r_hand |

o)
Figure 4-2: The human body as an hierarchical chain.
4.2.3 Motion in Articulated Bodies

The motion in articulated bodies is achieved by bending (rotating) the limbs around the
joints. One configuration of the body is thus obtained by a series of bend operations
applied to a number of limbs of the body, that is, a single motion is described by a
collection of bend operators. The trangition through a consecutive number of such
configurations generates a movement which is the way key-framed animation typically
operates. Because one link is dependent on another, the achievement of a new body
configuration is made in the form of atree traversal, starting from the proximal limbs and

spreading towards the distal limbs.

53

However, if the bending joints are always considered from the proximals spreading to
the rest of the chain, in the performance of certain motions such as walking, the figure
will appear to dip without moving forwards. To overcome this problem an additional
operator called fix is used. Therefore, limbs such as the weight-bearing foot can be
attached to the ground while the rest of the body moves relative to it (Figure 4-3). A
different scheme has been implemented by Zeltzer [Zelt84]. Zeltzer uses bend and pivot
rotational operators in combination. The pivor operator performs exactly the
complementary effect of the bend operator when rotating around a joint. That is, instead
of rotating the remaining chain below the joint as in a bend operation (Figure 4-4a), the
pivot operator rotates the entire chain except the chain extending to the distal limb
(Figure 4-4b). Thus, alimb that would move under the bend operator would remain till

under the pivor operator while the rest of the body rotates around that joint.

%
4
]

Figure 4-3: The fix operator avoids the "slipping" effect.

C»

7\

L <O -
1

=V

v
i,
{\L \J
Bend . Pivot

@) (b)
Figure 4-4: Cases of bend and pivot operators applied to the knee.

4.2.4 The Skeleton as Data Type Structure

The object oriented programming approach is a very convenient way to stereotype
objects such as the human figure which have both a representational model and
associated behaviours. The composition of an animation usualy requires a variable

number of figures and the specification of figures as high-level types of objects makes the

54

task of replicating and handling them more convenient. The human figure is thus
identified as a class of objects, Skeleton, that encapsulates the data structures and
procedures. Figure 4-5 presents only a small part of the actua implementation of the
skeleton object. Three components are identified: the internal data structures; the
initialisation procedures; and the procedures implementing the figure’s motions which are
also called skills. The walking motion is implemented by two procedures,

walk right swing andwalk left swing, which are discussed in section 4.3.8.1.

class__export Skeleton {

char NamglMAX_NAME]; /I Name of the character. Internal
TActorsTable *ActorsTable /I Points to the objects Controller. ,
TPen *MyColor; variables
TLimb *RootLimb; /I Points to the topmost limb of the tree. and data
TBend *BendList; /I Structure of bend commands to execute. structure
TAccess **HAccess; /I Direct access to the limbs of the tree.
..... // Other internal variables.
public: —_
Skeleton(TActorsTable* Parent, char *Name, char *Color); // Initialise.
~Skeleton(void); /I Free data. .
void InitSkeleton(); /1 Build skeleton model. |Initialisation
void SetPositionAt(char *LimbName, float* Position, float Orientation); and
void Schedulelnstruction(int Ninstr, TExpaninstr * Expaninstr); general
void GetBodyL ocation(LPSTR String);
void TestObstruction(LPSTR String, float XGodl, float YGoal); procedures
void TestPathObstruction(LPSTR String, double X St, double Y &, double
XGoal, double YGoal); e
/I Procedural implementation of the figure’s motion.
void walk_right_swing(float Turn, float Stride);
void walk_left_ swing(float Turn, float Stride); Skill
void |_arm_reach_goal(float GX, float GY, float GZ); §

void |_drink();

Figure 4-5: The human object type.
4.2.5 The Representation of a Limb Data Type

In our animation system the motions of the human figure are congtituted as rotations of
rigid limbs around the joints without other kind of movement such as twisting or
stretching. Therefore a limb can rotate at its joint around up to three axes in 3-D space
corresponding to three DOFs. In the upper part of Figure 4-6, a DOF is shown in the
form of a C++ declaration which comprises the internal data followed by procedure
declarations. The Processinstruction sets the new angle to which the DOF is to be
rotated and computes the DegreeStep by which the DOF will be advanced in the next
few animation frames until the End7ime frame. The TickDof procedure advances a

fraction of a bend operation, DegreeStep, for the current frame. In the lower part of

55

Figure 4-6, alimb type structure gathers at most three DOFs which will take part in the
composition of the limb's transformation matri¥ransf. There are also variables
pointing to the next nodes of the chain which are used in the traversal of the figure’s tree.
In summary, this class representing a DOF is the basic unit of motiometble
operation, in the composition of a “motion structure”. This is illustrated in the section
4.3.4.

class Type DOF {
float DegreeStep;
float Angle;
float AngleMin;
float AngleMax;
int EndTime
public:
TDOK() { DegreeStep = Angle = 0.0; EndTime=0; };
~TDOF() {};
float TickDof(int curr_time);
void Processlnstruction(float Degree, int curr_time, int Duration);

b

typedef struct TLimb {
char Namegl MAX_NAME];
Type DOF X, Y, Z;

TMatrixTransf * Transf; /I Coordinates of the limb.
FileDescription * JFD; /I Points to the limb model.
TLimb *Chain; /I First chain of limbs.
TLimb *NextChain; /I Next chain in the same level.
int LimbLength;

} TLimb;

Figure 4-6: A limb data structure.
4.2.6 Motion Representation

As discussed previously, the motions of articulated bodies are speciftedddandfix
operations. There are two modes of motion specificationntbepreted mode and the
procedural mode. The interpreted mode is a convenient way to compose new and
simple skills into a file and then test them immediately. In the case of complex motions
such as the walking motion, a conventional language such as C++ provides a powerful
syntax to specify arithmetic expressions for specifying complex equations of motions.
The skills written in the form of procedures are thus added tSktderon class as part

of its behaviour (Figure 4-5). Both schemes are indeed composition of motions as

keyframes which are convenient in a multiple figure environment.

56

4.2.6.1 The Interpreted Mode

In this mode the definition of a skill starts with the INSTRUCTION keyword as shown
in Figure 4-7a. Each skill comprises one or more keyframes which start with the MOVE
keyword. The start time of each keyframe is defined relatively to the overal skill and
usualy the first move starts at time zero of the skill. A keyframe comprises a collection
of bend operations and at most one fix operation, and all these operations take place
simultaneously. The skills implemented in the interpreted mode are stored in afile and a
table of skillsisthus created during the initialisation stage of the BAS (see section 4.3).

INSTRUCTION <skill_name> <total_duration>

MOVE <keyframe name> <start_time> <duration>
BEND <limb_name> <DOF_axis> <target_angle> I NSTRU(.:TI ON ﬂex—mUSCIe 10
BENDS .. MOVE lift. aam 0 6
...... BEND r_arm y 70
FIX <limb_name> BEND r_am X 80
MOVE BEND r_hicepsz 100
BENDs ...
""" MOVE flex_aam 6 4
INSTRUCTION BEND r_hiceps z 120
(8 Motion specification in interpreted mode (b) Example of an arm motion

Figure 4-7: Representation of skills in the interpreted mode.

4.2.6.2 The Procedural Mode

In the procedural mode the composition of a skill is similar to the interpreted mode,
however, some “operational” proceduréaveCallBack andstarf) have to be invoked
explicitly following the format presented in Figure 4-8. These procedures help to build
an arrangement @lend andfix operators at runtime. The use of procedures allows the
bend operators to consider values from arithmetic expressions coded in the program
rather than predefined constants used in the interpreted mode. These expressions depend
on external parameters entered jmram i>. The procedur8aveCallBack stores the

time when the process indicated dyr action will be concluded and acknowledged
back to the external caller. Théesframe i name procedure> are procedures written

by the user which must have a call to the procesiare followed by sequence of calls

to bend procedures. These procedures are expanded into a motion structureshidien <
name procedure> is invoked and each parilMbe executed at the specified time. Figure

4-8 presents the minimum specification for a motion structure.

57

void Skeleton::<skill name procedure>(<param_1>,, <param_n>)

{

SaveCallBack(curr_time + <duration expression>, curr_action);.
<keyframel name procedure>(<start time expression>, <duration time expression>, <param_list>
<keyframeN name procedure>(...)
void Skeleton:: <keyframel name procedure>(int Start, int Duration, <param_list>)
start(Start);
bend(<limb_name>, <DOF_axis>, <target angle expression>, <duration expression>);

bend

f-i->-<-(<limb_nam9);

Figure 4-8: Representation of skills in the procedural mode.

4.3 Components of the Animation System

The basic animation system (BAS) depicted in Figure 4-9 provides the facilities to create,
control and visualise animated figures. In fact, apart from the interface module, al the
components of the BAS are entities which are created during run-time, be it a controller
component or a controlled figure. These entities are typically objects in the sense of
object oriented programming, that is, they have internal data structures which are their
private memory and they have procedures that implement their intrinsic behaviours. The
operation of an entity is made by invoking these procedures which are implemented as
methods.

The interface is a module composed of several procedures which realise the task of
decomposing external commands into calls to the internal components of the BAS as
well as returning the results of the operation. Two procedures undertake the
initialisation and finalisation of an animation session while the others undertake tasks
such as the creation of a new object, the scheduling of a motion to an actor, advancing
one frame of animation, the enquiry of the direction and location of an actor, testing the
proximity of an actor to specified object, etc. Because the externa commands are
encoded in long strings, the procedures of the interface firstly decode the strings into
objects names and parameters, and forward them to the components of the BAS or they
invoke the objects to execute specified operations. The initialisation operation creates
the three components of the BAS: decor controller, cast controller, and visualisation

component.

58

create objects
perform instructions signal conclusion
set camera and result

4 N
Interface
Procedures
_ J
define / \elec‘t camera view
Decor 1 *| Visualisation
Controller |«< > »| Virtual Camera
Cast

Controller draw figures

. / create animated objects
verify area perform instructions
verify obstruction
Obj_ll obj 2| .. |Obj_N

Figure 4-9: Organisation of the animation system.

4.3.1 The Decor Controller

This component creates a table of areas requested for the animation environment. These

areas are just coloured rectangles for drawing the layout of a floor for the animation

scene. Thus the only action performed by this controller is to add definitions of new

areas and call the virtual camera to draw them. The purpose of these aress is to

diversify the environment of the animation scenario by associating them with different

uses or meanings. For example, an area can represent a restaurant, a bar area, an exit

area (“door”), etc. In the level of the system controller, which controller is discussed in
the following chapters, each area is handled as an entity with characteristics associated to
it that can affect the behaviour of the animated figures. In the BAS level, the Decor

Controller is simply limited to drawing these areas.
4.3.2 The Cast Controller

The cast controller is the component of the BAS that organises in a single unit the
control of all animated objects created during the animation. This includes the creation
of an instance of an object and its destruction, as well as the access to the object instance
when a specific operation invokes its action. The other major purpose @hsthe

controller is to allow a collective operation with the cast. For example, when generating

59

a new animation frame all animated objects have the ongoing motions advanced by a

fraction. In another situation the controller can behave as a “smart table” in which an
object can have access to the others of the cast by “broadcasting” a call for observing a
specific behaviour. For example, in the walking activity a figure broadcasts a call to
others to test themselves if someone happens to be in a given path of that figure. There

are two groups of objects under this controller didiee objects and thestatic objects.

4.3.2.1 The Active Objects

An active object is basically the Skeleton data type which was presented in section 4.2.4.
In the initial position, all the limbs of the figure are in straight angles as shown in Figure
4-10. That is, the DOFs have a zero degree as rotation angle and the limbs are placed
vertically or horizontally; centred or at either extreme. The right arm and the left femur
have their coordinate positions on top while the torso has it at the bottom. The
orientation of the figure in the plane x-z is zero when the figure’s front is aligned with the

x-axis of the world coordinate system.

'y

front

Figure 4-10: Coordinate of the skeleton in resting position.

4.3.2.2 The Static Objects

The static objects are part of the environment decor. They can be considered as
resources to be accessed by the active objects or as obstacles to be avoided. These
objects may have properties associated with them such as colour, size, location, and
orientation. The implemented objects, such as glasses, counters, tables, and chairs, take

part in the “bar scenario”.

60

4.3.3 The Visualisation Component

This component is basically a virtual camera entity with a choice of two kinds of
projections, paralel and perspective. Obviously typical parameters such as centre of
projection, reference point, view up, etc. can be set up for the virtual camera [Harr83,
Magn86, Mort89]. In order to make the handling of the camera efficient, a number of

predefined views can be stored in an external file and then selected during animation.

For each frame of the animation sequence the virtual camera is called to draw the floor
and al the cast. All figures are modelled as wired-frame structures and the virtual

camera only displays wire frames without hidden line elimination and rendering.

The drawing of non-articulated figures such as a table and a chair is trivial. Articulated
figures are fairly complex to draw because the bending of one limb requires that the rest
of the chain affected by it must also be updated. Such an update is effected by a traversal
across the tree structure of the figure as discussed in section 4.2.3. The traversal starts
from the centre of gravity, the body node. Each DOF (degree of rotational freedom
about x, y, or z) of alimb is checked to determine whether a bend is required. If so, a
rotation matrix for this DOF-axis is determined and then applied to the coordinate
system of those limbs under itsinfluence. When all DOFs of this limb have been updated
then the virtual camera is called to draw it. The process successively deals with each

node of the tree.

The determination of the rotation matrix is a laborious computation because such a
matrix must describe a rotation about a generic axis. This occurs because each limb of
the skeleton isin an arbitrary direction. One approach to derive arotation matrix about a
DOF-axis is to bring this axis into aignment with one of the world coordinate axes, for
example the z-axis. The aignment is done by trandating the limb coordinate system to
the world origin, rotating it about the x- and y-axes to make the coordinate system of the
limb match the world coordinate system. After which the specified rotation about the
DOF-axis can be applied about the z-axis. To complete the composition of the rotation
meatrix, the limb must return to the original coordinate system. Thus, the limb coordinate

system is rotated about y- and x-axis in the opposite direction by the same amount, and

61

finally it is trandated back to the original coordinate location. Therefore, the rotation is
obtained by the following matrix product:

Mpor = TR, R(Rot, Ry* R T €))

where R, and R, are the rotations applied to the y- and x-axis that align them to those of
the corresponding world coordinate axes. Rot. is the intended rotation around the
generic axis. 7T isthe trandlation matrix that brings the coordinated system of the generic
axis to the origin of the world coordinate system. Details of the composition of the

matrices as well as the mathematical developments are explained by Harrington [Harr83].
4.3.4 The Structure of Executing Motion

Upon a request to execute a motion command, the animation interface sends the
command to the actor that will perform it. The motion can be performed if its name is

found in the Motion Library, that is, in the table of skills (for skills implemented in the
interpreted mode) or, as a second alternative, be invoked if it has been implemented as
procedures. If the skill isavalid oneit is expanded into alist of moves structures (Figure

4-11) and instantiated with information about the start time, duration, and the targeted

angle. Each move of the bending list is scheduled for execution in the skeleton structure

when the start time matches the animation “current time”. In leabis DOF, as linear
interpolation is used, the amount of rotation for each animation frame is defined by the
total angle to rotate divided by the duration. At regular timesiiteeface receives
requests to advance by one animation frame. iflagface thus sends a call to thest
controller to instruct all the cast to be displayed by the visualisation process discussed in
the previous section. The list a#l/lbacks in the motion structure (Figure 4-11) stores

the numbers of the processes of the external commands, so that when a motion related to
a process completes the sender of the motion command (the task control entity which is

discussed in Chapter 8) is notified.

62

Objects

Interface Visualisation
Controller
Schedule instruction Sional end ofi .)
Objects accessing objects Retrieve information lg}?jtuiz irf]j:o ZZZL;ZZO” Display
Advance one frame
Individual Figure $
Motion structure
, , Skeleton structure
|nst:iu;t|on -—~[move|—[move].-.3[move]
bend bend bend
bend bend bend
bend bend bend
fix fix fix

2

V Vv

[callback |—finstr_1]—finstr_2] >

Motion library
Body parts
head spine torso |_arm r_arm
|_biceps r_biceps | _hand r_hand pevis
|_femur r_femur |_knee r_knee |_foot

Schedule instruction

Motion instructions
Externd File

Motion instructions
Internal Procedures

Internal Support
Procedures

Set new position and orientation.
Retrieve position and orientation.
Test obstruction.

Figure 4-11: Graphical representation of the structure of motion during execution.

4.3.5 Goal-directed Motion

As discussed in section 4.2.1, the problem of finding a configuration for a chain of
articulated links in which an end component, the distal link, reaches a point in the space
IS an inverse kinematics problem. The solution of the problem is thus to find a set of
rotation angles ¢; that satisfies a system of kinematic equations. Korein and Badler
[Kore82] survey severa alternative solutions. Their approach is to solve the goal

achievement as a reach hierarchy as shown in Figure 4-12a. The solution is focused in

one DOF at time from proximal to distal links.

analysis: the link which has the DOF being solved and the subsequent chain ending to the
distal link. The latter part is treated as a single segment which is identified by this

63

It considers two links (parts) in its

nomenclature in this chapter. 1, isthe workspace covered by link ;. The combination of

both links reaches any point in the grey area (Figure 4-123).

Y dependent link (or segmennt)

. o
a:sin(grtqz) a»

{1 : :
___________ | X

a;C0sg; a;cos(q1+q2)

(b)

Figure 4-12: Korein's approach to reaching a point goal.

In this simple example of Figure 4-12a, a chain of two unconstrained links has two
rotational DOFs on the plane which space of reach is confined in the greyed cylindrical
area. The solution is thus to determine ¢; and ¢, from the trigonometric equations
(Figure 4-12b). Their solution is described by the algorithm in Figure 4-13 [Kore82],
however, details of mathematical considerations are discussed in their paper. Later on,
Badler et al [Badl87b] improved this algorithm by using multiple constraints. Each DOF
Is constrained to specified joint angle limits and thach is “proportionally” spread

throughout the chain.

Let the chain be C1 and its workspace, W1. Let the
subchain with just the most proximal joint and link
deleted be C2 with workspace W2, and so on.

If goal p isnot Wi, then
it isnot reachable: give up.
Otherwise:
for i := 1 to number of jointsin C:
adjust g; only asmuch asis
necessary so that the next
workspace W,,; includes the
goal p.

Figure 4-13: Korein's algorithm for the reach approach.

4.3.6 Goal-directed Arm Reach

Korein’s method [Kore82] for reaching a goal has been employed in the implementation
of thepick up action in the current system. The chain of limbs of an arm considered in
this action are: arm, biceps, andhand . As the human arms are capable of very
complex motions, much more than any robotic manipulator, some assumptions have to
be established in order to draw a strategy for solving the figure’s motion. Firstly it is
assumed that the figure can only reach objects within the figure’s front half-space, more
specifically, a half-sphere with its centre in the joints formed#oylder and arm at

either sides of the figure. Tlaem is a limb joining theshoulder with three DOFs (X, Y,

z), thebiceps has only one DOF (z-axis), and th@:d two DOFs (X, z). The following

steps are strategies for reducing the complexity of the reach problem. That is, each DOF
Is solved one at a time always observing that the goal is kept within the reach. Working
from theproximal limb towards thefistal limb, that is, from thewm to thehand, and
looking to the problem as comprised by “two links” as discussed in the previous section
(Figure 4-12).

i) observe if the object is within reach. If the target object is not within the range of a
fully stretched arm, i.e. the workspace of an arm, then the figure must first approach
the object, either by walking, leaning forward, or turning. The figure adjusts its

direction towards the object if the object is not in the semi-space of the figure’s front.

ii) find the x-axis of the arm. This is not necessarily a problem to be solved given the
degree of redundancy of the arm. If this DOF remains where it is, the goal can be
reached with the arm in an “open wing” fashion. However, if the “wing” formed by
thearm and theforso is opened too wide a simple heuristic could be used to close it

to a visually acceptable angle (Figure 4-14a).

iii) align the arm with the world coordinates. This is similar to the problem of rotating
about an arbitrary axis discussed in section 4.3.3. The purpose is to prepare for the

two next steps by making the y-axis @fn coincide with the y-axis of the world

% In order to avoid confusion, names of rigid limbs are written in italics.

65

coordinate system. Obvioudly not only the whole arm (arml/bicepsihand) should be

rotated as a rigid block, but also the distance and orientation of the object should be

kept relative to the arm’s new coordinate system, that is, the same rotation applied to

the entire arm is applied to the target object. In Figure 4-14b both the whole arm and

the object have been rotated and from the view from above the extensioruofthe

does not appear because it is perpendicular to the paper. A small circle indicating the

arm is shown in Figure 4-14b.

“open wing” ‘ shoulder

(@) front view

(c) fromt view

rolate arm y-axis

goa

< army-axis plane

(b) top view

invalid solution

Y
sofution
z
X

(d) left view

Figure 4-14: Configurations of an arm.

IV) determine the segment defined by elbow to the tip of the hand. If no constraint is

imposed on the x- and z-axes of the hand then the position of the hand can either be

maintained as its with the x/z angles or they can be assigned to zeroes in which

Situation the length of the segment formed by biceps and hand is exactly the sum of

the length of both limbs. If either hand’'s axes (x or z) are currently non-zero then the

equivalentsegment has to be determined. Thiggment is a composed vector of the

sub-chain iceps plushand) which is shown in Figure 4-14c.

V) align the arm-segment plane with the goal. This determines the amount of angle

the arm must turn about the y-axis such that the tip of the hand will be on the plane

formed by thewrm and the object (Figure 4-14b).

vi)find the arm z-axis rotation. The aim is to determine the amount of rotation about
the z-axis an arm should do in order to make the tip of the segment (tip of the hand
component) reach the goa position. Obviously the determination of the z-axis of the
arm requires the determination of the z-axis of the segment (i.e., elbow) in relation to
the arm (step vii). One way to do thisis to draw two circles with the arm (centred at
the base) and with the segment (centred at the finger) as shown in Figure 4-14d. If
they intercept in two points, the “lower” intersection point is chosen, as the elbow has
its movement constrained to one side. The trivial case occurs when both circles

intercept in one point only.

vii) find the biceps z-axis. After the previous step the distance between the elbow and
the tip of the hand is exactly the length of the segment, thus the biceps z-axis is
computed easily. However, if the hand z-axis is non-zero then this contribution

should be taken into account by solving the triangle segment-biceps-hand.
4.3.7 Holding and Releasing an Object

Once the hand of a humanoid has reached an object, for example a glass, the action of
picking up a glass becomes effective if the humanoid can carry it along. Because the
glass is a passive object which is now in control of the arm, visually it must accompany
the hand in any movement. Any object visualised on the screen has a geometrical model
whose position and orientation is represented in terms of an homogeneous matrix
relatively to the world coordinates. Thus, Glassid Hang are matrices representing

the models of glass andnd respectively, while Glagss the matrix representation of

the glass relatively to the hand. Expressions (4) and (5) are equivalent but they have
different uses. They establish that at any moment the glass coordinate system relative to

the world, Glasg, has an equivalent coordinate system relatively to the hand,Glass

The holding of the glass occurs when the:d has reached the vicinity of the glass.
Thus, Glassis computed using expression (5). Obviously, the visualisation of the glass
uses the Glagsmatrix which is obtained through equation (4). As the position and
orientation of théiand may change, Glagss always computed in every animation frame
with updated Hangl

Glassy = Handy * Glass; (4)

67

Handy* * Glassy = Glassy (5)

The release of the glassis simple. Glassy is computed from expression (4) only once and
in any subsequent visualisation of the glass Glassy is used unchanged. So that the glass

will appear motionless.
4.3.8 The Locomotion of the Human Figure

The walking activity is probably the most complex motion of human behaviour. The
complexities may not be apparent from simple observation. The problem has been the
subject of studies in the medical field [Inma32, Lamo71, Murr64, Saun53]. These
studies indicate that the walking gait of a normal person varies with age, height, sex,
speed, stride, etc. It is necessary to employ suitable equipment and photograph records
to determine the magnitudes, directions, and rates of change of trandlations and rotation
of the body elements. Saunders et al. [Saun53] have identified the following
determinants in human walking: pelvic rotation, pelvic tilt, knee flexion in the stance
phase, foot and knee mechanisms, and lateral displacement of the pelvis. One feature
that has been observed, as shown in Figure 4-15 [Saun53], is that the locus of the top the

figures in a sequence of movements approximates to a sinusoid.

MM M

8 9
Time: percent of acycle
0% 50 % 100 %
| | | | | | | | |
I I I I I I I I I 1
| | | | | |
| | I | | |
' Double! IDouble! 'Double!

Right (! rt Left {l rt
ght single suppol Isuppor{ eft single suppo :SJpport:

|
| supportl
|
|

Figure 4-15: Phases of the walking in time and distance.

68

In computer animation a number of methods to control the walking action have been
devised such as keyframes, adaptive walking control [Zelt82], direct and inverse
kinematics methods [Boul92], dynamics [Brud89], etc. Inman et a. [Inma82] discuss
the process of walking and present the general pattern of walking as shown in Figure 4-
15. The number of key postures considered along a cycle of movement may vary from
one implementation to another. A common feature of these animation systems is the use

of afinite state machine scheme to control the different stages of biped walking.

4.3.8.1 The Walking Motion

In the present work, the walking motion is implemented procedurally using the forward
kinematics method. The sequence of key stances is similar to that presented by Inman
[Inma82]. Basically there are three keyframes for each of the left and right swing phases
which make up a complete walking cycle. In the first keyframe or stage a leg is lifted
first in preparation for astep. In the second stage both legs are stretched, with the lifted
leg going forward with the heel striking the ground and the weight bearing leg remaining
a the back. The third and last stage is the conclusion of the step. The body leans
forward transferring most of the weight to the front leg, the body straightens up while
the back leg retracts. Figure 4-16 exemplifies a procedure implementing the phase of the
right leg swing of the walking motion. The three stages making up the motion are
written as procedure calls. Details of implementations have been discussed in section
4.2.6.2.

void Skeleton::walk_right_swing(Fraction forward, Fraction_sidewards, Turn)
{

SaveCallBack(curr_time + 9, action_process_number);
walk_right_stage 1(0, 3, Turn);

walk_ right_stage 2(3, 3, Fraction_forward, Fraction_sidewards);
walk_right_stage 3(6, 3);

Figure 4-16: Procedure implementing right leg swing of the walking motion.

A similar procedure is implemented for the swing of the left leg. The procedura
implementation of the walking motion allows the length of the stride to be adjusted to a
fraction of afull step forward. In addition it is possible to specify a sideways component

to the step. Each stage is performed in three frames starting respectively at the relative

69

timesO, 3, 6 and so on. The stages 1, 2, 3 of Figure 4-17 and Figure 4-18 are performed
by the procedure given above. In both cases the left leg is the support leg, and the right
leg is swung forward. These three stages of walking are described in detail in the

following section.

Stage: 1 2 3 4 7(1)
Action: right leg swing left leg swing ' right leg swing

Figure 4-17: Turn 50 degrees to the left, swinging right leg.

8(2) 71 6 5 4 3 2 1

right leg swing ' left leg swing right leg swing

Figure 4-18: Turn 50 degrees to the right, swinging right leg.

First Stage: Leg Lifting and Change of Direction

If a change of direction is required then it is performed in the first stage of a walking
phase. The turn basically involves the rotations of the supporting leg and the body of the
figure by the same amount but in the opposite direction. The stages (1) and (2) in Figure
4-17 show a perspective view of the right leg swinging forward and the body turned in
the left direction. An excerpt from this procedure is shown in Figure 4-19 which is

called by the procedure shown in Figure 4-16. Because the motion is implemented in a

conventional programming language (C++), code such as “limiting the turning to the

maximum of 70 degrees” as well as internal variables (&g}, data structure) can be

70

included in the procedure in addition to the basic motion structure discussed in section
4.2.6.2.

void Skeleton:: walk_right_stage 1(int Start, int Duration, float Turn)

{
start(Start);
if (Turn>70) Turn=70; /I Extra statements to
elseif (Turn<-70) Turn=-70; /[constrain the turn
fix(1_foot); /I Fix the supporting leg.
bend(body, Y _axis, body->Y .Angle+Turn, Duration);
bend(|_femur, Y_axis, O, Duration);
bend(r_femur, Y _axis, -Turn, Duration);

}

Figure 4-19: Turning the direction of walk.

Second Stage: Step Forward

The length of the stride is controlled in the second stage. A simple analogy is to regard
the legs as being like a pair of dividers. Indeed, this is one aspect of the determinants
discussed by Inman. Referring to Figure 4-20 the angle between the legs corresponding
to the maximum stride could be 44 degrees. However, if the stride is shorter then the
angle will be correspondingly less. Therefore, the bending of each leg is limited to O <
fraction of stride < 1 at the femurs’ z-DOF. The valuefaiction of stride defines the

length of the step.

femurf front
angle: femur
. angle

I
Step length

Figure 4-20: Walking stride as a compass gait.

Second Stage: Step Sidewards

A sideways step is similar to the forward step with the sideways motion being performed

in the second stage.

71

Third Stage: Straightening Up

In this stage the movement is consolidated by transferring the weight from one leg to

another.
4.3.9 Gestures

There are some motions that are peripheral to the main activity An example is swinging
the arms during walking. Although it is a natural component to walking it is not essential

and may not even be possible if, for example, the arms are being used to carry something.

4.4 Path Planning

Frequently, in carrying out an action, the animated figure has to move through a room
populated with objects and other actors. In order to avoid collisions, a route to reach an
intended place should be planned first which the figure can follow. This is the path
planning problem which has been studied in robotics [Loza79, Broo83]. There are two
classes of tragjectory planning in robotics: two- and three-dimensional planning. The kind

of path planning typically employed in computer animation is the two-dimensional type.

Two main motion planning approaches that are employed in robotics are the potential
field and the configuration space. The potential field uses mechanisms of attraction or
repulsion to guide the motion of arobot [Arki87, Wilh90]. In this approach a model of
the perceived world is built up as a map of a potential field. Then the robot makes use of
a repertoire of sensing strategies to identify the nature of the field to guide its motion

through the area (Figure 4-21).

Figure 4-21: Potential field used to guide a robot.

The configuration space is most generally used in computer animation [Cavu93, Cher89,
Chin92]. Basically the method relies on making a distinction between the occupied and

72

free areas. Objects are enclosed in bounding boxes which are a simple representation of
the area they occupy. Areas occupied by the bounding boxes cannot form part of the
path of the robot. An example of configuration space is depicted in Figure 4-22 by
Cavusoglu [Cavu93]. There the occupied cells are marked as “occupied” making them
unavailable and remaining cells are marked with their distance to the destination. Each
animated figure will have such a grid appropriate to its destination, and the path followed
iIs obtained by choosing the cells at each stage with the minimum distance to the
destination. In a dynamic environment with several actors in motion, grids must be re-

computed to reflect the changes of the environment.

S|4z 112111101 8|87

413|121 11(10)1 9| 8| 7|6

6

5
13 12.—119-—9—-3——7—1-—4——; 6|7
14|13 12 sl7le6|s5]+4 % 4|5
5|14 13 s|s5]+]|3 z 3|4
16|15 14 4132 2|3
17|16 15 2|1 1|2
8|17 16 217213
17|16 15 213 |4
16|15 14 = s|la3|4]s
ICANZANEl L s|l7|6|s|«]|5]|¢

5

41321111019 | 8| 7|6

Figure 4-22: Marking the visible cells with distance to the target.
4.4.1 The Segment Sub-division Approach

Although both the above approaches are commonly used in computer animation and
robotics, we use the simplest collison avoidance algorithm which has been
acknowledged by Lozano-Peres et al. [Loza79] as being a “generate and test” paradigm.
It is suitable for a fairly cluttered environment, with many obstacles but not too
overcrowded. This algorithm is preferred over theifiguration space approach
because the environment is changing continuously and the determination of the
configuration space of the environment for each figure’s path can be costly. The method

described here combines the use of bounding areas (or volumes) with recursive

73

subdivision of the path. The simplest path is a straight line from the current position of
the actor to the destination. If an object is detected in this path then the algorithm
divides the planning problem into two sub-problems, that is, one path that goes from the
starting position to a point in the neighbourhood of the obstructing object and another
path from this point to the destination. The division is repeated recursively for each
segment of the path that intercepts an object. Eventually a list of segments describing a
usable path is obtained (Figure 4-23).

A
[m]
start bounded object A goal start n goal
(a) astraight line path. (b) two lines segment path.
A
o—p8 5 —°
start B goal

(c) threelines segment path.
Figure 4-23: Path determination with obstacles.

In the planning of collision-free paths, the test of potential collisons is greatly simplified

as the shapes of objects are approximated to larger bounding circles or rectangles. Small

objects such as a chair, atable or an actor are individualy bounded by circles; while an

object such as a counter is bounded by a larger rectangle. In the case of a small object

(Figure 4-24), the obstruction of an actor’s path, that goes from point A to B, is avoided
by determining an intermediate waypoint M tangent to the circle. This is determined by
drawing a linenormal to the segment AB going through the centre of the obstructing
circle. As two points are found, the point closest to the segment is selected as the new

waypoint. Obviously other selection criteria might be used depending on the situation.

M non-colliding
path

Figure 4-24: Determination of alternative point.

74

In the case of the rectangle boundary, a similar process is used to determine a waypoint

M for the path AB that avoids interception with the object’'s bounded area. In order to
simplify the analysis, the path segment AB and the bounding rectangle are both rotated
by an angle that aligns the path segment AB with the origin of the coordinate system
(horizontally) as shown in Figure 4-25a. The waypoint M is the one of the two extreme
points that lie on the side of the rectangle first crossed by the segment AB. The point
lying on the upper or on the lower parallels, tangent to the bounded area, or whichever
point is closer to the path segment, is chosen as the new waypoint. In the case of Figure
4-25b further determination of a waypoint N for the sub-path MB is required as it also

crosses the bounded area.

subpath point M Suture subpath point N

subpath to point M
B
.....................)
goal
path segment
B Y L W . .
obstructing object @ bounding area obstructing object) bounding area

Figure 4-25: Determination of alternative point for a rectangle.

The Prolog implementation of the path planning is:

clause 1 find_path(Actor, pos(Xa, Za), pos(Xb, zZb), List) :-
test_path_block(Actor, pos(Xa, Za), pos(Xb, Zb), pos(Xc, Zc)),
find_path(Actor, pos(Xa, Za), pos(Xc, Zc), Phasel),
find_path(Actor, pos(Xc, Zc), pos(Xb, Zb), Phase?),
append(Phasel, Phase2, List) .

clause 2 find_path(Agent, pos(Xa, Za), pos(Xb, Zb), [pos(Xb, Zb)]) :- .

The program find path accepts as input: the actor involved in the planning; the current
position of the actor, pos(Xa,Za); and the destination position of the actor, pos(Xb,Zb).
Asaresult alist of points (List) specifying the path to the destination position is created,
that is, List is a solution of path composed by the path until the obstacle (Phasel) and
after the obstacle (Phase2), the obstacle is located at pos(Xc,Zc). The planning

procedure takes the following actions:

75

* The clause 1 is attempted first. Determine if the path [pos(Xa,Za) - pos(Xb,Zb)]
intercepts any object by evaluating fest path block. One of the following two

Situations might occur:

O If there is an interception at a point ¢ then the segment is split into two at that point,
recursively calling path planning for the first segment (a-c) and then calling path
planning for the second segment (c-b). The route to reach the destination 54 is the

sequence of waypoints obtained.

O If no interception point was found then abandon clause 1 and execute clause 2. That

IS, the only waypoint is the destination b.

4.5 Conclusions

The basic elements of an animation system have been presented in this chapter. That is,
the skeleton and objects data types, and the animation control components have been
described. At runtime, new instances of humanoids are created and managed by the Cast
controller. The motion of these agents can be described within files as structures of
motion command or within a program as procedures. Some examples of motion have
been presented, together with a simple and convenient algorithm for finding paths
through obstacles.

76

CHAPTER 4 THE BASIC ANIMATION SYSTEM 50

4.1 INTRODUCTION.....uciiutistet sttt ss s s s b e b e e b e s be e b e e b e e s b e e s b e e s ae e s be e sae e s be e s be e s be e saa e sanesaeesaaesane s 50
4.2 THE HUMAN FIGURE ..ottt st s e s s s s e s s s s s 51
4.2.1 The Representation of Articulated Bodies as a Chain of Linkscccccccoooevivviiiiiniiiiinn.. 51
4.2.2 Representation of the Human Figure................cocccciiiiiiiiiiiiiiiiiie e 53
4.2.3 Motion in Articulated BOIEScccoooviiiiiiiiiiiiei e 53
4.2.4 The Skeleton as Data Type SIFUCIHUFE.cooiiiiiiiii e 54
4.2.5 The Representation of @ Limb Dat@ TVPEccccoomviiiiiimiiiiiiiiie e 55
4.2.6 MOtiON REPIESETIQITONc...eeiiiiiiiiii ittt 56
4.2.6.1 The INtErPreted MOUE.coiiie ettt e et e et e s e e st e e teeenaeessaeesnneesneeennenans 57
4.2.6.2 ThE ProCeaUIral IMOUEc.eeiieeieeiiesieete ettt n e r e r e bt n e s nneennas 57

4.3 COMPONENTS OF THE ANIMATION SYSTEMcciiiiiiiiiiiesiie st 58
4.3.1 The Decor COMIFOIIEFcc...ooviii i 59
4.3.2 The Cast COMIPOIIYooiiiiiie e 60
e B A B SN Ao LY =T @ o = o £ TSRS 60
4.3.2.2 The SEAEIC OB ECESeeeiieeiee ettt ettt et s e e st e e ste e e teesmteesneeeeneesnseesnseensenans 61

4.3.3 The VisualiSation COMPONENL..............cccc.eiiiii et 61
4.3.4 The Structure of Executing MOHON.cccc.oooiiiiiiiii i 62
4.3.5 Goal-directed MOTION.cccii it 63
4.3.6 Goal-directed Arm REACHccc.ooviiiiiiiii e 65
4.3.7 Holding and Releasing am OBJECL................ccccoiviiiiiiiii e 67
4.3.8 The Locomotion of the Human Figurecccccooviiiiiiiiiiiiiiiieieie e 68
4.3.8. 1 The WalKiNG IMOUIONoocueiiieeiiee ittt ettt et e e te e s saeesseeeteeanteesneeessaeesnseesnseenseaans 69

First Stage: Leg Lifting and Change of DIFECLIONcccvviieriiiierieei et 70

SecoNd StAgE: SEEP FOMWEAIT.eieieieiiieeiee ettt ettt e bt e st e s see e teeeteesneeesnteeeneesnneennns 71

SecoNd StAgE: SEEP SIHBWAITS......oeivee ettt ettt e et e st e s ree e teeeteesnteesnteesneesnneennes 71

Third Stage: StraighteNiNG UDc.ei oottt st s ae e s saeesaeeaseesneeesseeesnaeesseeans 72

B.3.9 GROSTUFES. ..o 72
A4 PATH PLANNING ...ttt st s s st s s s s s s s e s ae e s s e s aa s s aa e s ia e s 72
4.4.1 The Segment Sub-division APProachoociciiiviiiiiiiii e 73
4.5 CONCLUSIONSeeiiuiiiiei ittt sttt b e b b e e b e b e e s b e e s b e e s h e e s b e e s b e e s he e s he e s be e s ae e sae e saeesaae e 76
FIGURE 4-1: CHAIN OF LINKS.viiitiiitiiitie ittt st s a s s s ae s nesnesane e 51
FIGURE 4-2: THE HUMAN BODY ASAN HIERARCHICAL CHAIN.coiiiiiiiiiiesiie i s 53
FIGURE 4-3: THE FIX OPERATOR AVOIDS THE "SLIPPING" EFFECTcciuiiiuieiiie it siee st 54
FIGURE 4-4: CASES OF BEND AND PIVOT OPERATORSAPPLIED TO THE KNEE.c.veiiiiiiieiiee e 54

77

FIGURE 4-5. THE HUMAN OBJECT TYPE. ..uiiiiiiittttitieietitesstiesseettsssssnsessssssssssnssssestssssnsssssesssmssesserees 55

FIGURE 4-6; A LIMB DATA STRUCTURE. ..eeeeitiiutttttteeeesaaiustnseeeaeesasssssssssesasssassssssssessssassssssssessssesnsnsssssees 56
FIGURE 4-7: REPRESENTATION OF SKILLSIN THE INTERPRETED MODE. ...ccveeeiiiiiiieeeeeeeeesninneeeeaeeeesnnnnnnnns 57
FIGURE 4-8: REPRESENTATION OF SKILLSIN THE PROCEDURAL MODE.ccceeeiiiirtiuereeeeseesnrnnneeeasessssnsnnees 58
FIGURE 4-9;: ORGANISATION OF THE ANIMATION SYSTEM. .1utttieeeiiiuiiiereeeeseeansnnneeesessssssssnseesessssnsssssseeens 59
FIGURE 4-10: COORDINATE OF THE SKELETON IN RESTING POSITION. ..uvvvtieeeeiiiuiieereeeeseesinnnnneeesesssssnnnnnes 60
FIGURE 4-11: GRAPHICAL REPRESENTATION OF THE STRUCTURE OF MOTION DURING EXECUTION. 63
FIGURE 4-12: KOREIN'S APPROACH TO REACHING A POINT GOAL. ..uvtviiireeeeiiiiiineeeeeeesessssnneeeesssesnsnsneeeens 64
FIGURE 4-13: KOREIN'SALGORITHM FOR THE REACH APPROACH.uutiiiiieeeeiiiiiineeeeeeseesnsnnseeesesesennnnnees 64
FIGURE 4-14: CONFIGURATIONS OF AN ARMuttttttieeesiiiutuneeeeaeesaasssssseesassaaassssssesessasssssssssesessssnsssssseees 66
FIGURE 4-15: PHASES OF THE WALKING IN TIME AND DISTANCE.uutviitieeeeeiiirineeeeeeeeesnssnneeesssssssnsssnseeens 68
FIGURE 4-16. PROCEDURE IMPLEMENTING RIGHT LEG SWING OF THE WALKING MOTION.uvvereeeeeeeerennee. 69
FIGURE4-17: TURN 50 DEGREESTO THE LEFT, SWINGING RIGHT LEG.....cuvvvuueerrereeeerrereresesnssnsnsersensnnnnnnnes 70
FIGURE 4-18: TURN 50 DEGREESTO THE RIGHT, SWINGING RIGHT LEG.....ccuuvverrerererrrerererrssssnrsnrnsssesnnnnenes 70
FIGURE 4-19: TURNING THE DIRECTION OF WALK . ..etetitiiutttttteeeeeessuttnneeesessessssssssesessesssssssssesessssssssssssees 71
FIGURE 4-20: WALKING STRIDE ASA COMPASS GAIT....ccicuttieeieeeeeasiuiineeeesessaasssssseessessasssssssssessssssssssssseees 71
FIGURE 4-21: POTENTIAL FIELD USED TO GUIDE A ROBOT . t1uvttteeeiiiutiueeeeeeesannssneeeeasssassssssnssesessssasssssseees 73
FIGURE 4-22: MARKING THE VISIBLE CELLSWITH DISTANCE TO THE TARGETuvvvtiieeeesiesiiireeeeeeeseennnnnens 73
FIGURE 4-23: PATH DETERMINATION WITH OBSTACLES. ...uvvtttieeeiiiitieieeeeeeseninsnneeeeeessesssssnssesessssssssssseees 74
FIGURE 4-24: DETERMINATION OF ALTERNATIVE POINT. ..ututttieeeiiiuiiuereeeessasinsnneeeesessssssssnneesessssssssssseeens 75
FIGURE 4-25: DETERMINATION OF ALTERNATIVE POINT FOR A RECTANGLE. ...cuuvvviiiieeeeieiiiirneeeeeeeeeennnnens 75

78

