
125

&KDSWHU��

7KH�7DVN�&RQFHSW

���� ,QWURGXFWLRQ

In Chapter 6 the LQVWUXFWLRQ� concept was presented as a control building block for

emulating abstract actions through the use of hierarchies.  In Chapter 7 the PHVVDJH

concept enabled the capabilities of the LQVWUXFWLRQ to be extend across multiple agents.

Both types of control have thus provided the conceptual structure to co-ordinate actions.

In this chapter we present the WDVN concept as the control structure that co-ordinates the

actual motions performed by the animated agents.

The� WDVN� entity is a conceptual component aimed at controlling well-defined motional

activities such as: walking, the positioning of the body, waving a hand, picking up or

putting down of objects, etc.  It is analogous to the concept of RSHUDWRU in the context of

(action) planning studied in AI, which has been discussed in the Chapter 3.  A similar

analogy has been observed in computer animation.  Zeltzer [Zelt82] has called these units

of motion ORFDO�PRWRU�SURJUDPV (LMP).  In our framework such a partition of motions

into units is further explored in the composition of general behaviour.

As has been shown in Figures 5-2 and 5-3,  the task is the control layer that behaves as

an interface between the Controller and the Basic Animation System by sending

animation commands.  However, the task entity has an important role in the scheduling

process as it deals with the problem of resource allocation.  This issue is discussed in

Chapter 9.



126

���� 7KH�2SHUDWLRQ�RI�7DVN�&RQWURO�(QWLW\

The organisation of a WDVN entity is similar to that of an LQVWUXFWLRQ in terms of the data

and control structure, however, functionally they are different.  While an instruction is

further specified by a sequence of detailed actions,  the task is developed into a sequence

of movements.  Hence, the task entity is not further developed into any other kind of

control structure.  Additionally, tasks are parameterised entities which receive data from

the parent nodes in the planning.

 )LJXUH�������7DVN�&RQWUROOHU�6FKHPH�

The handling of the task nodes during plan execution is performed by the Task KS which

is shown in Figure 8-1.  There are three important features to consider in the operation

of a task:  resource allocation, coordination of the task process in several states (success,

failure, interruption, etc.), and the execution of the task in generating motions.  With the

exception of the latter, all processing is done before the formation of the following

animation frame. These three features are inter-dependent, and it is difficult to establish

an order of presentation without referring to the others.  The detailed operation of the

task entity is described in the following sections.  Firstly the general task frame is

introduced.

normal end

init. task

execution of
specific task

stop fail

success

resource access

await callback

release resources
callback taskascend tree

calling task back

steps
task step

interruption
release resources

callback task

wait for resources



127

���� 7KH�7DVN�)UDPH

The information required in the operation of a WDVN control entity is arranged into a frame

structure called JHQHULF� WDVN.  Basically it carries slots with the information that is

typically used in general motion control and provides storage for internal operations as

shown in Figure 8-2.  The generic task provides the basis for deriving all the available

WDVNV�incorporated in the system.  For example, a specific task frame, such as the walking

activity, is derived from the JHQHULF�WDVN frame and slots related to that specific skill are

added to the derived frame.  During runtime, instances are created from the tasks frame

in order to provide storage for the computed values as well as those values passed down

through parameterisation.  These instances are subsequently destroyed at the conclusion

of their activities. Since tasks are part of the planning process they also point to the

corresponding URRW structures which provide them the access to information related to

the overall process.

frame task ;
  default state      is start_st and % Initial state.
  default type       is task and
  default ruleset is task_control and % Single or multiple step motion.
  default param     is nothing and % Parameters passed.
  default template is nothing and % Full list of parameters.
  default parent     is nobody and % Parent instance.
  default root       is nothing and % The overall process data structure.
  default start_time  is 0 and % Actual start time of the task.
  default final_time  is 0 and % Actual conclusion time of the task.
  default resource_allocation is fixed and % Resource sel. mode:  fixed, selected, or both.
  default resource_list  is nothing and % List resources used by a task (fixed mode).
  default resource_select is arm and % Resource used in the selected mode.
  default arm is nothing and % Generic parameter: arm.
  default used_resc  is nothing and % List of all resources currently allocated.
  default category  is primary and % That is:  primary,secondary, or signal.
  default fork_task is nothing and % Potential subsequent task.
  default gesture_task is nothing and % Accompanying gesture task.
  default assoc_task is nothing . % List of gestures associated to the task.

)LJXUH�������7KH�JHQHUDO�WDVN�IUDPH�

���� $OORFDWLRQ�RI�5HVRXUFHV

A task becomes effective when it can allocate a subset of the existing resources (internal

or external to the agent) for its use.  The internal resources are the agent’s limbs:  both



128

arms, both legs, head, and torso;  while the external resources can be glasses, tables, or

places at a counter.  The specific case of internal resources is of our interest because at

least one of the limbs is necessary to achieve motion.  There are three modes of resource

allocation:  IL[HG, VHOHFWHG, and PL[HG.  In the IL[HG mode a task deals invariably with the

same limbs specified in the UHVRXUFHBOLVW slot in a particular occasion.  For example, the

walking task always use both legs for its activity.  In the VHOHFWHG mode a task knows the

kind of limb it is going to use, as indicated in the UHVRXUFHBVHOHFW�slot, but the specific

resource will become known only at run-time.  For example, the SLFNBXS task will use

the arm specified by the parent instruction which is passed through parameter passing.

The PL[HG mode combines both previous modes of resource allocation, that is, one part

of the resources is known from the UHVRXUFHBOLVW slot and the other part from the

UHVRXUFHBVHOHFW� slot which has to be determined at run-time.  For example, the agent

performing the WXUQBZDYH task always turns the torso but can wave with either arm.

The resources allocated by tasks are recorded in the UHVRXUFHVBXVHG slot in the agent

instance.  Conversely, each limb of the agent’s instance is characterised by a pair of

items:  the state (or position) of the limb and  the name of the instance of the task that

has allocated it.  For example,  the statement

MRKQ¶V�UBOHJ���EHFRPHV���VW��VWUDLJKW��ZDONBW���

means that the position of John’s right leg has become VWUDLJKW and is currently being

used by the task instance named ZDONBW�.

The partition of the human figure into six parts or resources permits different motions to

be accommodated that may occur simultaneously.  While the explicit allocation of

resources by tasks avoids the possibility of more than one motion being performed using

common parts.  Another advantage is that the DOFs of the “physical” body are logically

organised into a small number of body parts allowing them to be more easily controlled

by tasks.  Moreover, most DOFs cannot be operated on in isolation, for example, when

the DOFs of a hand are employed to pick up an object obviously the rest of the arm’s

DOFs are also affected,  so it would be overwhelmingly hard to handle each of the arm’s

DOF individually or ineffectual to deal with the arm as two resources rather than a single

one.  Therefore, there must be a balance between the number of logical body parts and

the degree of control over the DOFs.



129

���� 3ULRULW\�WR�$FFHVV�5HVRXUFHV

In a typical dynamic environment there are several tasks that can potentially enter in

operation if conditions allow.  That is, if within the same agent there is no overlap in the

use of resources these tasks could function normally.  Nevertheless, overlap in the usage

of resources do occur and one way to resolve  problem is to include a scheme of

priorities for accessing resources.  It is obviously desirable to give preference to the most

interesting motions.  For the time being it suffices to know that motions originated from

different sources have different degrees of interest, or priorities, whose rating values

have been pre-defined and are assigned to the motion process.  Therefore, one motion

may have preferred access to resources over others.

Because of the possibility of coexistence of tasks, the availability of the required

resources is verified first in order to avoid conflict.  If no conflict occurs, then all the

required resources are allocated to the task and it can be started.  However, in the case

of conflict the following action is performed:

• make a list of tasks that are currently using the resources requested by the new task

• compare the priority of the new task with the highest rated task of the list

a) if the new task has a lower or equal priority and it is a “worthwhile task”, then the

FDOOEDFN slots of the old tasks will include the new task as one of the tasks to be

called back at the end of their activities.  A task is considered “worthwhile” if it is

a non-gesture motion, that is, gesture motions are not essential movements though

important.  This is discussed in the next chapter.

b) if  the new task has a higher priority than those in activity then the state of these

old tasks are set to the LQWHUUXSW state, the FDOOEDFN slots of the old tasks will

include the new task and the FDOOEDFN slot of the new task will include the old

tasks instances names.  The interruption state is discussed in the next sections.

���� &DOOLQJ�3URFHVVHV�%DFN�WR�$FWLYLW\

In the previous section we have seen that tasks are put in the awaiting condition when

the required resources are being used by one or more active tasks.  The awaiting tasks



130

are called back to be re-evaluated when one of the active tasks releases its control over

them.  Such a protocol is needed because an engaged motion cannot be simply

interrupted at any time.  Also because of the possibility of more than one task requiring

control of common resources, all the waiting tasks are put in one callback list of the

running process, so that they are called back when the process releases the resources.

An important aspect is that they are called back in decreasing order of priority.  The

process of calling back instances of control does not apply only to tasks, but also to

instructions, and more precisely it is applied to the whole process which is identified by

the root instance.  The process gains activity and will thus reactivate the instance

recorded in the FXUUHQWBLQVWDQFH slot in the root instance, which is the point where the

process had previously stopped..

The callback scheme, although simple, is useful for dealing with situations with multiple

changes of activities.  For example, Figure 8-3a illustrates the case of two active tasks,

possibly with different start times and durations, being interrupted by a new task of a

higher priority, the first active task to conclude its motion  calls the new task back for re-

evaluation and stays “out of focus”, that is, it now waits to be called back by the new

task.  The new task is thus reconsidered for resource allocation.  In the case that there is

still a (second) active task using part of the required resources, the callback procedure is

re-applied, that is, the new task is included into callback list of the (second) active task,

however, if a process is already in the callback list of another, the inclusion is not made.

Finally, at the conclusion of the second active motion, the new task is re-evaluated for a

second time, now with success.  At the conclusion of this (ex-new) task, the suspended

tasks are then called back, whose success in the re-evaluation will depend on whether no

higher rated task has arrived in the meantime.  The Figure 8-3b exemplifies the second

case of a new task having less priority, therefore it waits to be called back when the

current tasks are completed.  If, however, the executing tasks are interrupted by a higher

priority task they will enter into operation in the next opportunity and then call the

pending task when they terminate.



131

URRWB�
FDOOEDFN�LV�>URRWB���URRWB�@
FXUUHQWBLQVWDQFH�LV�ZDONBW�
WRSBLQVWDQFH�LV�SLFNBXSBL�
DJHQW�LV�MRKQ
������

URRWB�
FDOOEDFN�LV�QRWKLQJ
FXUUHQWBLQVWDQFH�LV�ZDONBW�
WRSBLQVWDQFH�LV�SLFNBXSBL�
DJHQW�LV�MRKQ
������

URRWB�
FDOOEDFN�LV�>URRWB���URRWB�@
������

URRWB�
FDOOEDFN�LV�>URRWB�@
������

URRWB�
FDOOEDFN�LV�>URRWB���URRWB�@
������

URRWB�
FDOOEDFN�LV�>URRWB�@
������

Processes 1 and 2 are being
interrupted by process 3, but
both are called back to activity
when process 3 finishes.

(a)

Processes 1 and 2 are being
interrupted by process 3, but
both are  not called back to
activity by the process 3 when
it finishes.

(b)

1HZ�3URFHVV ([HFXWLQJ�3URFHVVHV

)LJXUH�������3URFHVV�FDOOEDFN�VFKHPH�

���� 7KH�7DVN�6SHFLILF�3URFHVV

The purpose of a task entity is to provide the schedule of movements to the Basic

Animation System (BAS) whose motions are animated at tick rate.  This part of the task

operation called  WDVN�VSHFLILF  is implemented as a procedure, or in the form of rules,

and sends messages to the BAS.  The BAS will decompose the messages and call the

specified functions which generates the motions.  The complexity of organising the

schedule of these messages depends on the implemented motion.  Most of the motions

performed by agents are typically single motions4 and a high-level ones such as a turn of

the head, a gesture with an arm, a movement for picking up a glass, etc.  These motions

are usually of short duration which can be realised in one uninterrupted step.  However,

extended tasks like the continuous wave of an arm or the walking motion are movements

repeated a variable number of times.  In order to avoid monopolising resources for long

times and to allow that changes in the environment be taken into consideration at

frequent intervals, long movements are divided into fragments called VWHSV.  An individual

                                               

4 These are the BAS motions discussed in the Chapter 4.



132

VWHS of a movement is thus executed without interruption and the length of a VWHS should

therefore be reasonably short.  Thus, a possible collision with another character can be

avoided between one step and the next by taking an alternative action at the conclusion

of the current VWHS.  Figure 8-4 shows an example of the schedule of a VWHS of motion.

The contents of the actual message sent to the BAS is contained in the third parameter of

the VHQG command.  Similar to the $GG�/LVW of a typical Strips operator� in section 3.3,

the <SRVW�RSHUDWLRQV> is a list of “updates” which are kept in the blackboard and, when

the corresponding motion has finished, the BAS sends a message back to the controller

to realise the updates in the database.  This operation is illustrated in Figure 8-5.  The

details of each stage of the motion operation are presented in the following sections.

send(  Agent, Instance,
cmd5( arm_reach_goal,  Arm,  X, Y, Z ),
{ attr(Agent, Arm, extended),    attr(Object,state,held),       attr(Object,holder,Agent),
   attr(Agent, Hold, Object),       attr(Object,place,Agent),   exclude(Object, Place),
   exec( p_hold_object( Agent, Arm, Object )),     exec( fork_new( Instance, Agent) ) } )

send(  <agent>,   <instance>,   <message to BAS>,   <post operations>  )

)LJXUH�������0HVVDJH�FDOO�WR�%$6�

Controller

7DVN
JHQHUDWH�FDOOV

%$6

&ODXVH

SHUIRUP�XSGDWHV

PRWLRQ
JHQHUDWLRQ

restore
focus of
attention

generate
XSGDWH

FODXVH

motion
generation

�

�

� �

���������

)LJXUH�������6FKHPH

������ 'DWD�5HWULHYDO�DQG�&KHFNLQJ�&RQVWUDLQWV

Before any motions calls are sent to the BAS, the task procedure retrieves some data and

checks if the attributes or relationships are the expected ones.  If no problem occurs the

messages are composed with the retrieved data and then sent to the BAS.  The task

temporarily loses the focus of attention of the Task KS until the requested movement of



133

the specified VWHS is completed.  The state of a task is pre-set to the HQG state, so that in

the case of a task be made up of a single VWHS  it is handled by the finalisation procedure

as it regain the focus of attention of the Task KS.  Otherwise, the task will be handled by

the designated procedure associated with the state set in the task which is one of the

states specific to that task.  This will be made clear in the next section. If, however, a

constraint has failed a test, then the state of the task is set to the IDLO state or any other

state customised for that task which handles the problem.

������ $VVRFLDWHG�$FWLRQV

The associated actions are motions represented by tasks, or instructions, which are

launched (or scheduled) in the WDVN� VSHFLILF procedure along with the main motion.

Despite this they are indeed independent processes which complement the main motion.

These motions are typically of little importance and remain as “potentially active”

motions which are enabled only when the required resources are free.  These motions are

typically JHVWXUHV� the purpose of which is to accompany the main motions.  This will be

made clear in the next chapter.  For example, the action of swinging of the arms is

complementary to the walking motion, but the arms are not essential to the locomotion

activity.  The action is thus stopped if any other task requires its resources.  As this kind

of action is associated with a main motion, it is also deactivated if the correspondent

main motion is deactivated.

������ 'DWDEDVH�8SGDWH

As a result of the performance of each VWHS of a movement, the animation database is

updated with new facts about the objects.  These updates serve as conditions to guide

subsequent actions or as the constraints to be tested by other tasks.  The informal

examples are: in a plan selection, “LI�WKH�DJHQW¶V�SRVLWLRQ�LV�VHDWHG�WKHQ�VHOHFW�D�SODQ�WKDW

LQFOXGHV�WKH�VWDQGLQJ�XS�DFWLRQ”, “ LI�WKH�FRXQWHU¶V�IURQWBOHIW�LV�HQJDJHG�WKHQ�FKHFN�RWKHU

VLGHV”, and “LI� WKH� FRXQWHU¶V� REMHFWBOLVW� LV� QRW� HPSW\� WKHQ� FROOHFW� DQ� REMHFW”;  in the

walking task, “LI�WKH�OHIWBOHJ�LV�IRUZDUG��WKHQ�WKH�QH[W�VWHS�ZLOO�EH�WR�VZLQJ�WKH�ULJKWBOHJ

IRUZDUG”.

The operation of updating is performed according to the clauses used:  DWWU, LQFOXGH, or

H[FOXGH, as illustrated in Figure 8-4.  For example, assignments (DWWU) update the



134

attributes: the positional state of the limbs (legs becomes VWUDLJKW), the posture of an

agent (VLWWLQJ), the location of the object (WKH� WDOOBJODVV� LV RQBWKHBWDEOH), etc.  Also

LQFOXGH and�H[FOXGH update objects in a list, for example, EDUBFRXQWHU has [WDOOBJODVV�

JODVV�]), etc.

The database update also provides the opportunity to effect more elaborate “updates” in

the form of a call to procedures (H[HF�clauses�.  That is, facts are not only used to update

database they are also used as clause to call procedures specific to the effected�VWHS.  As

shown in Figure 8-4, the specific operation

H[HF��SBKROGBREMHFW��$JHQW��$UP��2EMHFW����

whose procedure, SBKROGBREMHFW� tells the BAS that the 2EMHFW becomes “attached” to

the $JHQW¶V�$UP, so that the Object coordinate system becomes relative to the arm rather

than to the world���The other procedure operation in the update list is a general one

H[HF��IRUNBQHZ��,QVWDQFH��$JHQW���

IRUNBQHZ schedules an instruction which acts as a “backup” action.  That is, it is

scheduled to be a potential execution in the case that no proper continuation is scheduled

to run after the performance of the main motion task.  For example, if a plan prescribes

the following sequence of actions “SLFNLQJ�XS�D�JODVV and ZDONLQJ�WR�WKH�EDU�FRXQWHU”,

if no action operates on the arm which has just held a glass, except the swinging arms of

the walking activity, then the glass would simply swing along with the arm during the

walking.  For such cases, the action of “hold the object” would be more appropriate than

swinging the arm, specially if the glass contains liquid.  This example is discussed in more

detail in the next chapter.

���� 7DVN�&RQWURO�6WDWHV

The Task KS monitors the operation of the task control entities by applying the

procedures of their current states which can be VWDUW, HQG, VWRS, IDLO��and LQWHUUXSW.  In

addition to these, there is the possibility of merging them with states related to the

control specific to the task.  This occurs when a task is implemented to deal with

multiple VWHS motions (e.g., the walking task) and, as such, intermediate control states



135

might be necessary.  By default, all tasks are set to the VWDUW state through which they

attempt to become effective by gaining control of the resources.  Once the tasks have the

control of the resources, they schedule motions to the BAS and they become

momentarily “out of focus” of the attention of the Task KS as long as the motion is

performed.  When these motions have been completed in the BAS, the tasks are returned

back to “focus” and, as most of the tasks are a single motion, they are normally

processed by the finalisation procedure which is identified by the HQG state.  In the case

of multiple VWHS motion, before being processed by the finalisation procedure, the tasks

are processed by procedures associated to the states set in the instance which are likely

those specific to that task.  In normal conditions, the tasks go to the HQG state where they

release the resources, then they call the pending tasks or instructions back, if any, for re-

evaluation, and finally the tasks are finished and the control of the processes are passed

back to the parent instances.

ruleset task_control contains task_start, task_end, task_stop, task_fail, task_interrupt .

rule task_start
if task T is on focus and T’s state is start  then  do task_initialisation on T.

rule task_end
if task T is on focus and T’s state is end  then  do task_finalisation on T.

rule task_stop
if task T is on focus and T’s state is stop  then  do stop_process on T.

rule task_fail
if task T is on focus and T’s state is fail  then  do handle_failure on T.

rule task_interrupt
if task T is on focus and T’s state is interrupt then  do suspend_task on T.

)LJXUH�������7KH�7DVN�.6�

In the case that the control of the task is set to the VWRS state or to the IDLO state, the

corresponding procedures are similar to the HQG state, but with some differences.  In the

VWRS state the whole process is simply terminated.  In the IDLO state, the control is handed

back to the parent instance to deal with the failing condition.

The LQWHUUXSW state is reached by tasks of multiple stage motions that have temporarily

given up their control over the resources to other tasks.  Their states are re-set to the



136

VWDUW state and they become “out of focus”.  Thus, when they are eventually called back

they will be re-evaluated for resource allocation.

���� ([DPSOH

The GULQNBW�is an example of a simple task whose procedure is described in Figure 8-7.

This procedure is executed in the VWDUW state as a function call.  In the procedure the

initial information can be retrieved from the task instance and the agent instance.  The

constraints are checked, in this case, to determine if the glass is empty.  Should a

problem occur, the state of the task is set to the appropriate error handling state, which

in this case is the IDLO state, and control exits from the procedure GULQNBW.  In the normal

case of one or more motions commands VHQG can be composed and scheduled to run in

the BAS.  The GULQNBW�task is shown schematically in Figure 8-8a where the control of

the task is composed exclusively by the procedures associated to states of the Task

Controller.  The ZDON task has additional states which are merged with the task control

as shown in Figure 8-8b.

UHODWLRQ�GULQNBW��$JHQW��,QVWDQFH���LI
���ORRNXS��GULQNBKDQG���,QVWDQFH��+DQG���DQG
���ORRNXS��GULQN��,QVWDQFH��*ODVV���DQG
���ORRNXS��YROXPH��*ODVV��9ROXPH���DQG

���LI��9ROXPH�LV�� ���7KH�JODVV�LV�HPSW\�
���WKHQ
�������,QVWDQFHCV�VWDWH�EHFRPHV�VWDWHBIDLOHG�DQG ���*R�WR�IDLO�KDQGOLQJ�VWDWH�
���������DQG�IDLO
���HOVH
�������SBFRPSXWH��1HZB9RO��9ROXPH�������DQG

�������VHQG��$JHQW��,QVWDQFH��FPG��GULQN��+DQG�� ���0RWLRQ�FRPPDQG�VHQW�WR�%$6�
�����^DWWU�*ODVV��YROXPH��1HZB9RO���DWWU��*ODVV��FRQGLWLRQ��XVHG��`����������8SGDWH�LQIR�RQ�UHWXUQ�

��HQG�LI��

)LJXUH�������7KH�GULQN�WDVN�SURFHGXUH�



137

VWDUW

IDLO

HQG

GULQNBW

7DVN
6SHFLILF

7DVN
&RQWUROOHU

�D���GULQN�WDVN

6WDWHV

VWDUW

IDLO

HQG

7DVN
6SHFLILF

7DVN
&RQWUROOHU

ZDON

VWRS�ZDON

QH[W�JRDO

�E���ZDON�WDVN

6WDWHV

)LJXUH�������%OHQGLQJ�VWDWHV�IRU�WDVN�FRQWURO�

A more realistic impression of the interaction between the Task layer and the BAS is

given in Figure 8-9.  Each VHQG command gives raise to a motion structure in the BAS as

discussed in section 4.3.4.

%DVLF�$QLPDWLRQ�6\VWHP

Current time = 110

5HDVRQLQJ�6\VWHP

Start time = 100; Duration = 10

Start time = 110

Start time =110

Start time =110

bend torso y
bend spine y
bend head x

......

$JHQW�%
/RRNLQJ�WDVN

   send turn_to pos(30,1,20)

$JHQW�$
:DONLQJ�WDVN

  send walk_forw_l_leg
  send walk_back_r_leg

$JHQW�$
$VVRFLDWHG�PRWLRQ

:DONLQJ�WDVN

  send swing_forw_r_arm

$JHQW�$
$VVRFLDWHG�PRWLRQ

:DONLQJ�WDVN

  send swing_back_l_arm

�
�

�

  bend l_femur x
bend l_knee z

.....
  bend r_femur x

bend r_knee z
......

$JHQW�%

$JHQW�$
   bend r_arm z
  bend r_biceps z

.....

  bend l_arm z
bend l_biceps z

.....

add bends

add bends

�
�

�

send
command

acknowledge
termination

send
command

send
command

send
command

“advance an
animation

frame”
command

)LJXUH�������6FKHGXOLQJ�PRWLRQ�FRPPDQGV�WR�WKH�DQLPDWLRQ�V\VWHP�



138

����� 6XPPDU\

Task entities control the actual motions performed by agents and motions are achieved if

the required resources are available.  Since many potentially active tasks may require

common resources, the concept of explicit allocation of resources and the selective

execution of tasks using priority testing are effective in co-ordinating contending actions.

Active tasks give up the control over resources in favour of higher priority tasks, but this

is not always done in the same animation frame, so the scheme of calling “waiting tasks”

back to activity has been devised.

The regular updating of the animation database is essential at the completion of each step

of movement, so that subsequent actions can yield an adequate continuity of movements.

Another important feature is that potential actions parallel or subsequent to the main

motions can conveniently complement the main motion.



139

&+$37(5����7+(�7$6.�&21&(37�������������������������������������������������������������������������������������������� ���

8.1 INTRODUCTION.............................................................................................................................. 125

8.2 THE OPERATION OF TASK CONTROL ENTITY................................................................................... 126

8.3 THE TASK FRAME .......................................................................................................................... 127

8.4 ALLOCATION OF RESOURCES.......................................................................................................... 127

8.5 PRIORITY TO ACCESS RESOURCES................................................................................................... 129

8.6 CALLING PROCESSES BACK TO ACTIVITY........................................................................................ 130

8.7 THE TASK SPECIFIC PROCESS ......................................................................................................... 131

������'DWD�5HWULHYDO�DQG�&KHFNLQJ�&RQVWUDLQWV ����������������������������������������������������������������������������� ���

������$VVRFLDWHG�$FWLRQV ���������������������������������������������������������������������������������������������������������������� ���

������'DWDEDVH�8SGDWH ������������������������������������������������������������������������������������������������������������������ ���

8.8 TASK CONTROL STATES................................................................................................................. 135

8.9 EXAMPLE ...................................................................................................................................... 136

8.10 SUMMARY ................................................................................................................................... 138

FIGURE 8-1:  TASK CONTROLLER SCHEME............................................................................................ 126

FIGURE 8-2:  THE GENERAL TASK FRAME. ............................................................................................. 127

FIGURE 8-3:  PROCESS CALLBACK SCHEME............................................................................................ 131

FIGURE 8-4:  MESSAGE CALL TO BAS................................................................................................... 132

FIGURE 8-5:  SCHEME.......................................................................................................................... 132

FIGURE 8-6:  THE TASK KS.................................................................................................................. 135

FIGURE 8-7:  THE DRINK TASK PROCEDURE. .......................................................................................... 136

FIGURE 8-8:  BLENDING STATES FOR TASK CONTROL............................................................................. 137

FIGURE 8-9:  SCHEDULING MOTION COMMANDS TO THE ANIMATION SYSTEM.......................................... 137


