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ABSTRACT

This paper describes the synthesis and analysis of a control law
for a flexible spacecraft. The control law is considered a simple
proportional, integral, and derivative law together with a second order
structural filter. Parameter optimization is applied for finding the
controller parameters, so as to have an optimized behavior when applied
to the high order model. Frequency and Laplace domain analysis are
shown, which indicate the satisfactory behavior of the proposed control
ler.

1. INTRODUCTION

A three-axis stabilized spacecraft frequently has large flexible
solar panel arrays which interact with the control systeml-u. A second order
structural filter together with a simple proportional, integral, and derivative
law have been considered® to reduce this interaction, Parameter optimization
'methods have also been used for finding low order controllers in design of
control systems‘in the time domain. These low order controllers are usually
derived from optimal control structures, and have been found to be less sensi
tive to modelling errors and vibration effects. The idea here is to apply the
parameter optimization procedure, which is used in Ref. 4, to find the
parameters for the classical structure presented in Fig. 1, in order to obtain
an optimized behavior for the high-order model. A performance index (Pl) is
defined as a function of the steady-state covariance of the control and the
state vectors. Gradients of the P| with respect to the parameters of the control
structure are determined by the procedure presented in Ref, 5. The algorithm is
initialized by a solution corresponding to a stable controller. The gain
determination procedure is applied to find the controller parameters for a
three-axis stabilized spacecraft with large flexible solar panels. Satisfactory
results are obtained, as shown by Laplace and frequency domain analysis. The
root-locus and magnitude-phase Bode diagrams indicate large stability margin.
The magnitude Bode diagram shows a good attenuation factor in the range of the
structural vibration mode frequencies.

2. CONTROL STRUCTURE AND MODELLING

The flexible dynamical linear equations can be placed in state
variable form as (Refs. 2-4):

x = Fx + Gu + Lw, (1)
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Where Ca is the damping coefficient, b is a torque scale parameter, Jxx is the
rotational inertia, Q is the noise variance, fi is a frequency of structural
vibration, and gi is a coupling term.

The control is supposed to be based on the loop structure given in
Fig. 1. The control logic is implemented in a microprocessor and the necessary
torques are provided by a reaction jet system. In spite of digital implementation,
continuous time design procedures are used because the microprocessor sampling
period is supposed to be relatively fast compared to the dominant system
frequencies. The control law is a simple proportional, integral,and derivative
law together with a second order structural filter.

Regarding the state variable representation of the controlled systems,
the following augmented state yector may be define as
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where z; is the integral and z,

the phase variable representation of the structural filter.

u =

K

and z, are the coordinates which result from

The control u(t) can be obtained from Fig. 1, and if the fourth
order model (Eqs. 1-9) is considered it is given by results:
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and using this value of u, one obtains
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Dis = Ds*(K*KA - K*Kc}; Dy = DG*(K*KA - K*KC).

The control gains K., K , K., K., K., K, K can be obtained so as
.. . I v CAT g C* D
tominimize the performance index

Pl = tr [A X, ()] + tr [BU (=)], (15)

where X5 (=) is the steady state covariance of the state vector Xz ; U (=) is
the steady state covariance of the control u; A is a symmetrical positive
semidefinite matrix; B is a symmetrical positive definite matrix.

If u (Eq. 11) is introduced in the Eq. 15, Pl is given by

Pl = tr [A Xy (»)], (16)

where
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Since by assumption the closed-loop control system is asymptotical
ly stable, Xa (=) satisfies the Lyapunov equation:

T T
FX, +X F,+6.06, =0 (17)

Let P be the vector whos% elements are the controller parameters to be determin
ed. Kwakernaak and Sivan” show that the partial derivatives of Pl with respect
to P, can be computed by using Eq. 17 and the Lyapunov equation adjoint to Eq.17.

A direct gradient procedure can be applied to calculate the vector
of parameters P. To start the process an initial vector P corresponding to a
stable control has to be adopted. In each interation a correction in P is sought
to satisfy the objective of reducing PI.



The solution of the two Lyapunov equations involves most of the
computation required to compute the gradient of the performance index. These

equations can be solved using the concepts of Hamiltonian matrix and matrix
sign function®.

3. NUMERICAL APPLICATIONS

The algorithm described above is used to find the control gains
whose basic parameters for a fourth-order design are Jxx = 48800 Kg*m2;
g1 = 181 Kg*m; Cq = .003; f1 = .36 rad/sec; b = kg*m; Q = 1.E-4. The weight
parameters for Pl (Eq. 16) are chosen to minimize the square of &x; Ox, integral
of ©x, and u. These parameters are respectively assumed to be Ay = 10%;
B3 = 10%; Ags = 102, and Byy = 1.

To apply the parameter optimization algorithm it is necessary
to have an initial stable solution. If a stable solution is not known yet, it
can be found as follows. In one first phase the gains K and K, are evaluated
from the Riccati equations where the design model is supposed to be of the
order two, deterministic, and the structural filter and the gain K, are not
considered in the control scheme. By this simplification, K and Ky are give by

12
K =A;; = 100,
-ﬂ#
K*K,, = (2K/Ds + Aza) .= 205, or
K = 100 and KV = 2,05,

In one second phase, by considering the control scheme without the structural
fiiter (Fig. 1), the algorithm developed can be applied to find an optimal
preliminary solution for K, K and K,. The weight parameters are regarded as
defined before (Api= 10" , Assg= 10* , Ass = 102). The inital solution for this
phase assumed to be K = 100, K, = 2.05 and X; = .01. By inspection it is easy
to see that K| should be positive and the initial magnitude can be chosen by
trial and error. The final values obtained are K = 155, K, = .021 and Ky = 3.55.

Finally the procedures can be used to obtain the optimal solution
for Ky, K, , Ka» Kg. Kg and K . The initial stable solution is composed of the
final  shlution of second phase (K = 155, K| = .021, K, = 3.55) and of Kp = Kp=
Kc = Kp = .3 chosen to have a neutral filter in the initial condition. The final
optimal parameters are K = 192, K| = .0203, Ky = 3.47, Ky = .281, K = 346,

Kc = .3%2 and Kp = .260.

The transfer function correspond with © and a demande ed is
given by
T T
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c K(1 + Kys + 1/s + 1/s Ky) {s2 + Kps + Kg)/(s2 + Kgs + KD).

The loop gain determines .how fast the response of the system is
and the pointing accuracy for disturbance torques. The optimal K is strongly
associated with A and 8 weight parameters. Smaller values of B elements as
compared to A elements mean less importance to power consummation tha fastness



and accurancy. A loop gain K sensibility analysis can be performed by using
root locus. The Fig. 2 presents the locus for a gain variation from .5K to 2.0K
in .1K intervals.

The Fig. 2 shows that the optimal loop gain K has a good
margin for variation (.5 to 1.5K), keeping good stability characteristics in
terms of locus position.

Nonlineatities, truncated vibration modes and modelling errors
are always present in flexible spacecraft. The Bode diagram may be used to do
the evaluation of the control system robustness for the flexible effects. Figs.
3 and 4 present respectively the magnitude and phase Bode diagram for the closed
loop system.

l
1 ets)
I >
by i
I 2
i /s o xg 3%+ X3+ Xp " )
| 32 + K8 + X, 1|
i |_acTuaTOR
8(s} Ky
OBSERVER |
Figure 1 - Basic control structure.
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Figure 2 - Root locus: K variation from .5K to 2K (.1K interval).
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Figure 3 - Bode magnitude diagram.
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The magnitude bode diagram indicates the steady state response
of the system to a synusoidal input signal. The figure shows a good attenuation
factor in the range of the structural vibration mode frequencies. The phase and
magn itude bode diagrams together may be used as a measure of the system stabil
ity. The critical stability point is the 0 db, -180 Deg. point. The nearest
points to reach this condition are in .2, .36, and 10 rad/seq. At frequencies
equal to .2 rad/seg the gain margin in phase is round 90 deg. At .36 rad/seg
the magnitude gain margin is near 80 db. At 10 rad/seg or higher frequencies
the gain margin in magnitude is very high (100 db).

L, CONCLUSIONS

The design of an attitude control system for a spacecraft
having large flexible appendages can be complex. The appendage flexibility
interacts with the controller specially in presence of high loop gain. A
compensating structure has to be used and frequently a large number of parameters
need to be selected. This paper shows that parameter optimization can be applied
as a fast way to do the controller synthesis. The controller analysis and gain
adjustment can be performed by classical techniques as root locus and
Bode plot.

5. REFERENCES

(1) WIE, B. and PLESCIA, T. aAttitude stabilization of Flexible Spacecraft

during Stationkeeping maneuvers'', Journal of Guidance and Control, Vol.7,
n® &, 1984, pp. 430-436.

{(2) LARSON, V. Bnd LIKINS, P.W. '‘Optimal estimation and control of elastic

spacecraft’, Control and Dynamics Systems, V. 13, Academic, New York,
1977, pp. 285-322.

(3) CEBALLOS, D.C. '"Compensating Structure and Parameter Optimization for
Attitude Control of Flexible Spacecraft'', Journal of Guidance and
Control,’ Scheduled for Jan-Feb. 1986.

(4) MARTIN, G.D. and BRYSON, Jr., A.E., Vattitude control of a flexible
spacecraft', Journal of Guidance and Control, Vol. 3, Nr.1, 1980,
pp. 37-11.

(5) KWAKERNAAK, K. and SIVAN, R. "Linear Optimal Control Systems', Willey-
Interscience, New York, 1982, pp. 427-436.

(6} BARRAUD, A.Y., "An accelerated process to solve Riccati equation via
matrix sign functions'', Proceedings of the 1979 1FAC Symposium on
Computer Aided Design of Control Systems, Pergamon, Oxford, 1980.
pp- 9-14.



