Chapter 8

The Task Concept

8.1 Introduction

In Chapter 6 the instruction concept was presented as a control building block for
emulating abstract actions through the use of hierarchies. In Chapter 7 the message
concept enabled the capabilities of the instruction to be extend across multiple agents.
Both types of control have thus provided the conceptual structure to co-ordinate actions.
In this chapter we present the rask concept as the control structure that co-ordinates the

actual motions performed by the animated agents.

The rask entity is a conceptual component aimed at controlling well-defined motional
activities such as: walking, the positioning of the body, waving a hand, picking up or
putting down of objects, etc. It is analogous to the concept of operator in the context of
(action) planning studied in Al, which has been discussed in the Chapter 3. A similar
analogy has been observed in computer animation. Zeltzer [Zelt82] has called these units
of motion local motor programs (LMP). In our framework such a partition of motions

into unitsis further explored in the composition of general behaviour.

As has been shown in Figures 5-2 and 5-3, the task is the control layer that behaves as
an interface between the Controller and the Basic Animation System by sending
animation commands. However, the task entity has an important role in the scheduling
process as it deals with the problem of resource allocation. This issue is discussed in
Chapter 9.

125

8.2 The Operation of Task Control Entity

The organisation of a rask entity is similar to that of an instruction in terms of the data
and control structure, however, functionally they are different. While an instruction is
further specified by a sequence of detailed actions, the task is developed into a sequence
of movements. Hence, the task entity is not further developed into any other kind of
control structure. Additionaly, tasks are parameterised entities which receive data from

the parent nodes in the planning.

The handling of the task nodes during plan execution is performed by the Task KS which
is shown in Figure 8-1. There are three important features to consider in the operation
of atask: resource allocation, coordination of the task process in several states (success,
failure, interruption, etc.), and the execution of the task in generating motions. With the
exception of the latter, al processing is done before the formation of the following
animation frame. These three features are inter-dependent, and it is difficult to establish
an order of presentation without referring to the others. The detailed operation of the
task entity is described in the following sections. Firstly the general task frame is
introduced.

calling task back init. task

await callback

A4

resource access

wait for resources

success
v steps
release resources task step execution of
callback task interruption specific task

A 4

(stop J [normal end] (fail J

v

release resources
ascend tree J¢ callback task

Figure 8-1: Task Controller Scheme.

126

8.3 The Task Frame

The information required in the operation of arask control entity is arranged into a frame
structure called generic task. Basically it carries slots with the information that is
typically used in general motion control and provides storage for internal operations as
shown in Figure 8-2. The generic task provides the basis for deriving all the available
tasks incorporated in the system. For example, a specific task frame, such as the walking
activity, is derived from the generic task frame and dots related to that specific skill are
added to the derived frame. During runtime, instances are created from the tasks frame
in order to provide storage for the computed values as well as those values passed down
through parameterisation. These instances are subsequently destroyed at the conclusion
of their activities. Since tasks are part of the planning process they aso point to the
corresponding root structures which provide them the access to information related to

the overall process.

frame task ;
default state is start_st and % Initial state.
default type istask and
default ruleset is task_control and % Single or multiple step motion.
default param s nothing and % Parameters passed.
default template is nothing and % Full list of parameters.
default parent isnobody and % Parent instance.
default root isnothing and % The overall process data structure.
default start_time is0 and % Actual start time of the task.
default final_time isO and % Actua conclusion time of the task.

default resource_allocationisfixed and % Resource sel. mode: fixed, selected, or both.
default resource_list isnothing and % List resources used by atask (fixed mode).

default resource_sdlect isarm and % Resource used in the selected mode.
default arm is nothing and % Generic parameter: arm.

default used_resc is nothing and % List of all resources currently allocated.
default category isprimary and % That is: primary,secondary, or signal.
default fork_task is nothing and % Potential subsequent task.

default gesture _task is nothing and % Accompanying gesture task.

default assoc_task is nothing . % List of gestures associated to the task.

Figure 8-2: The general task frame.

8.4 Allocation of Resources

A task becomes effective when it can allocate a subset of the existing resources (internal

or external to the agent) for its use. The internal resources are the agent’s limbs: both

127

arms, both legs, head, and torso; while the external resources can be glasses, tables, or
places at a counter. The specific case of internal resources is of our interest because at
least one of the limbs is necessary to achieve motion. There are three modes of resource
alocation: fixed, selected, and mixed. 1n the fixed mode atask deals invariably with the
same limbs specified in the resource list dot in a particular occasion. For example, the
walking task always use both legs for its activity. In the selecfed mode atask knows the
kind of limb it is going to use, as indicated in the resource select dot, but the specific
resource will become known only a run-time. For example, the pick up task will use
the arm specified by the parent instruction which is passed through parameter passing.
The mixed mode combines both previous modes of resource allocation, that is, one part
of the resources is known from the resource list dot and the other part from the
resource select dot which has to be determined at run-time. For example, the agent

performing the rurn_wave task always turns the torso but can wave with either arm.

The resources allocated by tasks are recorded in the resources used dot in the agent
instance. Conversely, eatimb of the agent’s instance is characterised by a pair of
items: the state (or position) of the limb and the name of the instance of the task that

has allocated it. For example, the statement

john’sr leg becomes st(straight, walk t1)

means that the position of John’s right leg has becomeéghr and is currently being
used by the task instance namedk /.

The partition of the human figure into six parts or resources permits different motions to
be accommodated that may occur simultaneously. While the explicit allocation of
resources by tasks avoids the possibility of more than one motion being performed using
common parts. Another advantage is that the DOFs of the “physical” body are logically
organised into a small number of body parts allowing them to be more easily controlled
by tasks. Moreover, most DOFs cannot be operated on in isolation, for example, when
the DOFs of a hand are employed to pick up an object obviously the rest of the arm’s
DOFs are also affected, so it would be overwhelmingly hard to haadteof the arm’s

DOF individually or ineffectual to deal with the arm as two resources rather than a single
one. Therefore, there must be a balance between the number of logical body parts and

the degree of control over the DOFs.

128

8.5 Priority to Access Resources

In a typical dynamic environment there are several tasks that can potentialy enter in
operation if conditions allow. That is, if within the same agent there is no overlap in the
use of resources these tasks could function normally. Nevertheless, overlap in the usage
of resources do occur and one way to resolve problem is to include a scheme of
priorities for accessing resources. It is obviously desirable to give preference to the most
interesting motions. For the time being it suffices to know that motions originated from
different sources have different degrees of interest, or priorities, whose rating values
have been pre-defined and are assigned to the motion process. Therefore, one motion

may have preferred access to resources over others.

Because of the possihility of coexistence of tasks, the availability of the required
resources is verified first in order to avoid conflict. If no conflict occurs, then al the
required resources are alocated to the task and it can be started. However, in the case

of conflict the following action is performed:

» make alist of tasksthat are currently using the resources requested by the new task
» compare the priority of the new task with the highest rated task of the list

a) if the new task has a lower or equal priority and it is a “worthwhile task”, then the

callback slots of the old tasks will include the new task as one of the tasks to be

called back at the end of their activities. A task is considered “worthwhile” if it is

a non-gesture motion, that is, gesture motions are not essential movements though

important. This is discussed in the next chapter.

b) if the new task has a higher priority than those in activity then the state of these

old tasks are set to thererrupt state, thecallback slots of the old tasks will

include the new task and theal//back slot of the new task will include the old

tasks instances names. The interruption state is discussed in the next sections.

8.6 Calling Processes Back to Activity

In the previous section we have seen that tasks are put in the awaiting condition when

the required resources are being used by one or more active tasks. The awaiting tasks

129

are called back to be re-evaluated when one of the active tasks releases its control over
them. Such a protocol is needed because an engaged motion cannot be simply
interrupted at any time. Also because of the possibility of more than one task requiring
control of common resources, all the waiting tasks are put in one calback list of the
running process, so that they are called back when the process releases the resources.
An important aspect is that they are called back in decreasing order of priority. The
process of calling back instances of control does not apply only to tasks, but also to
instructions, and more precisely it is applied to the whole process which is identified by
the root instance. The process gains activity and will thus reactivate the instance
recorded in the current instance dot in the root instance, which is the point where the

process had previously stopped..

The callback scheme, although simple, is useful for dealing with situations with multiple

changes of activities. For example, Figure 8-3a illustrates the case of two active tasks,

possibly with different start times and durations, being interrupted by a new task of a

higher priority, the first active task to conclude its motion calls the new task back for re-
evaluation and stays “out of focus”, that is, it now waits to be called back by the new
task. The new task is thus reconsidered for resource allocation. In the case that there is
still a (second) active task using part of the required resources, the callback procedure is
re-applied, that is, the new task is included into callback list of the (second) active task,
however, if a process is already in the callback list of another, the inclusion is not made.
Finally, at the conclusion of the second active motion, the new task is re-evaluated for a
second time, now with success. At the conclusion of this (ex-new) task, the suspended
tasks are then called back, whose success in the re-evaluation will depend on whether no
higher rated task has arrived in the meantime. The Figure 8-3b exemplifies the second
case of a new task having less priority, therefore it waits to be called back when the
current tasks are completed. If, however, the executing tasks are interrupted by a higher
priority task they will enter into operation in the next opportunity and then call the

pending task when they terminate.

130

Processes 1 and 2 are being
interrupted by process 3, but
both are called back to activity
when process 3 finishes.

@

Processes 1 and 2 are being
interrupted by process 3, but
both are not called back to
activity by the process 3 when
it finishes.

New Process

Executing Processes

root_3
callback is [root_1, root_2]
current_instance is walk_t1
top_instance is pick_up_il
agent is john

root_1
callback is [root_3, root_4]

root_2
callback is [root_3]

root_3
callback is nothing
current_instance is walk_t1
top_instance is pick_up_il
agent is john

root_1
callback is [root_3, root_4]

root_2
| callback is [root_3]

Figure 8-3: Process callback scheme.

8.7 The Task Specific Process

The purpose of a task entity is to provide the schedule of movements to the Basic
Animation System (BAS) whose motions are animated at tick rate. This part of the task
operation called rask specific is implemented as a procedure, or in the form of rules,
and sends messages to the BAS. The BAS will decompose the messages and call the
specified functions which generates the motions. The complexity of organising the
schedule of these messages depends on the implemented motion. Most of the motions
performed by agents are typically single motions’ and a high-level ones such as a turn of
the head, a gesture with an arm, a movement for picking up a glass, etc. These motions
are usually of short duration which can be realised in one uninterrupted step. However,
extended tasks like the continuous wave of an arm or the walking motion are movements
repeated a variable number of times. In order to avoid monopolising resources for long
times and to allow that changes in the environment be taken into consideration at

frequent intervals, long movements are divided into fragments called steps. Anindividual

* These are the BAS motions discussed in the Chapter 4.

131

step of amovement is thus executed without interruption and the length of a szep should
therefore be reasonably short. Thus, a possible collision with another character can be

avoided between one step and the next by taking an alternative action at the conclusion

of the current step. Figure 8-4 shows an example of the schedule of a step of motion.

The contents of the actual message sent to the BAS is contained in the third parameter of

the send command. Similar to the Add List of a typical Strips operator in section 3.3,

the <post operations> is a list of “updates” which are kept in the blackboard and, when
the corresponding motion has finished, the BAS sends a message back to the controller
to realise the updates in the database. This operatitusisated in Figure 8-5. The

details of each stage of the motion operation are presented in the following sections.

send(<agent>, <instance>, <messageto BAS>, <post operations>)

send(Agent, Instance,
cmd5(arm_reach _goal, Arm, X, Y, Z),
{ attr(Agent, Arm, extended), attr(Object,state,held), attr(Object,holder,Agent),
attr(Agent, Hold, Object), attr(Object,place Agent), exclude(Object, Place),
exec(p_hold_object(Agent, Arm, Object)), exec(fork_new(Instance, Agent)) })

Figure 8-4: Message call to BAS.

Controller BAS
Task
generate calls [T~ 1
A \\A motion
generate restore d generation
update (I [3focusof /
clause attentionL2 | _.
Clause . motion
* generation .
perform updates e

Figure 8-5: Scheme
8.7.1 Data Retrieval and Checking Constraints

Before any motions calls are sent to the BAS, the task procedure retrieves some data and
checks if the attributes or relationships are the expected ones. If no problem occurs the
messages are composed with the retrieved data and then sent to the BAS. The task

temporarily loses the focus of attention of the Task KS until the requested movement of

132

the specified step is completed. The state of atask is pre-set to the end state, so that in
the case of a task be made up of a single szep it is handled by the finalisation procedure
asit regain the focus of attention of the Task KS. Otherwise, the task will be handled by
the designated procedure associated with the state set in the task which is one of the
states specific to that task. This will be made clear in the next section. If, however, a
constraint has failed a test, then the state of the task is set to the fail state or any other
state customised for that task which handles the problem.

8.7.2 Associated Actions

The associated actions are motions represented by tasks, or instructions, which are

launched (or scheduled) in the fask specific procedure along with the main motion.

Despite this they are indeed independent processes which complement the main motion.

These motions are typically of little importance and remain as “potentially active”
motions which are enabled only when the required resources are free. These motions are
typically gestures, the purpose of which is to accompany the main motions. Tiisew

made clear in the next chapter. For example, the action of swinging of the arms is
complementary to the walking motion, but the arms are not essential to the locomotion
activity. The action is thus stopped if any other task requires its resources. As this kind
of action is associated with a main motion, it is also deactivated if the correspondent

main motion is deactivated.
8.7.3 Database Update

As a result of the performance of eagtp of a movement, the animation database is
updated with new facts about the objects. These updates serve as conditions to guide
subsequent actions or as the constraints to be tested by other tasks. The informal
examples are: in a plan selectioif,the agent’s position is seated then select a plan that

includes the standing up action”, “if the counter’s front left is engaged then check other

sides”, and ‘if the counter’s object list is not empty then collect an object”; in the

walking task, if the left leg is forward, then the next step will be to swing the right leg

forward.

The operation of updating is performed according to the clauses ugedinclude, or

exclude, as illustrated in Figure 8-4. For example, assignmemts) (update the

133

atributes: the positional state of the limbs (legs becomes straight), the posture of an
agent (sitting), the location of the object (the tall glass is on the table), etc. Also
include and exclude update objects in a list, for example, bar counter has [tall glass,
glass2]), etc.

The database update also provides the opportunity to effect more elaborate “updates” in
the form of a call to proceduraescéc clauses That is, facts are not only used to update
database they are also used as clause to call procedures specific to theseffectis

shown in Figure 8-4, the specific operation
exec(p_hold object(Agent, Arm, Object))

whose procedurgs hold object, tells the BAS that thébject becomes “attached” to
theAgent’s Arm, so that the Object coordinate system becomes relative to the arm rather

than to the world The other procedure operation in the update list is a general one
exec(fork new(Instance, Agent))

fork new schedules an instruction which acts as a “backup” action. That is, it is
scheduled to be a potential execution in the case that no proper continuation is scheduled
to run after the performance of the main motion task. For example, if a plan prescribes
the following sequence of actiongitking up a glass andwalking to the bar counter”,

if no action operates on the arm which has just held a glass, except the swinging arms of
the walking activity, then the glass would simply swing along with the arm during the
walking. For such cases, the action of “hold the object” would be more appropriate than
swinging the arm, specially if the glass contains liquid. This example is discussed in more

detail in the next chapter.

8.8 Task Control States

The Task KS monitors the operation of the task control entities by applying the
procedures of their current states which can be start, end, stop, fail, and interrupt. In
addition to these, there is the posshility of merging them with states related to the
control specific to the task. This occurs when a task is implemented to dea with

multiple sfep motions (e.g., the walking task) and, as such, intermediate control states

134

might be necessary. By default, all tasks are set to the start state through which they

attempt to become effective by gaining control of the resources. Once the tasks have the

control of the resources, they schedule motions to the BAS and they become
momentarily “out of focus” of the attention of the Task KS as long as the motion is
performed. When these motions have been completed in the BAS, the tasks are returned
back to “focus” and, as most of the tasks are a single motion, they are normally
processed by the finalisation procedure which is identified bysdiestate. In the case

of multiple step motion, before being processed by the finalisation procedure, the tasks
are processed by procedures associated to the states set in the instance which are likely
those specific to that task. In normal conditions, the tasks go tadrstate where they
release the resources, then they call the pending tasks or instructions back, if any, for re-
evaluation, and finally the tasks are finished and the control of the processes are passed

back to the parent instances.

ruleset task_control contains task_start, task_end, task_stop, task_fail, task_interrupt .

rule task_start
if task T is on focus and T's state is start then do task_initialisation on T.

rule task_end
if task T is on focus and T's state is end then do task finalisation on T.

rule task_stop
if task T is on focus and T's state is stop then do stop_process on T.

rule task_fail
if task T is on focus and T's state is fail then do handle_failure on T.

rule task_interrupt
if task T is on focus and T's state is interrupt then do suspend_task on T.

Figure 8-6: The Task KS.

In the case that the control of the task is set to the stop state or to the fail state, the
corresponding procedures are similar to the end state, but with some differences. In the
stop state the whole process is simply terminated. In the fail state, the control is handed
back to the parent instance to deal with the failing condition.

The interrupt state is reached by tasks of multiple stage motions that have temporarily

given up their control over the resources to other tasks. Their states are re-set to the

135

start state and they become “out of focus”. Thus, when they are eventually called back

they will be re-evaluated for resource allocation.

8.9 Example

Thedrink tis an example of a simple task whose procedure is described in Figure 8-7.
This procedure is executed in tkwerr state as a function call. In the procedure the
initial information can be retrieved from the task instance and the agent instance. The
constraints are checked, in this case, to determine if the glass is empty. Should a
problem occur, the state of the task is set to the appropriate error handling state, which
in this case is thgu/ state, and control exits from the proceddrk ¢. In the normal

case of one or more motions commasigal can be composed and scheduled to run in

the BAS. Thedrink ¢ task is shown schematically in Figure 8-8a where the control of
the task is composed exclusively by the procedures associated to states of the Task
Controller. Thewalk task has additional states which are merged with the task control

as shown in Figure 8-8b.

relation drink_t(Agent, Instance) if
lookup(drink_hand , Instance, Hand) and
lookup(drink, Instance, Glass) and
lookup(volume, Glass, Volume) and

if Volume is 0 /I The glass is empty.

then
Instance’s state becomes state_failed and // Go to fail handling state.
! and fail

else
p_compute(New_Vol, Volume - 1) and

send(Agent, Instance, cmd2(drink, Hand), // Motion command sent to BAS.
{attr(Glass, volume, New_Vol), attr(Glass, condition, used)}) // Update info on return.
end if .

Figure 8-7: The drink task procedure.

136

States States

Task Task Task Task
Controller @ Specific Controller @ Specific

(start H(drink_tj (start H walk j
(ena) (stop wany

[G

fail fail

(a) drink task (b) walk task

Figure 8-8: Blending states for task control.

A more realistic impression of the interaction between the Task layer and the BAS is

given in Figure 8-9. Each send command gives raise to a motion structure in the BAS as
discussed in section 4.3.4.

Reasoning System Basic Animation System
)] Current time = 110
Start time = 100; Duration = 10 send
Agent B command bend tOTSO y
Looking task Eenﬂ ipelgde y
send turn_to pos(30,1,20)] | acknow edge - §
- termination | < N~———
Start time =110
Wéll%%& K) send / bend |_femur X\
yaliing task command bend |_knee z
send walk_forw_|_leg o O
send walk_back r leg / bend r_femur x
. bend r_kneez add bends
Start time =110 \ ... /
Agent A \ send
Associated motion command TN\
Walking task bend r_armz
send swing_forw_r_arm bend r_biceps z
/| U ..
Start time =110 send —
Avent A command bend|_armz
Associated motion bend |_biceps z
Walking task . J
send swing_back | _arm “advance an .
animation
frame”
command

Figure 8-9: Scheduling motion commands to the animation system.

137

8.10 Summary

Task entities control the actual motions performed by agents and motions are achieved if
the required resources are available. Since many potentially active tasks may require
common resources, the concept of explicit alocation of resources and the selective
execution of tasks using priority testing are effective in co-ordinating contending actions.
Active tasks give up the control over resources in favour of higher priority tasks, but this
IS not always done in the same animation frame, so the scheme of calling “waiting tasks”

back to activity has been devised.

The regular updating of the animation database is essential at the completion of each step
of movement, so that subsequent actions can yield an adequate continuity of movements.
Another important feature is that potential actions parallel or subsequent to the main

motions can conveniently complement the main motion.

138

CHAPTER 8 THE TASK CONCEPT 125

8.1 INTRODUCTION ...t ttttetuteesuteesuteeeaseeessseeseseesse e ese e e sseeesaseeaaneeease e e asseesaseesaneeaaseeeasneessneesnneeanneennneens 125
8.2 THE OPERATION OF TASK CONTROL ENTITY ...tiiiiiiiiiiiesiiie et 126
8.3 THE TASK FRAME ...ttt ittt ettt ettt ekttt et be e e s an e s s e e st e e e sn e e s sn e e sneeaneeennneeas 127
8.4 ALLOCATION OF RESOURGCES......ccitetetrtesireesreesneeasseeesuseessseessseesssseessseesaneesseeessneessneessneesneesnnneens 127
8.5 PRIORITY TO ACCESSRESOURCES......cuttiiiitieitieiieeesteeesisee e st e sss e sss e ssneesneeessneessneessneesneesnneenns 129
8.6 CALLING PROCESSES BACK TO ACTIVITY ..uttiitititeeesteeesireesireessseessseeessneessneesreessneessneessneesneesnneenns 130
8.7 THE TASK SPECIFIC PROCESSetittiiitiieiitee sttt ettt st st sin e st e e bn e eessneesneeenneees 131

8.7.1 Data Retrieval and Checking CONSIFAINLScccccoviiiiiiiiiiiiiiii e 133

8.7.2 ASSOCIAIEA ACHONS ...ttt e e ettt e e e e e e eaibbaeaaee s 133

8.7.3 DAtADASE UPAALE ... 133
8.8 TASK CONTROL STATES......utteiteeitetessriesireesteesaseeessseessseesseeaseeaasseessseesneeaaneeessneessneesneesaneesanneens 135
BLO EXAMPLE ...ttt et h et e e r e b e hr e e s e nr e n e nnes 136
810 SUMMARYteeiutiieteie sttt st ettt ettt se e st e e e e e bt e sae e e e s s e e e b e e e R et e Rt e e R Rt e e R e e e R e e e Rn e e nnr e e nre e e ne e 138
FIGURE 8-1: TASK CONTROLLER SCHEME.etiiutiiiutitaieeesireesureessee et e sineesinee e snneesineesneesnneennneenanes 126
FIGURE 8-2: THE GENERAL TASK FRAME. ...uttttiutieiuteesteeesseeessseesaseesseeessseesineesaneessnneessseesaneesneesnnneenanes 127
FIGURE 8-3: PROCESS CALLBACK SCHEME......cciuttiiuteeiteeessreesiteesseessseessseesineesneessnnesssseesneesneessnneennnes 131
FIGURE 8-4: MESSAGE CALL TOBASot s 132
FIGURE 8-5. SCHEME.....cittiiitiieiitie ittt sttt ettt sttt be e e st e e s e e b e e s an e e e an e e sneeeneeenaneennnes 132
FIGURE 8-6: THE TASK KS. .. ettt nanes 135
FIGURE 8-7: THE DRINK TASK PROCEDURE.uttiiuteeireeessseesiseesuseesseeessneesineesneessnnesssseesneesnesennneennnes 136
FIGURE 8-8: BLENDING STATESFOR TASK CONTROL . «...tttetreesureesureesreeasseeesireesneesneesssseessneesnessnsneessnes 137
FIGURE 8-9: SCHEDULING MOTION COMMANDS TO THE ANIMATION SYSTEM....ccvvteiirieirieeieeesineesinee e 137

139

