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&KDSWHU��

7KH�%DVLF�$QLPDWLRQ�6\VWHP

���� ,QWURGXFWLRQ

In this chapter we present a platform for an animation system that has been developed to

provide the facilities essential for generating animation.  These facilities are the

computational structures which comprise the animated figures and the control modules

that manage them.  Such a platform functions as a black box in which a variable number

of figures are created, managed and visualised.  Computer animation is an application

that is naturally suited to the object-oriented paradigm [Mahi90].  Every entity, be it an

animation figure or a control module, is a computational structure identified as an object

with inherent behaviour.  These objects communicate with each other through messages

as in ASAS [Reyn82], that is, an object activates the behaviour of another by sending

messages.  The animated objects are the cast of the animation environment and usually

are called V\QWKHWLF�DFWRUV, or simply DFWRUV [Reyn82, Magn85, Maio90, Magn90].  The

concept of actors has its origin in artificial intelligence [Hewi73, Agha86] and fits in well

if we consider the animator as being the director of a theatre [Rids87].

Currently in our animation, the cast comprises synthetic human actors and secondary

objects such as tables, chairs, counters, and glasses.  The human actor is the main

animation data type and will be presented in detail later in this chapter.  The secondary

objects provide the surrounding where the actors will develop their activities, that is,

these objects are considered as obstacles, places, landmarks, or as a loads.  The

environment space is divided into areas which define different places accessed by the

actors.  The virtual camera is an object that provides different views of the scenario.
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���� 7KH�+XPDQ�)LJXUH

The human figure is perhaps the most complex object to model and animate.  Because of

the multiplicity of figures performing in an environment, there is a greater motivation that

each of these figures be viewed as an integral entity that combines both the body

structure with motion in a single structure [Magn91].  In this section the basic structure

of the human synthetic actor is presented.

������ 7KH�5HSUHVHQWDWLRQ�RI�$UWLFXODWHG�%RGLHV�DV�D�&KDLQ�RI�/LQNV

The human figure is built around the skeleton which can be regarded as a chain of

articulated links.  These links are segments that are connected to each other at the

extremities by joints.  Denavit and Hartenberg [Dena55] formulated a 4x4 matrix

representation for a link in a 3-D coordinate system.  This matrix represents the position

and orientation of a link which Paul calls a FRRUGLQDWH� IUDPH [Paul81].  In a simple

configuration, a chain of links can be regarded as having two ending links:  the SUR[LPDO

link and the GLVWDO link [Kore82].  The SUR[LPDO link can be thought as being rigidly

affixed to a body external to the chain, serving as a reference or attachment (Figure 4-1).

The body is represented in the world coordinate system.  The link following the SUR[LPDO

link, is based on the coordinate system of the� SUR[LPDO link.  The same arrangement

applies to the other links that follow in succession until the GLVWDO link, which is the free

end of the chain.  In this way, because of the dependence of one link on the other, any

disturbance along any point of the chain affects the coordinate systems of the remaining

links up to the GLVWDO.  Robotic manipulators are typically chains of links where tools such

as grips can be attached to the distal links making up a new distal end which is usually

called the HQG� HIIHFWRU.�  The final location and orientation of the end effector in an

operation is called the JRDO.
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)LJXUH�������&KDLQ�RI�OLQNV�



52

The dependency of one link on another in the chain is therefore represented by a product

of matrices,

T = A1*A2*....*AN (1)

where the coordinate frame of the link N, AN is dependent on the coordinate frame AN-1.

Alternatively, T represents the coordinate system of the GLVWDO link given by a sequence

of small rotations starting from A1 to AN.  As Paul explains, six degrees of freedom, three

for position and three for orientation, permit the manipulator to reach anywhere within

its range of motion.  For the sake of simplicity, each degree of freedom (DOF) can be

assumed to be represented by an Ai matrix.  The matrix T can be written as a six-by-six

matrix which is called the Jacobian.  Details of the mathematical development are

discussed by Paul.  Thus, an object or a tool at the tip of the distal end of the manipulator

has its position determined by computing the expression,

ObjWorld = T * ObjManipulator (2)

which is simply an extension of the expression given in (1).  The ObjWorld is basically a

matrix with the position and orientation of a specified object in world coordinates and

ObjManipulator is the coordinate of the object at the tip of the manipulator.  Such

expressions are called GLUHFW or IRUZDUG�NLQHPDWLFV.  In fact, what is really useful is the

inverse of this expression.  That is, the question now becomes, what is the sequence of

differential rotations that adjust the configuration of the chain so that the tip of the chain

can be in the neighbourhood of the object.  So, the problem turns out to be the

determination of the inverse of that chain of matrices, which is called the Inverse

Jacobian.  The inversion of a Jacobian is by no means trivial [Paul81, Nagy87] and much

research has been done in the field of inverse kinematics.  Inverse kinematics has also

been used in computer animation for determining the configuration of an articulated

figure [Gira87].  The solution to this problem is in general determined numerically or

symbolically.  This is particularly difficult in the case of the human body because of the

large number of degrees of freedom yielding many possible body configurations.
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������ 5HSUHVHQWDWLRQ�RI�WKH�+XPDQ�)LJXUH

Most animation systems [Zelt82b, Magn85b, Cach86, Badl87b, Miro89] involving

human-like bodies have described the articulated body as composed by several chains of

linkage organised hierarchically as a tree.  Our human figure is composed of two main

linkages uniting in the region of the centre of gravity.  Figure 4-2a presents a model of a

human-like figure while Figure 4-2b is the equivalent tree hierarchy of the figure.  The

node ERG\ joins both nodes, SHOYLV and VSLQH� behaving as an abstract limb.  Although the

ERG\ node is not “physically” represented by a particular limb, it operates as if it were.

The change of the figure’s direction is affected by the change of direction applied to the

ERG\ node.
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)LJXUH�������7KH�KXPDQ�ERG\�DV�DQ�KLHUDUFKLFDO�FKDLQ�

������ 0RWLRQ�LQ�$UWLFXODWHG�%RGLHV

The motion in articulated bodies is achieved by bending (rotating) the limbs around the

joints.  One configuration of the body is thus obtained by a series of bend operations

applied to a number of limbs of the body, that is, a single motion is described by a

collection of EHQG operators.  The transition through a consecutive number of such

configurations generates a movement which is the way key-framed animation typically

operates.  Because one link is dependent on another, the achievement of a new body

configuration is made in the form of a tree traversal, starting from the SUR[LPDO limbs and

spreading towards the GLVWDO limbs.
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However, if the bending joints are always considered from the SUR[LPDOV spreading to

the rest of the chain, in the performance of certain motions such as walking, the figure

will appear to slip without moving forwards.  To overcome this problem an additional

operator called IL[ is used.  Therefore, limbs such as the weight-bearing foot can be

attached to the ground while the rest of the body moves relative to it (Figure 4-3).  A

different scheme has been implemented by Zeltzer [Zelt84].  Zeltzer uses EHQG and SLYRW

rotational operators in combination.  The SLYRW operator performs exactly the

complementary effect of the EHQG operator when rotating around a joint.  That is, instead

of rotating the remaining chain below the joint as in a EHQG operation (Figure 4-4a), the

SLYRW operator rotates the entire chain except the chain extending to the GLVWDO limb

(Figure 4-4b).  Thus, a limb that would move under the EHQG operator would remain still

under the SLYRW operator while the rest of the body rotates around that joint.

)LJXUH�������7KH�IL[�RSHUDWRU�DYRLGV�WKH��VOLSSLQJ��HIIHFW�

(a)           (b)

)LJXUH�������&DVHV�RI�EHQG�DQG�SLYRW�RSHUDWRUV�DSSOLHG�WR�WKH�NQHH�

������ 7KH�6NHOHWRQ�DV�'DWD�7\SH�6WUXFWXUH

The object oriented programming approach is a very convenient way to stereotype

objects such as the human figure which have both a representational model and

associated behaviours.  The composition of an animation usually requires a variable

number of figures and the specification of figures as high-level types of objects makes the
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task of replicating and handling them more convenient.  The human figure is thus

identified as a class of objects, 6NHOHWRQ� that encapsulates the data structures and

procedures.  Figure 4-5 presents only a small part of the actual implementation of the

skeleton object.  Three components are identified: the internal data structures; the

initialisation procedures; and the procedures implementing the figure’s motions which are

also called VNLOOV.  The walking motion is implemented by two procedures,

ZDONBULJKWBVZLQJ and ZDONBOHIWBVZLQJ, which are discussed in section 4.3.8.1.

class __export Skeleton {
char Name[MAX_NAME]; // Name of the character.
TActorsTable *ActorsTable; // Points to the objects Controller.
TPen *MyColor;
TLimb *RootLimb; // Points to the topmost limb of the tree.
TBend *BendList; // Structure of bend commands to execute.
TAccess **HAccess; // Direct access to the limbs of the tree.
..... // Other internal variables.

public:
    Skeleton(TActorsTable* Parent, char *Name, char *Color); // Initialise.
    ~Skeleton(void); // Free data.
    void InitSkeleton(); // Build skeleton model.
    void SetPositionAt( char *LimbName, float* Position, float Orientation );
    void ScheduleInstruction(int NInstr, TExpanInstr *ExpanInstr);
    void GetBodyLocation( LPSTR String );
    void TestObstruction( LPSTR String, float XGoal, float YGoal );
    void TestPathObstruction( LPSTR String, double XSt, double YSt, double

 XGoal, double YGoal );
    ...
//  Procedural implementation of the figure’s motion.
    void walk_right_swing( float Turn, float Stride );
    void walk_left_ swing( float Turn, float Stride );
    void l_arm_reach_goal( float GX, float GY, float GZ );
    void l_drink();
   ....
};

,QWHUQDO
YDULDEOHV
DQG�GDWD
VWUXFWXUH

,QLWLDOLVDWLRQ
DQG
JHQHUDO
SURFHGXUHV

6NLOOV

)LJXUH�������7KH�KXPDQ�REMHFW�W\SH�

������ 7KH�5HSUHVHQWDWLRQ�RI�D�/LPE�'DWD�7\SH

In our animation system the motions of the human figure are constituted as rotations of

rigid limbs around the joints without other kind of movement such as twisting or

stretching.  Therefore a limb can rotate at its joint around up to three axes in 3-D space

corresponding to three DOFs.  In the upper part of Figure 4-6, a DOF is shown in the

form of a C++ declaration which comprises the internal data followed by procedure

declarations.  The 3URFHVV,QVWUXFWLRQ sets the new angle to which the DOF is to be

rotated and computes the 'HJUHH6WHS by which the DOF will be advanced in the next

few animation frames until the (QG7LPH frame.  The 7LFN'RI procedure advances a

fraction of a bend operation, 'HJUHH6WHS, for the current frame.  In the lower part of
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Figure 4-6, a limb type structure gathers at most three DOFs which will take part in the

composition of the limb’s transformation matrix, 7UDQVI.  There are also variables

pointing to the next nodes of the chain which are used in the traversal of the figure’s tree.

In summary, this class representing a DOF is the basic unit of motion, the EHQG

operation, in the composition of a “motion structure”.  This is illustrated in the section

4.3.4.

class Type_DOF  {
float DegreeStep;
float Angle;
float AngleMin;
float AngleMax;
int   EndTime;

public:
TDOF() { DegreeStep = Angle = 0.0; EndTime = 0; };
~TDOF() {};
float TickDof(int curr_time);
void ProcessInstruction( float Degree, int curr_time, int Duration );

};

typedef struct TLimb  {
char Name[MAX_NAME];
Type_DOF X, Y, Z;
TMatrixTransf *Transf; // Coordinates of the limb.
FileDescription *JFD; // Points to the limb model.
TLimb *Chain; // First chain of limbs.
TLimb *NextChain; // Next chain in the same level.
int LimbLength;

} TLimb;

)LJXUH�������$�OLPE�GDWD�VWUXFWXUH�

������ 0RWLRQ�5HSUHVHQWDWLRQ

As discussed previously, the motions of articulated bodies are specified by EHQG and IL[

operations.  There are two modes of motion specification: the LQWHUSUHWHG�PRGH and the

SURFHGXUDO� PRGH.  The interpreted mode is a convenient way to compose new and

simple skills into a file and then test them immediately.  In the case of complex motions

such as the walking motion, a conventional language such as C++ provides a powerful

syntax to specify arithmetic expressions for specifying complex equations of motions.

The skills written in the form of procedures are thus added to the 6NHOHWRQ class as part

of its behaviour (Figure 4-5).  Both schemes are indeed composition of motions as

keyframes which are convenient in a multiple figure environment.



57

�������� 7KH�,QWHUSUHWHG�0RGH

In this mode the definition of a skill starts with the INSTRUCTION keyword as shown

in Figure 4-7a.  Each skill comprises one or more keyframes which start with the MOVE

keyword.  The start time of each keyframe is defined relatively to the overall skill and

usually the first PRYH starts at time zero of the skill.  A keyframe comprises a collection

of EHQG operations and at most one IL[�operation, and all these operations take place

simultaneously.  The skills implemented in the interpreted mode are stored in a file and a

table of skills is thus created during the initialisation stage of the BAS (see section 4.3).

......

(a)  Motion specification in interpreted mode

INSTRUCTION <skill_name> <total_duration>
   MOVE <keyframe name> <start_time> <duration>
       BEND <limb_name> <DOF_axis> <target_angle>
       BENDs  ...
        ......
       FIX <limb_name>

   MOVE
       BENDs  ...

INSTRUCTION
....

INSTRUCTION flex_muscle 10
MOVE  lift_arm   0   6
BEND  r_arm  y  70
BEND  r_arm  x  80
BEND  r_biceps z 100

MOVE  flex_arm   6   4
BEND  r_biceps  z  120

(b)  Example of an arm motion

)LJXUH�������5HSUHVHQWDWLRQ�RI�VNLOOV�LQ�WKH�LQWHUSUHWHG�PRGH�

�������� 7KH�3URFHGXUDO�0RGH

In the procedural mode the composition of a skill is similar to the interpreted mode,

however, some “operational” procedures (6DYH&DOO%DFN and VWDUW) have to be invoked

explicitly following the format presented in Figure 4-8.  These procedures help to build

an arrangement of EHQG and IL[ operators at runtime.  The use of procedures allows the

bend operators to consider values from arithmetic expressions coded in the program

rather than predefined constants used in the interpreted mode.  These expressions depend

on external parameters entered in <SDUDPBL>.  The procedure 6DYH&DOO%DFN stores the

time when the process indicated by FXUUBDFWLRQ will be concluded and acknowledged

back to the external caller.  The <NH\IUDPHBL�QDPH�SURFHGXUH> are procedures written

by the user which must have a call to the procedure VWDUW followed by sequence of calls

to�EHQG procedures.  These procedures are expanded into a motion structure when <VNLOO

QDPH�SURFHGXUH> is invoked and each part will be executed at the specified time.  Figure

4-8 presents the minimum specification for a motion structure.
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void Skeleton::<skill name procedure>( <param_1>, ...., <param_n> )
{

SaveCallBack( curr_time + <duration expression>, curr_action );.
<keyframe1 name procedure>( <start time expression>, <duration time expression>, <param_list>

);
  ...
<keyframeN name procedure>( ... )

}
void Skeleton:: <keyframe1 name procedure>( int Start, int Duration, <param_list> )
{

start( Start );
bend( <limb_name>, <DOF_axis>, <target angle expression>, <duration expression> );
bend
 ....
fix(<limb_name> );

}

)LJXUH�������5HSUHVHQWDWLRQ�RI�VNLOOV�LQ�WKH�SURFHGXUDO�PRGH�

���� &RPSRQHQWV�RI�WKH�$QLPDWLRQ�6\VWHP

The basic animation system (BAS) depicted in Figure 4-9 provides the facilities to create,

control and visualise animated figures.  In fact, apart from the LQWHUIDFH module, all the

components of the BAS are entities which are created during run-time, be it a controller

component or a controlled figure.  These entities are typically objects in the sense of

object oriented programming, that is, they have internal data structures which are their

private memory and they have procedures that implement their intrinsic behaviours.  The

operation of an entity is made by invoking these procedures which are implemented as

methods.

The LQWHUIDFH is a module composed of several procedures which realise the task of

decomposing external commands into calls to the internal components of the BAS as

well as returning the results of the operation.  Two procedures undertake the

initialisation and finalisation of an animation session while the others undertake tasks

such as  the creation of a new object, the scheduling of a motion to an actor, advancing

one frame of animation, the enquiry of the direction and location of an actor, testing the

proximity of an actor to specified object, etc.  Because the external commands are

encoded in long strings, the procedures of the LQWHUIDFH firstly decode the strings into

objects names and parameters, and forward them to the components of the BAS or they

invoke the objects to execute specified operations.  The initialisation operation creates

the three components of the BAS:  GHFRU�FRQWUROOHU, FDVW�FRQWUROOHU, and YLVXDOLVDWLRQ

FRPSRQHQW.
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)LJXUH�������2UJDQLVDWLRQ�RI�WKH�DQLPDWLRQ�V\VWHP�

������ 7KH�'HFRU�&RQWUROOHU

This component creates a table of areas requested for the animation environment.  These

areas are just coloured rectangles for drawing the layout of a floor for the animation

scene.  Thus the only action performed by this controller is to add definitions of new

areas and call the YLUWXDO� FDPHUD to draw them.  The purpose of these areas is to

diversify the environment of the animation scenario by associating them with different

uses or meanings.  For example, an area can represent a restaurant, a bar area, an exit

area (“door”), etc.  In the level of the system controller, which controller is discussed in

the following chapters, each area is handled as an entity with characteristics associated to

it that can affect the behaviour of the animated figures.  In the BAS level, the Decor

Controller is simply limited to drawing these areas.

������ 7KH�&DVW�&RQWUROOHU

The FDVW� FRQWUROOHU is the component of the BAS that organises in a single unit the

control of all animated objects created during the animation.  This includes the creation

of an instance of an object and its destruction, as well as the access to the object instance

when a specific operation invokes its action.  The other major purpose of the FDVW

FRQWUROOHU is to allow a collective operation with the cast.  For example, when generating
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a new animation frame all animated objects have the ongoing motions advanced by a

fraction.  In another situation the controller can behave as a “smart table” in which an

object can have access to the others of the cast by “broadcasting” a call for observing a

specific behaviour.  For example, in the walking activity a figure broadcasts a call to

others to test themselves if someone happens to be in a given path of that figure.  There

are two groups of objects under this controller, the DFWLYH�REMHFWV and the VWDWLF�REMHFWV.

�������� 7KH�$FWLYH�2EMHFWV

An active object is basically the 6NHOHWRQ data type which was presented in section 4.2.4.

In the initial position, all the limbs of the figure are in straight angles as shown in Figure

4-10.  That is, the DOFs have a zero degree as rotation angle and the limbs are placed

vertically or horizontally; centred or at either extreme.  The right arm and the left femur

have their coordinate positions on top while the torso has it at the bottom.  The

orientation of the figure in the plane [�] is zero when the figure’s front is aligned with the

[-axis of the world coordinate system.
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)LJXUH��������&RRUGLQDWH�RI�WKH�VNHOHWRQ�LQ�UHVWLQJ�SRVLWLRQ�

�������� 7KH�6WDWLF�2EMHFWV

The static objects are part of the environment decor.  They can be considered as

resources to be accessed by the active objects or as obstacles to be avoided.  These

objects may have properties associated with them such as colour, size, location, and

orientation.  The implemented objects, such as glasses, counters, tables, and chairs, take

part in the “bar scenario”.
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������ 7KH�9LVXDOLVDWLRQ�&RPSRQHQW

This component is basically a YLUWXDO� FDPHUD entity with a choice of two kinds of

projections, parallel and perspective.  Obviously typical parameters such as centre of

projection, reference point, view up, etc. can be set up for the virtual camera [Harr83,

Magn86, Mort89].  In order to make the handling of the camera efficient, a number of

predefined views can be stored in an external file and then selected during animation.

For each frame of the animation sequence the virtual camera is called to draw the floor

and all the cast.  All figures are modelled as wired-frame structures and the virtual

camera only displays wire frames without hidden line elimination and rendering.

The drawing of non-articulated figures such as a table and a chair is trivial.  Articulated

figures are fairly complex to draw because the bending of one limb requires that the rest

of the chain affected by it must also be updated.  Such an update is effected by a traversal

across the tree structure of the figure as discussed in section 4.2.3.  The traversal starts

from the centre of gravity, the ERG\ node.  Each DOF (degree of rotational freedom

about [, \, or ]) of a limb is checked to determine whether a bend is required.  If so, a

rotation matrix for this DOF-axis is determined and then applied to the coordinate

system of those limbs under its influence.  When all DOFs of this limb have been updated

then the virtual camera is called to draw it.  The process successively deals with each

node of the tree.

The determination of the rotation matrix is a laborious computation because such a

matrix must describe a rotation about a generic axis.  This occurs because each limb of

the skeleton is in an arbitrary direction.  One approach to derive a rotation matrix about a

DOF-axis is to bring this axis into alignment with one of the world coordinate axes, for

example the z-axis.  The alignment is done by translating the limb coordinate system to

the world origin, rotating it about the x- and y-axes to make the coordinate system of the

limb match the world coordinate system.  After which the specified rotation about the

DOF-axis can be applied about the z-axis.  To complete the composition of the rotation

matrix, the limb must return to the original coordinate system.  Thus, the limb coordinate

system is rotated about  y- and x-axis in the opposite direction by the same amount, and
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finally it is translated back to the original coordinate location.  Therefore, the rotation is

obtained by the following matrix product:

MDOF = T Ry Rx Rotz Ry
-1 Rx

-1 T-1 (3)

where 5\ and 5[ are the rotations applied to the y- and x-axis that align them to those of

the corresponding world coordinate axes.  5RW] is the intended rotation around the

generic axis.  7 is the translation matrix that brings the coordinated system of the generic

axis to the origin of the world coordinate system.  Details of the composition of the

matrices as well as the mathematical developments are explained by Harrington [Harr83].

������ 7KH�6WUXFWXUH�RI�([HFXWLQJ�0RWLRQ

Upon a request to execute a motion command, the animation interface sends the

command to the actor that will perform it.  The motion can be performed if its name is

found in the 0RWLRQ�/LEUDU\, that is, in the table of skills (for skills implemented in the

interpreted mode) or, as a second alternative, be invoked if it has been implemented as

procedures.  If the skill is a valid one it is expanded into a list of PRYHV structures (Figure

4-11) and instantiated with information about the start time, duration, and the targeted

angle.  Each PRYH of the bending list is scheduled for execution in the skeleton structure

when the start time matches the animation “current time”.  In each limb’s DOF, as linear

interpolation is used, the amount of rotation for each animation frame is defined by the

total angle to rotate divided by the duration.  At regular times the LQWHUIDFH receives

requests to advance by one animation frame.  The LQWHUIDFH thus sends a call to the FDVW

FRQWUROOHU to instruct all the cast to be displayed by the visualisation process discussed in

the previous section.  The list of FDOOEDFNV in the motion structure (Figure 4-11) stores

the numbers of the processes of the external commands, so that when a motion related to

a process completes the sender of the motion command (the task control entity which is

discussed in Chapter 8) is notified.
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  Motion library
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bend
bend

...
fix

ERG\

6FKHGXOH�LQVWUXFWLRQ
5HWULHYH�LQIRUPDWLRQ
$GYDQFH�RQH�IUDPH

bend
bend
bend

...
fix

move

bend
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)LJXUH��������*UDSKLFDO�UHSUHVHQWDWLRQ�RI�WKH�VWUXFWXUH�RI�PRWLRQ�GXULQJ�H[HFXWLRQ�

������ *RDO�GLUHFWHG�0RWLRQ

As discussed in section 4.2.1, the problem of finding a configuration for a chain of

articulated links in which an end component, the GLVWDO�link, reaches a point in the space

is an inverse kinematics problem.  The solution of the problem is thus to find a set of

rotation angles TL that satisfies a system of kinematic equations.  Korein and Badler

[Kore82] survey several alternative solutions.  Their approach is to solve the goal

achievement as a reach hierarchy as shown in Figure 4-12a.  The solution is focused in

one DOF at time from SUR[LPDO to GLVWDO links.  It considers two links (parts) in its

analysis: the link which has the DOF being solved and the subsequent chain ending to the

distal link.  The latter part is treated as a single VHJPHQW which is identified by this
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nomenclature in this chapter.  :L is the workspace covered by link L.  The combination of

both links reaches any point in the grey area (Figure 4-12a).
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)LJXUH��������.RUHLQ
V�DSSURDFK�WR�UHDFKLQJ�D�SRLQW�JRDO�

In this simple example of Figure 4-12a, a chain of two unconstrained links has two

rotational DOFs on the plane which space of reach is confined in the greyed cylindrical

area.  The solution is thus to determine T� and T� from the trigonometric equations

(Figure 4-12b).  Their solution is described by the algorithm in Figure 4-13 [Kore82],

however, details of mathematical considerations are discussed in their paper.  Later on,

Badler et al [Badl87b] improved this algorithm by using multiple constraints.  Each DOF

is constrained to specified joint angle limits and the reach is “proportionally” spread

throughout the chain.

Let the chain be C1 and its workspace, W1. Let the
subchain with just the most proximal joint and link
deleted be C2 with workspace W2, and so on.

If goal S is not W1, then
it is not reachable: give up.

Otherwise:
for i := 1 to number of joints in C:
   adjust qi only as much as is
   necessary so that the next
   workspace Wi+1 includes the
   goal S.

)LJXUH��������.RUHLQ
V�DOJRULWKP�IRU�WKH�UHDFK�DSSURDFK�
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������ *RDO�GLUHFWHG�$UP�5HDFK

Korein’s method [Kore82] for  reaching a goal has been employed in the implementation

of the SLFN�XS action in the current system.  The chain of limbs of an arm considered in

this action are:  DUP, ELFHSV, and KDQG 2.  As the human arms are capable of very

complex motions, much more than any robotic manipulator, some assumptions have to

be established in order to draw a strategy for solving the figure’s motion.  Firstly it is

assumed that the figure can only reach objects within the figure’s front half-space, more

specifically, a half-sphere with its centre in the joints formed by VKRXOGHU and DUP at

either sides of the figure.  The DUP is a limb joining the VKRXOGHU with three DOFs (x, y,

z), the ELFHSV has only one DOF (z-axis), and the KDQG two DOFs (x, z).  The following

steps are strategies for reducing the complexity of the reach problem.  That is, each DOF

is solved one at a time always observing that the goal is kept within the reach.  Working

from the SUR[LPDO limb towards the GLVWDO limb, that is, from the DUP to the KDQG, and

looking to the problem as comprised by “two links” as discussed in the previous section

(Figure 4-12).

i) REVHUYH�LI�WKH�REMHFW�LV�ZLWKLQ�UHDFK�� If the target object is not within the range of a

fully stretched arm, i.e. the workspace of an arm, then the figure must first approach

the object, either by walking, leaning forward, or turning.  The figure adjusts its

direction towards the object if the object is not in the semi-space of the figure’s front.

ii)  ILQG�WKH�[�D[LV�RI�WKH�DUP�  This is not necessarily a problem to be solved given the

degree of redundancy of the arm.  If this DOF remains where it is, the goal can be

reached with the arm in an “open wing” fashion.  However, if the “wing” formed by

the DUP and the WRUVR is opened too wide a simple heuristic could be used to close it

to a visually acceptable angle (Figure 4-14a).

iii)  DOLJQ�WKH�DUP�ZLWK�WKH�ZRUOG�FRRUGLQDWHV�  This is similar to the problem of rotating

about an arbitrary axis discussed in section 4.3.3.  The purpose is to prepare for the

two next steps by making the y-axis of DUP coincide with the y-axis of the world

                                               

2 In order to avoid confusion, names of rigid limbs are written in italics.
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coordinate system.  Obviously not only the whole arm (DUP/ELFHSV/KDQG) should be

rotated as a rigid block, but also the distance and orientation of the object should be

kept relative to the DUP’s�QHZ coordinate system, that is, the same rotation applied to

the entire arm is applied to the target object.  In Figure 4-14b both the whole arm and

the object have been rotated and from the view from above the extension of the DUP

does not appear because it is perpendicular to the paper.  A small circle indicating the

DUP is shown in Figure 4-14b.
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)LJXUH��������&RQILJXUDWLRQV�RI�DQ�DUP�

iv) GHWHUPLQH�WKH�VHJPHQW�GHILQHG�E\�HOERZ�WR�WKH�WLS�RI�WKH�KDQG�  If no constraint is

imposed on the x- and z-axes of the KDQG then the position of the KDQG can either be

maintained as its with the x/z angles  or they can be assigned to zeroes in which

situation the length of the segment formed by ELFHSV and KDQG is exactly the sum of

the length of both limbs.  If either KDQG’s axes (x or z) are currently non-zero then the

equivalent VHJPHQW has to be determined.  This VHJPHQW is a composed vector of the

sub-chain (ELFHSV plus KDQG) which is shown in Figure 4-14c.

v) DOLJQ�WKH�DUP�VHJPHQW�SODQH�ZLWK�WKH�JRDO�� �This determines the amount of angle

the DUP must turn about the y-axis such that the tip of the hand will be on the plane

formed by the DUP and the object (Figure 4-14b).
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vi) ILQG�WKH�DUP�]�D[LV�URWDWLRQ�  The aim is to determine the amount of rotation about

the z-axis an DUP should do in order to make the tip of the VHJPHQW (tip of the KDQG

component) reach the goal position.  Obviously the determination of the z-axis of the

DUP requires the determination of the z-axis of the VHJPHQW (i.e., elbow) in relation to

the DUP (step vii).  One way to do this is to draw two circles with the DUP (centred at

the base) and with the VHJPHQW (centred at the finger) as shown in Figure 4-14d.  If

they intercept in two points, the “lower” intersection point is chosen, as the elbow has

its movement constrained to one side.  The trivial case occurs when both circles

intercept in one point only.

vii)  ILQG�WKH�ELFHSV�]�D[LV�  After the previous step the distance between the elbow and

the tip of the hand is exactly the length of the segment, thus the biceps z-axis is

computed easily.  However, if the hand z-axis is non-zero then this contribution

should be taken into account by solving the triangle segment-biceps-hand.

������ +ROGLQJ�DQG�5HOHDVLQJ�DQ�2EMHFW

Once the hand of a humanoid has reached an object, for example a glass, the action of

SLFNLQJ�XS�D�JODVV becomes effective if the humanoid can carry it along.  Because the

glass is a passive object which is now in control of the arm, visually it must accompany

the KDQG in any movement.  Any object visualised on the screen has a geometrical model

whose position and orientation is represented in terms of an homogeneous matrix

relatively to the world coordinates.  Thus, GlassW and HandW are matrices representing

the models of glass and KDQG respectively, while GlassH is the matrix representation of

the glass relatively to the hand.  Expressions (4) and (5) are equivalent but they have

different uses.  They establish that at any moment the glass coordinate system relative to

the world, GlassW, has an equivalent coordinate system relatively to the hand, GlassH.

The holding of the glass occurs when the KDQG has reached the vicinity of the glass.

Thus, GlassH is computed using expression (5).  Obviously, the visualisation of the glass

uses the GlassW matrix which is obtained through equation (4).  As the position and

orientation of the KDQG may change, GlassW is always computed in every animation frame

with updated HandW.

GlassW = HandW * GlassH (4)
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HandW
-1 * GlassW = GlassH (5)

The release of the glass is simple.  GlassW is computed from expression (4) only once and

in any subsequent visualisation of the glass GlassW is used unchanged.  So that the glass

will appear motionless.

������ 7KH�/RFRPRWLRQ�RI�WKH�+XPDQ�)LJXUH

The walking activity is probably the most complex motion of human behaviour.  The

complexities may not be apparent from simple observation.  The problem has been the

subject of studies in the medical field [Inma82, Lamo71, Murr64, Saun53].  These

studies indicate that the walking gait of a normal person varies with age, height, sex,

speed, stride, etc.  It is necessary to employ suitable equipment and photograph records

to determine the magnitudes, directions, and rates of change of translations and rotation

of the body elements.  Saunders et al. [Saun53] have identified the following

determinants in human walking:  pelvic rotation, pelvic tilt, knee flexion in the stance

phase, foot and knee mechanisms, and lateral displacement of the pelvis.  One feature

that has been observed, as shown in Figure 4-15 [Saun53], is that the locus of the top the

figures in a sequence of movements approximates to a sinusoid.

� � � � � �� � � �

0 % 50 % 100 %

5LJKW�VWDQFH�SKDVH 5LJKW�VZLQJ�SKDVH

Left swing phase Left stance phase

Double
support
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/HIW�VLQJOH�VXSSRUW'RXEOH
VXSSRUW

Time: percent of a cycle

)LJXUH��������3KDVHV�RI�WKH�ZDONLQJ�LQ�WLPH�DQG�GLVWDQFH�
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In computer animation a number of methods to control the walking action have been

devised such as keyframes, adaptive walking control [Zelt82], direct and inverse

kinematics methods [Boul92], dynamics [Brud89], etc.  Inman et al. [Inma82] discuss

the process of walking and present the general pattern of walking as shown in Figure 4-

15.  The number of key postures considered along a cycle of movement may vary from

one implementation to another.  A common feature of these animation systems is the use

of a finite state machine scheme to control the different stages of biped walking.

�������� 7KH�:DONLQJ�0RWLRQ

In the present work, the walking motion is implemented procedurally using the forward

kinematics method.  The sequence of key stances is similar to that presented by Inman

[Inma82].  Basically there are three keyframes for each of the left and right swing phases

which make up a complete walking cycle.  In the first keyframe or stage a leg is lifted

first in preparation for a step.  In the second stage both legs are stretched, with the lifted

leg going forward with the heel striking the ground and the weight bearing leg remaining

at the back.  The third and last stage is the conclusion of the step.  The body leans

forward transferring most of the weight to the front leg, the body straightens up while

the back leg retracts.  Figure 4-16 exemplifies a procedure implementing the phase of the

right leg swing of the walking motion.  The three stages making up the motion are

written as procedure calls.  Details of implementations have been discussed in section

4.2.6.2.

void Skeleton::walk_right_swing( Fraction_forward, Fraction_sidewards,  Turn )
{

SaveCallBack( curr_time + 9, action_process_number );
walk_right_stage_1(  0,  3, Turn );
walk_ right_stage_2( 3,  3, Fraction_forward, Fraction_sidewards );
walk_ right_stage_3( 6, 3 );

}

)LJXUH��������3URFHGXUH�LPSOHPHQWLQJ�ULJKW�OHJ�VZLQJ�RI�WKH�ZDONLQJ�PRWLRQ�

A similar procedure is implemented for the swing of the left leg.  The procedural

implementation of the walking motion allows the length of the stride to be adjusted to a

fraction of a full step forward.  In addition it is possible to specify a sideways component

to the step. �Each stage is performed in three frames starting respectively at the relative
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times 0, 3, 6 and so on.  The stages 1, 2, 3 of Figure 4-17 and Figure 4-18 are performed

by the procedure given above.  In both cases the left leg is the support leg, and the right

leg is swung forward.  These three stages of walking are described in detail in the

following section.

�����������������������������������������������������������������������������������������������������������

ULJKW�OHJ�VZLQJ OHIW�OHJ�VZLQJ ULJKW�OHJ�VZLQJ

6WDJH�

$FWLRQ�

)LJXUH��������7XUQ����GHJUHHV�WR�WKH�OHIW��VZLQJLQJ�ULJKW�OHJ�

�����������������������������������������������������������������������������������������������������������

ULJKW�OHJ�VZLQJ OHIW�OHJ�VZLQJ ULJKW�OHJ�VZLQJ

)LJXUH��������7XUQ����GHJUHHV�WR�WKH�ULJKW��VZLQJLQJ�ULJKW�OHJ�

First Stage: Leg Lifting and Change of Direction

If a change of direction is required then it is performed in the first stage of a walking

phase.  The turn basically involves the rotations of the supporting leg and the body of the

figure by the same amount but in the opposite direction.  The stages (1) and (2) in Figure

4-17 show a perspective view of the right leg swinging forward and the body turned in

the left direction.� �An excerpt from this procedure is shown in Figure 4-19 which is

called by the procedure shown in Figure 4-16.  Because the motion is implemented in a

conventional programming language (C++),  code such as “limiting the turning to the

maximum of 70 degrees” as well as internal variables (e.g., ERG\ data structure) can be
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included in the procedure in addition to the basic motion structure discussed in section

4.2.6.2.

void Skeleton:: walk_right_stage_1(int Start, int Duration, float Turn )
{

start( Start );
if (Turn > 70)  Turn = 70; // Extra statements to
else if (Turn < -70)  Turn = -70; // constrain the turn
fix( l_foot ); // Fix the supporting leg.
bend( body, Y_axis, body->Y.Angle+Turn, Duration );
bend( l_femur, Y_axis,  0, Duration );
bend( r_femur, Y_axis, -Turn, Duration );
....

}

)LJXUH��������7XUQLQJ�WKH�GLUHFWLRQ�RI�ZDON�

Second Stage: Step Forward

The length of the stride is controlled in the second stage.  A simple analogy is to regard

the legs as being like a pair of dividers.  Indeed, this is one aspect of the determinants

discussed by Inman.  Referring to Figure 4-20 the angle between the legs corresponding

to the maximum stride could be 44 degrees. �However, if the stride is shorter then the

angle will be correspondingly less.  Therefore, the bending of each leg is limited to 0 <

IUDFWLRQBRIBVWULGH < 1 at the femurs’ z-DOF.  The value of�IUDFWLRQBRIBVWULGH defines the

length of the step.

Step length

back
femur
angle

front
femur
angle

)LJXUH��������:DONLQJ�VWULGH�DV�D�FRPSDVV�JDLW�

Second Stage: Step Sidewards

A sideways step is similar to the forward step with the sideways motion being performed

in the second stage.
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Third Stage: Straightening Up

In this stage the movement is consolidated by transferring the weight from one leg to

another.

������ *HVWXUHV

There are some motions that are peripheral to the main activity  An example is swinging

the arms during walking.  Although it is a natural component to walking it is not essential

and may not even be possible if, for example, the arms are being used to carry something.

���� 3DWK�3ODQQLQJ

Frequently, in carrying out an action, the animated figure has to move through a room

populated with objects and other actors.  In order to avoid collisions, a route to reach an

intended place should be planned first which the figure can follow.  This is the path

planning problem which has been studied in robotics [Loza79, Broo83].  There are two

classes of trajectory planning in robotics: two- and three-dimensional planning.  The kind

of path planning typically employed in computer animation is the two-dimensional type.

Two main motion planning approaches that are employed in robotics are the SRWHQWLDO

ILHOG and the�FRQILJXUDWLRQ�VSDFH.  The SRWHQWLDO�ILHOG�uses mechanisms of attraction or

repulsion to guide the motion of a robot [Arki87, Wilh90].  In this approach a model of

the perceived world is built up as a map of a potential field.  Then the robot makes use of

a repertoire of sensing strategies to identify the nature of the field to guide its motion

through the area (Figure 4-21).

)LJXUH��������3RWHQWLDO�ILHOG�XVHG�WR�JXLGH�D�URERW�

The FRQILJXUDWLRQ�VSDFH�is most generally used in computer animation [Cavu93, Cher89,

Chin92].  Basically the method relies on making a distinction between the occupied and



73

free areas.  Objects are enclosed in bounding boxes which are a simple representation of

the area they occupy.  Areas occupied by the bounding boxes cannot form part of the

path of the robot.  An example of FRQILJXUDWLRQ� VSDFH� is depicted in Figure 4-22 by

Cavusoglu [Cavu93].  There the occupied cells are marked as “occupied” making them

unavailable and remaining cells are marked with their distance to the destination.  Each

animated figure will have such a grid appropriate to its destination, and the path followed

is obtained by choosing the cells at each stage with the minimum distance to the

destination.  In a dynamic environment with several actors in motion, grids must be re-

computed to reflect the changes of the environment.
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������ 7KH�6HJPHQW�6XE�GLYLVLRQ�$SSURDFK

Although both the above approaches are commonly used in computer animation and

robotics, we use the simplest collision avoidance algorithm which has been

acknowledged by Lozano-Peres et al. [Loza79]  as being a “generate and test” paradigm.

It is suitable for a fairly cluttered environment, with many obstacles but not too

overcrowded.  This algorithm is preferred over the FRQILJXUDWLRQ� VSDFH approach

because the environment is changing continuously and the determination of the

configuration space of the environment for each figure’s path can be costly.  The method

described here combines the use of bounding areas (or volumes) with recursive
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subdivision of the path.  The simplest path is a straight line from the current position of

the actor to the destination.  If an object is detected in this path then the algorithm

divides the planning problem into two sub-problems, that is, one path that goes from the

starting position to a point in the neighbourhood of the obstructing object and another

path from this point to the destination.  The division is repeated recursively for each

segment of the path that intercepts an object.  Eventually a list of segments describing a

usable path is obtained (Figure 4-23).

(a)  a straight line path.

JRDOVWDUW

(b)  two lines segment path.

JRDOVWDUW

A

(c)  three lines segment path.

JRDOVWDUW

A

B

ERXQGHG�REMHFW�A

)LJXUH��������3DWK�GHWHUPLQDWLRQ�ZLWK�REVWDFOHV�

In the planning of collision-free paths, the test of potential collisions is greatly simplified

as the shapes of objects are approximated to larger bounding circles or rectangles.  Small

objects such as a chair, a table or an actor are individually bounded by circles; while an

object such as a counter is bounded by a larger rectangle.  In the case of a small object

(Figure 4-24), the obstruction of an actor’s path, that goes from point A to B, is avoided

by determining an intermediate waypoint M tangent to the circle.  This is determined by

drawing a line QRUPDO to the segment AB going through the centre of the obstructing

circle.  As two points are found, the point closest to the segment is selected as the new

waypoint.  Obviously other selection criteria might be used depending on the situation.

A

B

obstructing
object

M

bounding
circle

non-colliding
path

)LJXUH��������'HWHUPLQDWLRQ�RI�DOWHUQDWLYH�SRLQW�
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In the case of the rectangle boundary, a similar process is used to determine a waypoint

M for the path AB that avoids interception with the object’s bounded area.  In order to

simplify the analysis, the path segment AB and the bounding rectangle are both rotated

by an angle that aligns the path segment AB with the origin of the coordinate system

(horizontally) as shown in Figure 4-25a.  The waypoint M is the one of the two extreme

points that lie on the side of the rectangle first crossed by the segment AB.  The point

lying on the upper or on the lower parallels, tangent to the bounded area, or whichever

point is closer to the path segment, is chosen as the new waypoint.  In the case of Figure

4-25b further determination of a waypoint N for the sub-path MB is required as it also

crosses the bounded area.

JRDOVWDUW

VXESDWK�WR�SRLQW�0

(a)

SDWK�VHJPHQW

BA

ERXQGLQJ�DUHDREVWUXFWLQJ�REMHFW
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BA

ERXQGLQJ�DUHDREVWUXFWLQJ�REMHFW

)LJXUH��������'HWHUPLQDWLRQ�RI�DOWHUQDWLYH�SRLQW�IRU�D�UHFWDQJOH�

The Prolog implementation of the path planning is:

find_path( Actor,  pos(Xa, Za),  pos(Xb, Zb),  List ) :-
     test_path_block( Actor,  pos(Xa, Za),  pos(Xb, Zb),  pos(Xc, Zc) ),
     find_path( Actor,  pos(Xa, Za),  pos(Xc, Zc),  Phase1 ),
     find_path( Actor,  pos(Xc, Zc),  pos(Xb, Zb),  Phase2 ),
     append( Phase1,  Phase2,  List ) .

find_path( Agent,  pos(Xa, Za),  pos(Xb, Zb),  [pos(Xb, Zb)] ) :-  !.

FODXVH��

FODXVH��

The program ILQGBSDWK accepts as input:  the actor involved in the planning; the current

position of the actor, SRV�;D�=D�; and the destination position of the actor, SRV�;E�=E�.

As a result a list of points (/LVW) specifying the path to the destination position is created,

that is, /LVW is a solution of path composed by the path until the obstacle (3KDVH�) and

after the obstacle (3KDVH�), the obstacle is located at SRV�;F�=F��  The planning

procedure takes the following actions:
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• The FODXVH� � is attempted first.  Determine if the path [SRV�;D�=D� - SRV�;E�=E�]

intercepts any object by evaluating WHVWBSDWKBEORFN��  One of the following two

situations might occur:

∗ If there is an interception at a point F then the segment is split into two at that point,

recursively calling path planning for the first segment (D�F) and then calling path

planning for the second segment (F�E).  The route to reach the destination E is the

sequence of waypoints obtained.

∗ If no interception point was found then abandon FODXVH�� and execute FODXVH��.  That

is, the only waypoint is the destination E.

���� &RQFOXVLRQV

The basic elements of an animation system have been presented in this chapter.  That is,

the skeleton and objects data types, and the animation control components have been

described.  At runtime, new instances of humanoids are created and managed by the Cast

controller.  The motion of these agents can be described within files as structures of

motion command or within a program as procedures.  Some examples of motion have

been presented, together with a simple and convenient algorithm for finding paths

through obstacles.
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