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&KDSWHU��

7KH�,QVWUXFWLRQ

���� ,QWURGXFWLRQ

As discussed in Chapter 5, the LQVWUXFWLRQ is a conceptual model that implements the

action to be performed by the animated agents.  It emulates the development of the

actions in terms of well-defined motional activities through the planning process.  The

possibility of extending the level of abstraction of the actions makes the agents exhibit

more intelligent behaviour.  Consequently, the level of detail involved in planning in

instruction becomes significantly more complex.

The natural strategy for coping with varying levels of abstractions is to use hierarchies

where actions are described by a number of simpler actions, thereby associating the

major instruction with a number of sub-instructions.  In Chapter 3 we examined some

problem-solving strategies used in many planning and control systems.  We have

identified that the use of hierarchy is an essential part of the solution, however there are

problems in implementing this.  In this chapter we explore features of the hierarchical

structure that control an agent’s behaviour.  These features concern the co-ordination of

the abstraction levels which involve the internal planning of the actions, the association

of one action with another, the identification of the environment context to be handled,

etc.  We also examine the structure of the Instruction KS (IKS) which is the engine that

handles the instruction process.
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���� 7KH�,QVWUXFWLRQ�&RQFHSW

A typical example of an DFWLRQ in the animation is “John picks up the glass!”.  This means

the goal of the agent -RKQ is to perform a SLFN�XS action of the object JODVV.  The goal

state associated with the action obviously is to have -RKQ�KROGLQJ�WKH�JODVV.  However,

in order to explain the nomenclature adopted, we argue that it is much easier to reason in

terms of JRDO�DFWLRQV rather than in terms of JRDO�VWDWHV.  On the one hand, the JRDO�VWDWH

is a state or a set of states that can be achieved by different actions or plans of actions

(Figure 6-1a).  For example, John could do many irrelevant actions and end up in the

goal state KROGLQJ�WKH�JODVV.  On the other hand, the JRDO�DFWLRQ can be seen as a bridge

that evolves from the current state to the goal state and the action follows a plan (the

most appropriate one) that achieves its goal.  Therefore, for our purposes the JRDO to be

pursued is understood to be the JRDO�DFWLRQ and the JRDO�VWDWH is the outcome of this.

&XUUHQW

VWDWH

*RDO

VWDWH

&XUUHQW

VWDWH

*RDO

VWDWH

DFWLRQ�� DFWLRQ�Q����� JRDO�DFWLRQ

�D��VWDWH�RULHQWHG �E��DFWLRQ�RULHQWHG

)LJXUH�������&RQWUDVW�RI�JRDOV���VWDWH�RULHQWHG�DQG�DFWLRQ�RULHQWHG�

In the present work, the denomination of iQVWUXFWLRQ is given to a computational entity

that implements the concept of DFWLRQ discussed in the Chapter 3.  It is a control

structure which will eventually be transformed into sequences of motor or motional

actions.  An instruction can be interpreted as a command given by the animator to a

robotic agent to carry it out in the animation environment.  An instruction can also be

interpreted as a machine instruction that is generated consequent upon events in the

environment and carried out by the robot itself.  In any case such instructions are at a

very high-level, the performance of which will depend on the capability of the robot and

the circumstances of his surrounding.  An animation instruction has the general structure:

 [<VXEMHFW>  <YHUE>  <REMHFW>]

where <VXEMHFW> is the agent performing the action described by the <YHUE> using the

parameter list specified by the <REMHFW>.  The <YHUE> is the focus of the planning activity
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which gives the name to the instruction.  The <VXEMHFW>  and  <REMHFW> are the

parameters operated by the instruction.

���� 3ODQQLQJ�LQ�WKH�,QVWUXFWLRQ

For the purpose of behavioural animation, planning an action can be understood as an

explanation of how an activity is to be achieved according to the expectations of the

animator or the system developer.  The planning of this activity reflects the knowledge

and the understanding that the animator has about it and what combined behaviours can

accomplish it.  Despite the term LQVWUXFWLRQ, as far as animation is concerned, nothing is

accomplished in the instruction level except the generation of plans.  The plan generation

is in fact pure symbolic manipulation.  A fully developed plan is composed of simple

actions that are processed by the Task KS.

This kind of planning intended for the behavioural animation purpose fits the VFULSW�

EDVHG�SODQQLQJ where plans are formed by D�SULRUL knowledge rather than by the use of

algorithms or heuristics.  For example, the high-level action for SLFNLQJ�XS�D�JODVV�IURP�D

FRXQWHU can be described by either following sequences:

   1)  approach the counter,

   2)  pick up the glass from the counter

   1)  look at the glass
   2)  walk to the counter
   3)  approach the left-front side of the counter,
   4)  extend the right arm
   5)  pick up the glass from the counter

GHWDLOHG�SODQ KLJKHU�OHYHO�SODQ

Although the specific planning of an action may vary considerably from one person to

another, common sense is the best rule to follow.  However, a more pragmatic rule to

observe is to build plans that do not exceed four sub-actions in length.  The longer the

plan the shallower it is and part of that plan is likely to occur elsewhere.  In such a case it

is interesting to create an (intermediate) instruction that implements that part of the plan

and to include the intermediate instruction wherever it is required.  For example, Figure

6-2b and Figure 6-3b make use of an intermediate instruction E�, thus a plan for the

instruction D is comprised by the sequence [F��E��E�] and the instruction N by [G��E�].

As new skills are incorporated to the animation repertoire, the vocabulary of motions
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evolves and the rearrangement of plans naturally becomes apparent.  If, however, a plan

re-structuration is not sought the repetition is likely to occur and the advantage of

abstraction is lost as both Figure 6-2a and Figure 6-3a show.
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(a) - Shallow plan for D:
 [ c1, c2, c3, c4, c5, c6 ]

(b) - Deep plan for D:
 [ c1, b1, b2 ]
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(b)  re-structured plan
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)LJXUH�������3ODQQLQJ�ZLWK�H[LVWLQJ�DFWLRQV�

The key idea of planning with a minimum of goals is to stress the objective embedded in

the plan rather than details, that is, a plan for an action is expected to specify an overall

and approximate solution which will probably lead to the final solution.  As the simplest

and the basic instructions are created, more elaborate or abstract instructions can be built

from existing ones.  Therefore, the level of abstraction raised in the animation is reflected

in the depth of the planning tree which is also a reflection of the augmentation of the

animation database.  The most extreme case is also acceptable but it may be rather

useless.  For example, a new plan specifying a complete sequence of simple operations is

designed for every slightly different situation.

���� ,QVWUXFWLRQ�2SHUDWLRQ

The organisation of an instruction as an entity is very simple.  It is comprised of the

instruction frame, a set of rules called UXOHVHW, and a set of procedures.  Such simplicity is
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necessary for the user to compose new instructions.  The activity of an instruction is

initiated by the Instruction KS with the creation of an instance from the specific

instruction frame and a number of links to other instructions and entities are developed

by invoking its ruleset.  Figure 6-4 presents a fragment of an instruction in an activity

during the development of a plan.  A general view of the issues are discussed in the next

sections.  The implementation of instructions involves a number of issues such as: the

ability to recognise the context of the instruction to perform context identification, the

problem of expressing the goal as a series of sub-goals (planning), and data

representation (frame and rules), linking goals (parameter passing), etc.
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)LJXUH������$FWLYLW\�RI�DQ�LQVWUXFWLRQ�LQVWDQFH�

���� 7KH�,QVWUXFWLRQ�)UDPH

All information associated with an instruction is stored in a frame structure.  An

instruction is characterised by a frame as it organises all the information related to it such

as the goal, parameterisation, ruleset, internal data, etc.  There is a generic instruction

frame which provides the basis for deriving most of the animation instructions, as shown

in the upper part of Figure 6-5.  A specific instruction can be derived from the generic

form with the addition of customised slots initialised to default values, as shown in the

lower part of Figure 6-5.  During run-time the instructions frame serves as a template for

generating instances in the building of plans.  The instances hold run-time data and at the

conclusion of a planning process they are removed from the working memory.  In order
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to differentiate one instance from another a number is appended to the name.  For

example, the instructions JRBWRBL and VLWBL have instances starting from JRBWRBL� and

VLWBL�.  It is interesting to observe that operations are always performed on instances.

Sometimes when referring to an instruction instance (also to a task instance and a

message instance) the term instance is simply dropped because the attention is on their

conceptual aspects rather than on programming uses.

   frame instruction;
      default state is plan_selection
      default type is instruction
      default root is nothing and
      default history is none
      default template_ parameter is []
      default parameter_list is []
      default plan_name is nothing
      default plan_sequence is []
      default child is nothing
      default quality is primary // or secondary
      default owner is system // or user script
   ......

   frame pick_up is an instruction ;
      default name is pick_up
      default param_list is [place,object,condition,arm]
      default place is table
      default object is glass
      default condition is clean // objects’s condition
      default arm is r_arm
      default closeness is nothing
      default approach_side is front
   ....

)LJXUH�������'HULYDWLRQ�RI�DQ�LQVWUXFWLRQ�IUDPH�IURP�WKH�JHQHULF�IRUP�

���� 7KH�5RRW�)UDPH�5HSUHVHQWLQJ�3URFHVV

During run-time every major goal pursued by an agent is developed into a planning tree.

The instances of this tree have some information in common that are stored in a special

instance called the URRW�LQVWDQFH.  As the instances of the tree are independent chunks of

information, the use of a root instance as a unique dataset that identifies the tree and

helps to avoid repetition of information and permits the IKS control to deal with the tree

as a whole process when necessary.  For example, the interruption of a planning process

at any point of the tree is detected by examining the root.  The root frame is presented in

Figure 6-6 and the operation of a root instance during run-time is depicted in Figure 6-7.
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   frame root;
     default source    is system and
     default agent     is nobody and
     default top_instance is nothing and
     default interruption is off and
     default current_instance is nothing and
     default focus     is on and
     default time_out is 0 and
     default callback is nothing .

)LJXUH������5RRW�IUDPH�

b2c1 b1

a

URRWB�

$JHQW

root_2

,QVWUXFWLRQ�.6

SURFHVV�LQVWDQFH XSGDWH
GHWHFW

)LJXUH�������/LQNLQJ�DJHQW��URRW��DQG�SODQ�WUHH�

���� 7KH�,QVWUXFWLRQ�3DUDPHWHU�7HPSODWH

Part of the data operated on by instructions in general are external inputs which enter

through parameter passing.  Every instruction is templated with a list of parameters given

in the WHPSODWH slot of the instruction frame and the parameters of this list are also slots

of the instruction frame.  The parameters are thus initialised with default values that may

be used in the absence of external data.  This implies that all parameters in the template

are not always provided when the instruction is being used.  In fact, the template of an

instruction tends to become of general use and the explicit specification of all parameters

is required only in few cases.

Figure 6-8 shows the SLFN� XS instruction as a “black box” where only the templated

parameters are relevant for the planning of an instruction.  However, if an instruction has
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a null template list this does not imply that the instruction has a very restricted role.  As

mentioned in section 6.2 the agent name is included as a component of the main

instruction which is stored in the root.  Therefore, the instruction can still fetch vital

information on which to operate.

�����SODFH WDEOH
�����REMHFW JODVV
�����FRQGLWLRQ FOHDQ
�����DUP UBDUP

�����,QWHUQDO
�����SDUDPHWHUV

���SODFH����REMHFW����FRQGLWLRQ����DUP

3ODQQLQJ
UXOHV

)LJXUH�������,QVWUXFWLRQ�DV�D��EODFN�ER[��

���� 7KH�3ODQ�5HSUHVHQWDWLRQ

A sequence of actions is coordinated in the form of a plan.  The general format of a plan

is given by:

SODQBLV� <SODQBQDPH>�   ><LQVWU�>, <LQVWU�>, ..., <LQVWU1>@��

<�LQVWU,!�� !��>�LQVWUXFWLRQ!���SDUDP�!����SDUDP,!@    or   �LQVWUXFWLRQ!

where the clause SODQBLV is associated with the SODQBQDPH, which identifies an

instruction plan, with a sequence of instructions, or tasks, each one with its relevant

parameters.  A comparison can be made with a conventional procedure, where the plan

name is equivalent to the name of the procedure and the sequence of instructions in the

plan is analogous to a sequence of procedure calls accompanied by the relevant

parameters.  These parameters are bound to the parameters indicated by the templates of

the corresponding instructions.

In order to allow agents to achieve goals in the face of a diversity of conditions, a

number of alternative plans are provided.  The system is then able to select the

appropriate course of actions according to the current context.  For example, some of

the available plans provided for the SLFNBXS instruction are defined by:
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plan_is( pick_1, [pick_up_t]) .

plan_is( pick_2, [[face_i, object], pick_up_t]) .

plan_is( pick_3, [[approach_i, place, object], pick_up]) .

In order to differentiate one node from another it is convenient to adopt a naming

convention.  Task nodes such as the SLFNBXSBW bears the BW suffix denoting that it is a

WDVN data type.  Similarly, BL denotes an LQVWUXFWLRQ node.  In the case of the first plan,

SLFNB�, the agent might be in the correct position, ready to extend its arm and reach the

object, so a simple task is enough to accomplish the goal.  Plan SLFNB� is chosen when

the agent is not facing the target object, but when the agent is close enough.  Parameters

in plans such as REMHFW and SODFH are discussed later.  Finally, SODQB� is a more general

one that is used when the agent is reasonably far from the object.  It should be observed

that the second node in SODQB�, SLFNBXS, which is an instruction,� is a recursive form

which will be discussed later.

���� 3ODQ�6HOHFWLRQ

Each instruction has a number of rules for selecting the corresponding plans.  The rules

are organised in groups of rulesets and invoked in sequential order by default.  Unless

another selection criteria is in place, these rules are usually considered in the fixed order

in which they are listed because they incorporate a recursive strategy.  An attempt is

made to identify the simplest context first.  The recursive feature is discussed in a later

section.  For the sake of simplicity, the name of the ruleset is the same as that of the

instruction:

JURXS <LQVWUXFWLRQBQDPH> <SODQBQDPH�>, < SODQBQDPH�>,..., <SODQBQDPH1> �

The mechanism for the selection of an appropriate plan is decided by rules.  Each rule

identifies one class of situation that is accomplished by a plan and sets up some of the

internal parameters.  One collection of the parameters in the plan comes from the

instructions internal parameters and the other part from the templated parameters.  The

inference rule for plan selection is typically of the form:

UXOH��SODQBQDPH!
�����LI��SODQ���LQVWUXFWLRQBQDPH!���,QVWDQFH��$JHQW���DQG
�����������FRQGLWLRQV!
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�����WKHQ
����������FKRRVHBSODQ���SODQBQDPH!��,QVWDQFH����

which means that, if the <FRQGLWLRQV> are satisfied, then the <SODQBQDPH>�is chosen to

implement the instruction.  However, <FRQGLWLRQV! have a more important role in the

instruction process because, very often it is not a matter of choosing one plan or another

to make the instruction goal achievable, but of identifying the context with which the

instruction is dealing and processing this information.  The proper identification of the

context leads to the correct choice of a plan and the consequent passing of the

appropriate parameters to the plan.  The presence of the variable ,QVWDQFH is mandatory

in the SODQ clause, in the FKRRVHBSODQ clause, and very often in the <FRQGLWLRQV! tests

because it links and stores information related to both the plan selection and context

identification stages.  The variable $JHQW also provides important information in context

identification.

,QVWUXFWLRQ

&RQWH[W�1

&RQWH[W�%

&RQWH[W�$ 3ODQ�$

3ODQ�%

3ODQ�1

UXOH��

UXOH��

UXOH�1

)LJXUH�������5XOHVHW�IRU�SODQ�VHOHFWLRQ�DVVRFLDWHG�WR�DQ�LQVWUXFWLRQ�

For our purpose, FRQWH[W are the surroundings which relate an agent with objects that

potentially can be involved in an action.  The particular situation of the agent is also part

of the context and it is also considered in the planning process.  For example, suppose

that John intends to pick a glass, some of the elements of the context considered for a

plan selection are the posture of John and the distance between John and the glass.  If

John is standing up and the glass is out of the reach of his arm, he will have to approach

the glass first.  However, if John is standing up with the glass within his reach, he can

simply pick up the glass.  Although the difference between the former and latter cases is

only the distance, the situations have two distinct contexts requiring different analyses.

����� &RQWH[W�,GHQWLILFDWLRQ

The �FRQGLWLRQ! component referred to in the previous section has the main role in the

selection of the appropriate plan, so that they can be called as SODQ�VHOHFWRU.  In fact plan
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selection is an activity based on context identification.  It is composed of relations which

can be facts or procedures (e.g., the procedure FDQBSLFNBXS in Figure 6-11).  Some of

the purposes of these relations are:

• to verify key constraints required for carrying out the associated plan;

• to validate parameters.  Some parameters may have or may not have been provided

with adequate information for the context considered;

• to provide the complementary parameters for the instantiation of the plan;

• to identify which context it is to be applied.  Some parameters might be missing or not

evident but the general context is identified.  The missing parameter may possibly be

derived from the environment.

The creation of a large number of rules to implement an instruction can be

unmanageable.  Usually an instruction might have a limited number (about up to five) of

stereotyped contexts with the same number of relevant plans.  In fact the combination of

a number of parameters helps to deal with several similar (or repetitive) contexts where

just one parameter or another is missing, but the context is ultimately the same.  Thus,

the presence of one parameter compensates for the absence of another by, whenever

possible, retrieving or deducing the missing data consistently.  At the same time it avoids

the repetition of plans for dealing with similar contexts.  For example, consider the

context of an agent standing up in front of a EDUBFRXQWHU and having to pick up a glass

from a counter,  if the glass is specified  (e.g., JODVV�, which happens to be on the

EDUBFRXQWHU) then he knows which counter the glass is on.  However, if the agent is a

EDUPDQ who usually works on that specific counter then he knows that he should pick up

a glass from the EDUBFRXQWHU (which is supposed to have at least one glass).  Therefore,

both cases fit the context and similar plans are applied to pick the glass.

In one way or another parameters can be derived and employed in the plan.  Thus, in

order to avoid such problems and keep one plan selector for a truly distinct context, the

evaluation of the <FRQGLWLRQV> for a plan is done separately from the rule.  For example,

the use of rules in Figure 6-10a is cumbersome.  It is much better and maintainable to

have instead one rule with a rational condition testing the different variations of a context

as shown in Figure 6-10b.  In this framework this condition testing is implemented in

IOH[/Prolog procedures called UHODWLRQ.
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possibility 2 7+(1 plan N,)

,) 7+(1 plan N

7+(1 plan N

(a)  three rules and one plan for a context.
�

,)

possibility 1

possibility 3

possibility 2 7+(1 plan N

(b)  one rule and one plan for a context.

)LJXUH��������8VH�RI�UHODWLRQV�LQ�D�FRQWH[W�LGHQWLILFDWLRQ�

Figure 6-11 presents an example of condition testing,� FDQBSLFNBXS, which is

implemented as a Prolog procedure.  The first alternative of the FDQBSLFNBXS� relation

verifies if the target object has been passed to the instruction instance.  That is, the

relation KDVBVHOHFWHGBREMHFW could have the simple task of confirming that an instance of

a glass object has been selected by the agent, this information having been passed down

from a parent instance.  In the second alternative, FDQBSLFNBXS, could have the more

elaborate task of requiring the object to be picked up from the selected place.  For

example, the information to be considered could be (FRXQWHU� �EDUBFRXQWHU), (REMHFW� 

JODVV), and (FRQGLWLRQ� �XVHG).

There are, however, other considerations that are important in both alternatives of the

relation entries but not apparent in the FDQBSLFNBXS�level.  For example, the selection of

the arm the agent is going to use.  At this level there is also a consideration that

determines which is the preferred arm if both arms were available.  If neither of the arms

were available the instruction would fail completely.
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   rule pick_up_3
   if  plan( pick_up, Instance, Agent ) and
       can_pick_up( Agent, Instance ) and
       the proximity of the Instance is too_far
   then choose_plan( pick_3, Instance ) .

   a_plan( pick_3, [ [approach, place, object], pick_up] )

   relation can_pick_up(Agent, Instance ) if    // Alternative 1
      has_selected_object( Instance )  and
      find_distance(Agent, Instance ) .

   relation can_pick_up(Agent, Instance ) if    // Alternative 2
      has_selected_place( Agent, Instance, Place ) and
      can_select_object_from( Instance, Place, Object ) and
      the object of Instance becomes Object .

   relation has_selected_object( Instance ) if
      the object of the Instance is an instance of SomeObject
      and SomeObject is not nothing.
    .....

)LJXUH��������$Q�H[DPSOH�RI�D�SODQ�VHOHFWRU��IRU�WKH�SLFNBXS�LQVWUXFWLRQ�

����� 3ODQ�,QVWDQWLDWLRQ

The instantiation of a plan involves the creation of new instances for each of the

instruction nodes of the plan.  As each node in the plan is accompanied by a parameter

list (PL), plan instantiation is a process that also involves the binding of these parameters

to the corresponding newly created instances.  Each instruction has sufficient generality

to deal with a specific class of problems through the use of parameters.  Thus, each

instruction has a template list (TL) through which communication is established at run-

time between the instance (derived from the instruction) and its immediate parent

instance by the way of the parent’s plan as shown in Figure 6-12.  The second and last

activity after the instantiation process is the context identification stage.  The job of the

context identification can be trivial if actual or specific data are passed into the instance;

or more elaborated if the data passed is not specific, that is, it represents categories,

types, or generic class of objects.  In the latter case, the “generic” parameters behave as

variables and at some stage of the overall planning process, a context identification will

determine the specific objects referred to by these variables for a given context.  That

means that parameters are not always initialised and they may be passed from parent to
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children as they are.  The initialisation of parameters in a plan by the context

identification will become clear in the next sections.  Once the context identification

activity in the rule has been successfully completed then the associated plan is selected

and the cycle of   plan selection and  plan instantiation  are applied to the children nodes

and so on.  In section 6.16 a complete overview of the instruction control process is

given.  The overall plan instantiation is achieved by forward and backwards binding.
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)LJXUH��������3ODQ�LQVWDQWLDWLRQ�DQG�SDUDPHWHULVDWLRQ�

������� )RUZDUG�ELQGLQJ

In forward binding the data from a parent instance is copied to the child instances created

from its plan.  The process of matching a plan node’s parameter list with the child

instance’s template list observes the following rules:

• if a parameter from PL is an instance of a generic object such as a glass or a robot

then the parameter is called JURXQGHG and the corresponding parameter in TL is

assigned to this instance as a new value.  In Figure 6-13 the parameter passed,

EDUBFRXQWHU, is an instance of counter;

• if the parameter is a slot name that occurs in the parent instance then the value of that

slot is assigned to the corresponding parameter indicated in the TL as a new value.

Similar to procedure calls in a conventional program, the corresponding parameter

names need not be the same.  In Figure 6-13 the parent’s parameter VWDWH is a slot that

does not occur in the child instance.  However, there are two further cases to be
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considered in this situation.  The parameter might be a “dummy” one and is used as a

pad to keep the matching order and allow the access to the following parameters.

The other case might occur when the same dummy parameter occurs in two or more

PLs as it is the case of the JQ parameter in the instructions 1 and 2 of Figure 6-12.

This case has the purpose to connect two or more actions.  It works in combination

with backwards binding and thus will be discussed next;

• if the number of parameters in PL passed to a child instance has fewer parameters

than that in the child instruction’s TL, then the excess parameters of the TL cannot be

matched and, consequently, not evaluated.  Thus, the binding process checks whether

the omission of parameters was deliberate.  That is, if a parameter name in the

instance’s TL also occurs in the parent instance then it will be considered as

deliberately omitted and the parameter’s value will be copied from the parent node to

the child node.  This is just a matter of convenience for the animator.  However, if the

parameter does not occur in the parent node then nothing is done and the problem

with the non-initialised parameter is left to context identification to find a proper

initialisation if needed.  For example, in Figure 6-12, the child instance 2 receives one

parameter short from PL than that indicated by its TL.  While the child instance N

receives an empty PL.  For example, in Figure 6-13 DUP is a parameter of the TL that

remains unaffected by the binding process but it has a default value�which has to be

tested for consistency by the context identification.

SLFNBXS�LQVWDQFH��FKLOG�
7HPSODWH�/LVW

�������SODFH EHFRPHV EDUBFRXQWHU
�������REMHFW EHFRPHV JODVV
�������FRQGLWLRQ LV FOHDQ
��������DUP LV UBDUP
������

WKH�SLFNBXS�³FDOO´
3DUDPHWHU�/LVW

�������EDUBFRXQWHU
�������REMHFW
�������VWDWH

D�SDUHQW�LQVWDQFH

���REMHFW �LV���JODVV
����������

SODQ�LQVWDQWLDWLRQ�LQWHUIDFH

)LJXUH��������([DPSOH�RI�SDUDPHWHU�ELQGLQJ�
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������� %DFNZDUGV�ELQGLQJ�

Whenever possible at the completion of its activities, a child instruction transfers data,

which has been obtained from the current context, back to its parent instance by using

backwards binding.  The process is very similar to forward binding but in the opposite

direction.  However, if some parameters in PL are partially or totally omitted then these

are not passed back.  Special attention is given to the dummy parameters in the PL with

slots that do not belong to the parent instance.  In this case the backward binding process

creates new slots, as indicated in PL, in the parent instance.  If the dummy parameter

occurs again in the subsequent nodes’ PLs of the same plan level then they establish a

connection.  That is, the second occurrence of the dummy parameter is no longer a

dummy because a slot has been created by backwards binding at the first occurrence.

Thus the parent instance behaves as temporary storage.  The important outcome is that

data determined by one instruction is made available to others.  Such a feature allows

plan nodes to share the data and to make subsequent actions consistent.

����� *URXSLQJ�,QVWUXFWLRQV

Grouping of instructions is a simple but special case of the grouping plans discussed in

section 6.9.  There are occasions that a collection of different activities specified by

instructions are related to achieving a main goal.  For example, each agent in an

animation environment has an associated behaviour such as EDUPDQ, ZDLWHU, or FXVWRPHU.

When such an agent becomes idle, having no specific instruction to perform, then the

activity characteristic to his behaviour is performed, as is the case of the instruction

PDQDJHBEDU�for the EDUPDQ agent.  The instruction PDQDJHBEDU refers to a goal which

can be satisfied by one of the self-contained alternative activities such as, FOHDUBFRXQWHU,

ILOOBXSBVWRFN, or REVHUYHBSHRSOH.  PDQDJHBEDU is effectively an abstraction, or alias, for

a number of more specific activities which can individually achieve that goal in different

contexts.  Such instructions are called “self-contained” because they are goals that

normally take no part in a plan and therefore they have null template lists.  However

these instructions can be grouped as alternative plans that achieve a common goal

without receiving specific directions through parameterisation.  Therefore, the instruction

that groups others acts as an instruction selector (Figure 6-14).  One of the tests in such
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a plan selection process is to verify whether an instruction has been selected recently.

This is useful because in most of the cases more than one alternative activity is

acceptable.  Such a resolution avoids always selecting the same alternative consecutively.

For example, a customer agent when in an idle condition (e.g., waiting the EDUPDQ

services) can REVHUYHBSHRSOH or “flex the arms” leisurely.

,QVWUXFWLRQ

&RQGLWLRQ�1

&RQGLWLRQ�%

&RQGLWLRQ�$ LQVWUXFWLRQ�$

LQVWUXFWLRQ�%

LQVWUXFWLRQ�1

)LJXUH��������,QVWUXFWLRQ�DV�D�FROOHFWLRQ�RI�DFWLYLWLHV�

����� 5HFXUVLRQ�LQ�,QVWUXFWLRQ�3ODQQLQJ

Complex goals can be satisfied using a recursive process.  The solution of a problem is a

self reference of a simpler case until the recursion is replaced by non-recursive

instructions, and ultimately by tasks.

A similar approach is employed in the process of planning an action in the situation that

the goal can be achieved for different contexts, each one with a varying level of

complexity.  If the goal is to be achieved in a complex context, the solution in the

recursive approach is to realise a preliminary action in such a way that a new context

obtained for solving the original goal is a simpler context.  This can also be understood

as a succession of changes of contexts, each one requiring a simpler plan for achieving

the goal.  An instruction can be employed in a number of contexts with solutions that

could be classified as WULYLDO, VLPSOH, or HODERUDWH.  In the particular case of recursive

instructions, at least one of its plans is of HODERUDWH type and at least one the other plans

is a WULYLDO or VLPSOH type.  The WULYLDO case occurs when the goal of an instruction is

already satisfied and no further action is needed (Figure 6-15a).  In the VLPSOH case the

solution comprises a sequence of actions as shown in Figure 6-15[b,c], where self

reference does not occur in the plan.  In the HODERUDWH case, the context for the

instruction might be too far from the “ideal conditions” as those tackled by the WULYLDO or

VLPSOH types of plans, so a recursive plan is preferred.  That is, the recursive plan

includes a preparative action, or a sequence of them, that brings the action to a simpler



106

context and then attempts the original action again (Figure 6-15[d,e]).  The BNF, or

production rule, equivalent to Figure 6-15 is given in Figure 6-16.

$

%

$

% )

$

% $

$

% $)

QRQ�UHFXUVLYH�SODQV���D����E���DQG��F� UHFXUVLYH�SODQV��G��DQG��H�
SUHSDUDWLYH

DFWLRQV

����� �����

$

�E� �F� �G� �H��D�

WULYLDO
�SODQ VLPSOH���SODQV HODERUDWH�����SODQV

)LJXUH��������7ZR�W\SLFDO�W\SHV�RI�LQVWUXFWLRQ�SODQV�

$��!��λ
$��!�%
$��!�%����)
$��!�%�$
$��!�%����)�$

)LJXUH��������,QVWUXFWLRQ�SODQ�DV�SURGXFWLRQ�UXOHV�

For example, the SLFNBXS instruction is a typical example of a recursive instruction.  If an

agent had to SLFNBXS a glass on a counter across the room, he would have to be there

before actually trying to pick up the glass.  Thus the plan would comprise DSSURDFK�WKH

FRXQWHU and SLFNBXS� WKH�JODVV� which follows the shape of the plan given in Figure 6-

15d.  The SLFNBXS node in the plan� unlike the parent, will probably be able to achieve

the goal.

����� 3ODQ�([HFXWLRQ

The execution of a plan is interleaved with the building of the plan.  Because the

execution of a plan may take a variable length of time to accomplish, it is unreasonable to

plan a complete sequence of actions in advance.  Depending on the dynamics of the

environment, the state of the environment at various stages of the operation may be

different from that at the beginning therefore planning should be a continuous process.
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The use of a hierarchy as the planning structure is very well suited to the requirement for

“planning on demand”.  Higher level instructions will obviously have a higher level  plan.

Such a plan reflects less knowledge about the environment and more about the goal as

shown schematically in Figure 6-17.  These goals form a main sketch of a plan with

“landmarks” which guide the development at the particular level of abstraction.  The

successive refinement of plans into lower levels incorporates more knowledge about the

environment for increasingly specialised goals.  Eventually an unexplored node of a plan

is expanded into a branch where the leading node is a simple action.  This action is

executed at the first opportunity that it is considered in the tree traversal.  If the next step

of a plan (in breadth, obviously) is an instruction node it will be expanded, otherwise it

will be executed.  The traversal of the planning tree in this way, executing actions and

expanding instruction nodes as they occur, allows the Instruction KS to select plans that

are compatible to the occasion.  In other words, premature commitment to information

that might not be valid at a later time is avoided.  Thus, such an operation exhibits

adaptiveness and also there is no loss of “sense of direction” which is guaranteed by the

“skeletal” structure of the plan as a goal specification.

���

�

���

����� ����� ����� ����� ����� ����� �����

OHYHO��

OHYHO��

OHYHO�� GHWDLO JRDO

SODQ�VNHOHWRQ�LQ�EUHDGWK

DEVWUDFWLRQ

HQYLURQPHQWDO
DZDUHQHVV ����LV�H[SDQGHG�ZKHQ

����KDV�EHHQ�H[HFXWHG

)LJXUH��������&RQWUDVWLQJ�NQRZOHGJH�ZLWK�JRDO�

������� 7KH�,QVWUXFWLRQ�.QRZOHGJH�6RXUFH

The handling of instruction instances in the framework is done by the instruction

knowledge source (IKS).  The IKS is implemented as a state machine which monitors the

progress of the instances by applying procedures corresponding to their current state.

Each state is shown in Figure 6-18 as a rounded box.  The DVFHQGBWUHH boxes in

particular do not represent states, it is used to highlight the shift of focus of attention
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from a child node back to the parent node.  Most of the operations indicated by the

states have been discussed and comprise the following steps:

,QLWLDOLVH�DQG�UHILQH�LQVWUXFWLRQ�VWDWHV���An instance of an instruction is created and the

parameters in the template list are bound to the parameter list.  ,QLWLDOLVH is concerned

with the topmost (major) instruction that gives rise to the planning process.  The UHILQH

LQVWUXFWLRQ� QRGH is concerned with the initialisation and binding of instructions with

exception of the topmost instruction.

6HOHFW�SODQ���A plan is selected for an instruction according to the context identification.

)ROORZ� SODQ�� � The next node of a plan is examined to determine whether is an

instruction, a task, or a message type.  If it is an instruction node then refinement in

depth order will occur, otherwise, the focus of attention is shifted to the corresponding

KS that operates on that type of node.

(QG�SODQ���The conclusion of a local plan causes the Instruction KS to shift its focus of

attention up to the next step higher in the parent’s plan.  If the overall plan is finished, a

major update is effected in the performing agent’s database prompting the agent to

undertake new activities.

,QWHUUXSW� LQVWUXFWLRQ�� �An instruction is interrupted before it can select a plan and it

resumes plan selection when a new opportunity arises.

&DOOEDFN�LQVWUXFWLRQ���The instruction, which is awaiting for an opportunity to execute,

is called back to activity by another process that has been interrupted, stopped, failed, or

ended.

5H�DVVHVV� LQVWUXFWLRQ�� �The select plan state can be done at most twice for a given

instruction.

)DLOXUH�FRQWURO�� �Failures in general are handled in this state.  This is discussed in the

next section.
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 )LJXUH��������,QVWUXFWLRQ�&RQWURO�6FKHPH�

������� )DLOXUH�&RQWURO�6WDWH

The failure control state is a single rule in the Instruction KS that centralises a number of

recovery alternatives for overcoming failures which may arise in the execution of plans.

A number of relations, that is, Prolog procedures, are employed in this rule to deal with

different failure conditions in a similar way to the context identification process (Figure

6-19).  Each relation has some facts that identity the failing condition, which if matched,

result in an attempted recovery process.  Failures may occur in situations where two

processes are competing for the same resource (an object), for example, the EDUPDQ and

the ZDLWHU are about to pick up the same glass from the counter, the waiter who has

started moving earlier gets hold of the glass first and makes it unavailable.  As the

targeted glass “vanishes” from the counter the EDUPDQ tries to pick up another glass if

any, otherwise he will order more glasses from the VXSSOLHU.  That is, the instruction

instance is set to the UH�VHOHFW state which will re-plan with another object as a target.

Failure may also arise when a plan is not sufficiently well structured, that is, when there

are situations in which one action does not properly follow another.  In such a case it is

necessary for the animator to re-examine his repertoire of instructions.
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)DLOXUH

VHOHFWBSODQ

task/msg

non-
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IROORZBSODQ

VWRSBSODQQLQJ

UH�VHOHFW

UH�DWWHPSW

VWRS

��������

)LJXUH��������6WUXFWXUH�RI�WKH�IDLOXUH�FRQWURO�

Three cases of failure handling are presented here.  However, if specific error handling is

required then it is just the case of adding a new relation to deal with that particular

feature and optionally add a new state in the form of a rule into the Instruction KS

Figure 6-20a presents the failure handling state as a rule with a powerful relation,

HYDOBIDLOXUH.  HYDOBIDLOXUH has multiple entries that identify different failing conditions.

The rule deals with two main groups of failures.  The first group comprises those failures

identified as unsuitable for proceeding and some of the entries that are used to identify

such patterns of failures.  For example, Figure 6-20b recognises in the entry Q that an

attempt has been made to overcome the problem and it has failed again.  Thus,

HYDOBIDLOXUH has the condition in the rule FAILED_STATE which sets the instance to the

VWRSBSODQQLQJ state.  The other group consists of those failures that are individually

identified with prescribed associated solutions.  For example, the instance is set with a

suggested state (e.g., VHOHFWBSODQ) alongside other information.  At the end of the entry

there is a IDLO statement which “forces” an exit HYDOBIDLOXUH���This also leads to the exit of

the rule itself and, therefore, the evaluation of the instance to proceed in the suggested

state which is specified as a rule in the IKS.

   RULE  FAILED_STATE
   IF plan( Instruction, Instance, Agent ) and
       Instance‘s state is failure and
       eval_failure( Instance )
   then
       Instance‘s state becomes stop_planning .

(QWU\�SRLQWV�IRU eval_failure( Instance).

1) if Instance’s drop_on_failure is true and
     .......
      inform_parent( Instance ) and
      loose_focus_of_attention( Instance ) and
     ! and fail .

2) if Instance’s history is none and
        Instance alternative is Alternative_rule and
        ....
        Instance’s state becomes select_plan and
        ! and fail .
  ...........

n) if Instance’s history is re_attempted
        ! and true . // No alternative, stop planning.

(a)
(b)
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)LJXUH��������3DUWLDO�FRGLQJ�IRU�IDLOXUH�KDQGOLQJ�

An ingredient in the handling of failure in HYDOBIDLOXUH is the use of KLVWRU\ along with

other relevant parameters related to the specific failure in the instruction instance.  The

history parameter provides an indication of whether the failure in the instance has been

handled previously and what solution was attempted.  This mechanism avoids indefinite

backtracking in the planning process.  The use of customised parameters in instructions

helps to supply adequate decision making for certain kinds of instructions.  For example,

in the entry 1) of HYDOBIDLOXUH� if the GURSBRQBIDLOXUH parameter is true  then the control

is shifted to the parent instance because it makes no sense for certain instructions to re-

attempt the plan or to re-evaluate a new plan because of the nature of the failing

conditions.  The entry 2) verifies if the specific instruction has an alternative instruction

to handle the “unusual” situation.  The entry n) advises that planning of that instruction

should be abandoned and that the evaluation of the failing condition should be shifted

back to the parent instance.

The occurrence of a failure in a planning tree node causes the IKS to attempt to perform

failure handling.  If it succeeds, obviously the planning proceeds normally.  Otherwise,

the parent node is set to the failure state and the focus of attention is shifted further back

to the parent node.  The IKS applies the same evaluation to the parent node to fix the

problem and keeps a note in the KLVWRU\ slot.  If, eventually, the control returns to that

node in the failure state and discovers that an attempt has been made to solve problems

in an earlier stage by looking at the history then a final decision might be to abandon the

process.

����� ([DPSOHV�RI�,QVWUXFWLRQ�3DUDPHWHUV

The features discussed above can be clarified by examining some examples.  First we

examine some variations of the SLFNBXS instruction:

1 - John pick_up the tall_glass from the bar_counter.
2 - John pick_up a used glass from a counter.
3 - John pick_up a glass from a counter.
4 - John pick_up (an object) from a counter.
5 - John pick_up a glass (from a place).
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Some of these five alternative commands have parameters which are lacking in degree of

definition or completeness.  Those with missing parameters such as which DUP is to be

used, may resort to default values or determine them from the context.  In the case of the

first command, the parameter communicated to the instruction is quite specific as the

target object is explicitly stated to be an instance of JODVV.

����� ([DPSOH�RI�DQ�,QVWUXFWLRQ���FOHDUBFRXQWHU

The instruction FOHDUBFRXQWHU is used by the EDUPDQ with the intention of moving the

glasses in the XVHG condition from the EDUBFRXQWHU to the H[FKDQJHBFRXQWHU.  This

instruction receives no parameters and its only plan specifies three major goals given by:

plan_is( clear_counter,
[[check_i,  counter, objects_list, glass, used],
 [pick_up_i,  counter, glass, used],
 [put_i,  shelf, glass]]  )

There are similar instructions for ILOOBXSBVWRFN� used by the VXSSOLHU to bring new glasses

from his counter to the H[FKDQJHBFRXQWHU.  If the VXSSOLHU finds FOHDQ glasses on the

H[FKDQJHBFRXQWHU, he exits from the plan because a clean glass has been found and one

need not be supplied, otherwise he will go to the next step in the plan.

plan_is( fill_up_stock,
              [[check_i,  shelf, objects_list, glass, clean,return],

    [pick_up_i,  counter, glass],
    [put_i,  shelf, glass]]  )

In the ILOOBXSBVWRFN plan, described above, the FKHFNBL instruction is applied to the

members of the REMHFWVBOLVW until the first occurrence of a JODVV is found with the

FRQGLWLRQ is FOHDQ.  The actions undertaken by FKHFNBL are described by the FKHFNB� plan

given below�

plan_is( check_1,
[[goto_i,  place],
 [look_at_i,  object],
 [select_i,  object, condition, action]] ) .
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In this plan, one REMHFW at a time is approached and examined by the barman.  Literally,

he goes to the SODFH where the REMHFW�is, looks at the REMHFW and if the FRQGLWLRQ on the

REMHFW is met then the control action specified by DFWLRQ is taken.

frame person is an entity ;
  default type is person
  default posture is standing_up
  default support_leg is both
  default l_r_handed is right
  default r_hold is object
  default r_arm is st( straight, free )
  default r_leg is st( straight, free )
  ....

frame barman is a person ;
  default activity is barman
  default behaviour is bar_man_job
  default colour is gray
              name is john
              shelf is exchange_counter
              counter is bar_counter
              r_arm is st( hold, pick_up_1 )
              r_leg is st( straight, walk_1 )
....

frame glass is an object ;
  default type is glass
  default user is nobody
  default place is table
  default condition is clean
  ....

)LJXUH��������3DUWLDO�GHVFULSWLRQ�RI�WKH�EDUPDQ�DQG�JODVV�IUDPHV���6ORWV

ZLWKRXW�³GHIDXOW´�DUH�H[DPSOHV�RI�LQVWDQWLDWHG�YDOXHV��

Figure 6-21 presents examples of frames of the animated objects which will be used in

Figure 6-22.  In Figure 6-22 each box node of the FOHDUBFRXQWHU instruction tree has

information in the following order: name of the instruction; parameters specified by the

parent plan, indicated by S; and the full list of the parameters for the instruction template,

followed by some of the instruction slots with instantiated values.

In Figure 6-22 an example of the development of a plan for the FOHDUBFRXQWHU instruction

is given.  The internal instruction slot, REMBOLVW, is initialised with a list of objects

currently found on the EDUBFRXQWHU.  The list is passed to FKHFNBL which examines each
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of the items of the list.  The FRQGLWLRQ required for JODVV in this case is “XVHG´ and, if

successful in meeting it, the plan will proceed because the parameter DFWLRQ� implicitly

specified in the TL of FKHFNBL has a default value SURFHHG.  The first object of the list

selected by FKHFNBL is JODVV� which condition is XVHG.  Once FKHFNBL is successful in

finding the object (JODVV��� in the specified condition, JODVV� is passed back to the

FOHDUBFRXQWHU instruction and bound to the SLFNBXS and SXWBL instructions through the

common parameter JODVV in their S�slots.

Some instructions such as SLFNBXS and SXWBL behave as data providers for their related

tasks.  In the case of the SLFNBXS instruction the parameters are bound directly to the

SLFNBXSBW task.  This is not the case for SXWBL because the place, H[FBFRXQWHU, is out of

reach of the arm holding JODVV�.  In this case, a plan that includes DSSURDFKBL is chosen.

Note that the second goal of the plan is another instance of SXWBL.  This time, the

evaluation of SXWBi concludes that the DUP is within reach.  The successful termination of

SXWBW finishes with the FOHDUBFRXQWHU instruction.

 clear_counter
 p: []
 []
obj_list: [glass1,glass2]
obj: cup1

pick_up
p: [counter,glass,used]
[place,obj,cond,arm]
place: bar_counter
obj: glass1
cond: used
arm: r_arm

look_at_i
p: [obj]
[target]
target: cup1

pick_up_t
p: []
[place,obj,arm]
place: bar_counter

approach_i
p: [place,put_at,false]
[place,obj,obj_ref]
place: exc_counter

goto_i - instance 2
p: [goal_location]
[place,side,orient.]
place: bar_counter

position_i
p: [target]
[target]
target: pos(0,260,0)

walk_i
p: []
[place,side,orient.]
place: bar_counter
side: back

put_t
p: []
[place, obj, arm, put_at]

john
counter: bar_counter
shelf:  exc_counter

glass1
cond: used
place: bar_counter

glass2
cond: clean

put_i -  - instance 1
p: [shelf,glass]
[place,obj,arm,put_at]
place: exc_counter
obj: glass1
arm: r_arm
put_at: pos(0,260,0)

check_i
p: [counter, obj_list,glass,used]
[place, obj_list, obj, cond, action]
obj_list: [glass2]
place: bar_counter
obj: glass1
result: found

go_to - instance 1
p: [place]
[place,side,orient.]
place: bar_counter
side: back

select_i
p:[obj,cond,result]
[obj,cond,result]
result: found

put_i -  - instance 2
p: [place,obj]
[place,obj,arm,put_at]
put_at: pos(0,260,0)

bar_counter
obj_list: [glass1, glass2]

turn_t
p: [target]
[target]
target: glass1

)LJXUH��������'HYHORSLQJ�DQ�LQVWDQFH�RI�FOHDUBFRXQWHU�LQVWUXFWLRQ�
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����� 6XPPDU\

The concept of the LQVWUXFWLRQ is flexible since it permits features to be embedded which

are found in conventional programming such as the case command (rule selection), the

sequence of commands (plan of actions), procedure call (instruction instantiation and

context identification), loop and recursive call (planning), etc.  These simple constructs

provide the elements for building an increasingly elaborate vocabulary specifying actions.

Existing high-level languages such as Prolog provide the necessary tools for representing

knowledge along with mechanisms of inference, symbolic manipulation, and the

capability of interpreting the state of an environment.
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