1. Publication N© 2. VYersion 3. Date 5. Distribution

INPE-3885-PRE/335 Mzio, 1888 D Internal External
4. Origin Pr -

DMC DG C'C? Elggiazm O Restricted
6. Key words - selected by the author(s)

CURVE FITTING ADAPTIVE STATE ESTIMATION

DATA SMOOTHING INTERPOLATION

DATA COMPRESSICN KALMAN FILTER

7. U.D.C.: 881.5.015,44

8. Title INPE-3885-PRE/935 |10. NO of pages: 17

BATCH AND SEQUENTIAL DATA SMOOTHING AND COMPRESSION )
BY CURVE FITTING USING AND ADAPTTVE STATE 11. Last page: 16
ESTTMATION TECHENIQUE

12. Revised by

9. Authorship Valeir Orlandoc PAALL dlo/~ L
Atair Bios Neto

Hélio Koiti Kuga Roberto V.Fonseca Lopes

13. Authorized by

. Qx y Marco Antonio Raupp
L Responsible author Cﬁllﬁﬁsgx‘ CLLLﬁ%E::’ Director General -

14. Abstract/Notes [

The problem of data smoothing and compression by curve
fitting Ze formulated such as to allow the application of Kalman
filtering and a state noise estimation technique to its solution. This
leads to a procedure that can be used to process the data either in
bateh or sequentially. The capability of sequential processing opens
the possibility or curve fitiing in real time. Tesls done with
digitally simulated satellite tracking data indicate that the procedure
has a satisfactory performance, being a potentially promising tool
for data preprocessing.

15. Remarks This paper will be submited to the 10% Hor1d Congress
International Federation of Automatic Control, July 26-31, 1987,Munich.




1 - INTRODUCTION

In the handling and analysis of data obtained from
measurements, data smoothing by curve fitting procedures are
commonly used with one or more of the following objectives: (i)
elimtation of high frequency measurement noise to evaluate the
behaviour of the physical phenomenon under observation; (ii) data
compression to reduce the amount of data to be stored, processed
or transmitted; (iii) interpotation of intermediate values, as in the
case when it is necessary to synchronize data fraom several sources.

The curve fitting procedures more frequently used are
based on Least Square or Chi-Square criteria (Wertz, 1978; Meyer,
1975; Bendat and Piersol, 1971). Usually the linear case is
considered and the curve selected to approximate the behavior of the
observed variable is taken as a Tinear combination of known
orthogonal functions of time. If the choice of the fitting curve is
done properly, the result is to be a good approximation along time of
the true occurred values of the variable being observed, that is, the
influence of unbjased measurement errors is averaged out. The Chi-
Square procedure, under the necessary assumption of gaussian
measurement errors, also gives an approximation of the error in the
smoothed values. For measurement errors having a Gaussian
distribution the Least Square procedure is equivalent to the
Chi-Square procedure. The Least-Square procedure, however, applies
to any measurement errors distribution.

A common characteristic of existing procedures is that
all data points have to be collected before starting the curve
fitting, thus eliminating the possibility of real time processing.
In what follows, the curve fitting problem is treated such as to
make feasible the use of Kalman filtering (e.g., Jazwinski, 1970;
Sorenson, 1966) combined with a technique of state noise adaptive
estimation (Jazwinski, 1969; Rios Neto and Kuga, 1985). This leads



to a procedure that besides giving estimates for the fitting error
also has the feature of allowing the sequential processing of data,
This characteristic together with an adequate choice of the fitting
curve opens the poessibility of doing the fitting in real time.

The use of the procedure in the case of preprocessing
data from Tow altitude satellites (Orlando, 1983) showed encouraging
results. Polynomial fitting was adopted and the tests were conducted
with digital computer simulation of range data from the orbit of
the TD-1A satellite (ESA, 1977).

In the following sections, the paper is organized
starting with the data smoothing by curve fitting problem presentation,
in section 2, followed by the procedure description in section 3,
the testing results in section 4 and the conclusions in section 5,

2 - PROBLEM PRESENTATION

A set of measurements y(k) of a physical variable,
yr(k), in discrete times t s s given by: '

(k) =y (k) + vk, k21,2, , (1)

where v{k} is the measurement noise, assumed zero mean Gaussian
with:

E V()T = R(K)s, (2)

where 6kj 1s the Kronecker delta function and EL.] represents the
expectation operator.

The problem at hand is that of fitting to the given data points
a curve of the form:



flx,t) = x29:(t) + x,9,(t) + ... + X,9,(t) , (3)

where gj(t), J =1,2,...,n are known orthogonal functions; x; are
real coefficients to be determined in the fitting process; and

x=[x1 X, u-xn]T. Assuming f(x,t) to be, for a certain set X, a good
approximation for yr(t) in the interval [t,, tm], the problem posed
is that of solving for X, in the equation:

y(k) = f(x, k) + v(k) k =1,2,...,m. (4)

"

3 - PROPOSED PROCEDURE

3.1 - BATCH PROCESSING

In this case, the problem of determining the vector of
coefficients x in equation {4) is characterized as one of estimating
the state of a single stage 1inear dynamic process, as follows:

x (1) =x (0) + w(0) ; (5)

where w(0) expresses the uncertainties in the mathematical modelling
adopted and is taken as a vector of zero mean Gaussian noise with

E [w(0)u' (0)] = Q(0) = diag.[q;(0), 1 = 1,2,...,n] ,

x(0) is a random vector that approximates the coefficients, with
statistics given by:

ECx(0)/Y(0)3= %(0/0) , (6)
ECCx(0) - X(0/0)1[x(0) - X(0/0)17/¥(0)} = P(0/0) , (7)

where x(0/0) and P(0/0) are the conditional mean and covariance
respectively; and Y(0) means all past information used in



establishing the conditioned a priori information of x (0/0) and
P(0/0).

The observations to be processed are taken as
measurements of the response of the dynamical process equation (5)
and are modeled by:

Y0 = MO x(1) + V(1) (8)
where: )

Y A y@) ... oy (9)
is the vector of measured values along the instants ti, ty,..., tm;
M(1) & [Mij é:gj(ti)], i=1,2,0000my § = 1,2,...,0 is the matrix

of the functions for m measurements, assuming in equation (1) that
the curve f(x,t) is in the form taken in equation (3); and

Vi a tv() v(2) ... v(m)] (10)
is the vector of zero mean measurement nojses with:
E YOOV (197 = R(1) = diag [R(K), k = 1,2,....m]. (11)

With the representation adopted the problem of curve
fitting has been reduced to one of estimating the state of a
dynamic process. The optimal solution is thus a Kalman filtering
given by:

R(171) = R(170) + K(1) [¥(1) - M(1) R(1/0)7 (12)

]

POI/1) = [ - K(1) (1)1 P(1/0) (13)



X(1/0) = 2(0/0) , P{1/0) = P(0/0) + Q(0) . (14)

K(1) = P(1/0) MTC1)IMCT) P(1/0) MT(1) + R(DT™Y (15)

where the state noise covariance matrix, Q(0),is estimated using the
procedure proposed by Rios Neto and Kuga (1985), summarized in the
Appendix.

Notice that if the vector of observations is processed
at once, the determination of the Kalman gain implies a mxm matrix
inversion. However, since the noises in the observations are
uncorrelated random variables, these observations can be processed
one by one, thus avoiding the need of matrix inversion (Sorenson,
1966}. Also notice that the matrix of covariance errors in E(1) is
estimated as:

Ps A EY() - FI0N(D) - YD1 = M) PO/D M) L (16)
where
Y1) = m(1) x(1/1) .

3.2 - SEQUENTIAL PROCESSING

If now the curve fitting problem is characterized as
one of estimating the state of a multistage 1inear dynamic process,
where each stage is associated with a particular instant of
measurement, it results:

x(k+1) = x(k) + w(k) , (17)
y{k+1) = mlk+1)x(k+1) + v(k+1) , (18)

m{k+1) A [ga(k+t) ga(k+l) ... g9, (k+1)1 , (19)



where K = 0,1,2,...,m-1 represents the discretization times tk'

The problem is thus reduced to the case of estimating
the state of a discrete linear dynamic system, and the Kalman
filtering algorithm of equations (11)-(14) applies directly by
replacing 1 by k and 0 by k-1.

To characterize this dynamic system the following
assumptions are made: (i) the curve adopted in eguation (18) is
assumed to have a set of parameters that give a good fitting
approximation in the interval of measurements, [t,, tm]; (ii) It is
also assumed that this happens outside this interval for a virtual
set of data that, for any real time, complements, on the left and
on the right, the measured data., With these assumptions it is then
reasonable to consider that the model of equation {17} is only an
approximation and a bias exists. In other words, when including
one additional data point in the fitting process, the corresponding
occurred coefficient variations may be bias type variations, which
was not considered in the adopted coefficients model (Equation 17).
The model that includes the bias is given by:

x(k+1) = x(k) + p(k) + w(k) , (19)

where y(k)} represents the bias. This bias is certainly uniformily
bounded and the system of equations (17), {18) is uniformly

completely observable and uniformly completely controllable (Orlando,
1983), when the set of complementary virtual data is considered. Then,
the true error variance in the estimates X(k) is bounded by the filter
computed error variance when the model of equations (17) and (18) 1is
used, as long as conservative values are adopted for P(0/0), Q(k)

and R(k)} {Jazwinski, 1970).



3.3 - CALIBRATION OF PARAMETERS AND INITIAL GUESSES

The polynomial curve fitting case is assumed, and it 1is
also assumed, either by previous experience or by previous simulation,
that there is available enough knowledge of the phenomenon to evaluate
in advance the appropriate curve degree, n, to be used for f(i,t), in
equation (3). In a post facto basis, the correctness of the degree
choice can always be checked over by analysing the observation
residues. Along the fitting, monitoring can be done by analysing
the filter estimated variances of the errors in the estimates of the
vector of coefficients, X.

Both in the batch and sequential case the initial
estimates for x(0/0), Q(0) and P(0/0) are taken as:

x1(0/0) = y{1), Ej(D/U) =0, Jj=2,...n, (20)
P(0/0) = diag (p;(0/0) , 1 =1,2,....n) ,
P0/0) = diag (p3(0/0) = p2(0/0) , i =1,2,...,0) , (21)
Q(o/0) =0 ,
where Q(0/0) is the a priori value assumed for Q(0); the meaning of
EQ(U/O) is defined in the Appendix and the values of the diagonal

elements pi(D/O) are taken as:

P1(0/0) = R(1) , (22)

PJ(O/O) {02/[AT(j_2)]}2 N J = 2,...,” (23)

where, in the case of batch processing or nonreal time sequential

processing,



gz = Max [Ty (3) - y(1)1/(2; - t1)] (24)
{i:i = 2,...,n}

and AT is the value of to- by in equation (24) such that the value
of |y(i)-y(1)]| is maximum in the fitting interval.

In the case of real time sequential processing a o
value may be guessed based on previous knowledge of time variation
of the physical phenomenom under measurement,

Clearly the initial values given by equations (20)-(24)
are conservative and intended to guarantee the filter convergence and
to force f(X,t) to behave as a convergent series. To reinforce this
characterisfic by the adaptive noise procedure (described in the
appendix), one estimates only the first two diagonal terms, g, and
4z, of the state noise matrix (Q(0) in equation (14) for batch
processing and Q(k) for sequential processing). For the other terms
one takes:

2(i-2)

q; = g2 /[aT 1, i= 3,000 (25)

in the case of having the curve degree, n, greater than two. For
sequential processing this can give a significant reduction in the
processing time, In this case, the adaptive noise procedure is
applied every time that a data point is processed, in the kalman
filter update step. Thus, in each step, independently of state
dimension the adaptive noise procedure only estimates the noise
parameters gq; and q, related to the first two state vector terms.
The other terms are calculated by equation (25).

4 - PROCEDURE TESTS

The sequential and batch procedures were both tested
using simulated artificial satellite range tracking data. The range



data was calculated from simulation of the TD-1A satellite orbit
(ESA, 1977), considering a fictitious tracking station and a one
second sample rate. To each data was added a Gaussian random error
with standard deviation of 50 meters., The initial conditions for
curve coefficients estimation were taken as described in section 3.2,

Figure 1 presents the simuiated range data curve for
an interval of 40 seconds. In Figure 2 the results obtained using
the batch fitting procedure and fourth degree time power polynomial
series to 40 simulated data points are presented. In this figure the
following parameters were superimposed: (i) the real error of the
fitted curve; (ii) the limits given by estimated errors (the
square root of the diagonal terms of E§ matrix defined in equation
(16)); (ii1) the discrete values of the randon error added to each
simulated range data along the data simulation process. All error
values presented were normalized with respect to the standard
deviation of the random error in the simulated data: o = 50 m.

One can see in Figure 2 that the real error™gf the
fitted curve stays within the 1imits given by estimated errokr and
that the later remains smaller than one standard deviation of
random error in simulated data. One can also see that the Timits
given by estimated errors are greater in the beginning and end
of the fitting time interval. This happens due to the asymmetrical
treatment of the data in the curve fitting procedures.
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Fig. 2 - Batch Processing Fitting Procedure:
Application Results.

Figure 3 shows the results obtained when the sequential
procedure is applied to the same simulated data points. One can see
by comparing this figure with Figure 2 that the sequential
processing has an equivalent performance when compared to batch
processing.
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Fig. 4 - Least Square Procedure: Application
Results.

Finally, Figure 4 shows the resuits of the application
to the simulated data of the Least Square curve fitting procedure.
Considering the statistical properties of the simulated data error
(zero mean Gaussian noise), this method is in this case equivalent
to the Chi-square procedure, One can observe by comparing Figure 4
with Figures 2 and 3 that the proposed procedure showed the same
performance quality as that obtained with the Least Square procedure.

5 - CONCLUSIONS

The Kalman filtering application to the problem of
data smoothing and compression by curve fitting has allowed the
development of two smoothing technique versions: the batch and
the sequential ones. The batch processing version reguires that all
the data set be collected before the processing is started.
However, if the data random errorsare uncorrelated, the data points
can be processed one by one through Kalman Filter update step. This
avoids the need of matrix inversion for Kalman gain calculation. In
this fashion, both sequential and batch procedures can be applied
without the need of matrix inversion. For the lLeast-Square and
Chi-Square curve fitting procedures the matrix inversion operation
is always necessary (Meyer, 1975).



In the sequential fitting procedure version there is
another relevant advantage: the real time curve fitting possibility
if the degree of the curve to be adjusted is known a priori.

In terms of performance the sequential and the batch
processing versions showed in the tests a behavior equivalent to
the Least Square procedure.
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APPENDIX

STATE NOISE ESTIMATION TECHNIQUE

To estimate the diagonal elements of Q(0) and Q{k}, in
both the batch and the sequential processing, one imposes consistency
between the observations residues and their statistics (Jazwinski,
1969). To do so, the diagonal terms, which correspond to the
variances of the state noise, are imposed to assume those values
that maximize the probability of occurrence of the true residue of
each observation (Rios Neto and Kuga, 1985). For the sake of
understanding, the resulting procedure is reproduced in what
follows.

Defining, for K = 1,2,...,m, the residue as (see
equation (18))

rik+1) = y(k+1) - m{k+1}X(k+1/k) (A1)

and the true residue as:

r¥(k+1) = r(ket) = v(k+1) (A.2)

then, under the hypothesis of the residue having normal
distribution the criterion of statistical consistency is realized by
imposing

v z _ v 2
[r (k+1)]0 = E{[r'(k+1)1*} (A.3)

which is the condition to maximize the probability of occurrence of
the value [rv(k+1)]0 of the random variable r¥(k+1). Using equations
(17)and(18) of section 3.2 and after some algebraic manipulations,
it results:



[r? (ke1) = 2r(ket)v (k1) + v2 (ke 1) = m{ke1)P(K/KDM (Ke) +
+ m{ke1)Q(K)m (k+1). (A.4)
It is thus reasonable to define the noise:

n(k+1) & - 20r(k+1)3. vik+1) +v2 (k1) - R(k+1) (A.5)

Ein{k+1)1=0, E[n2(k+1)] = N({k+1) = 4[r? (k+ )1 R(k+1) + 2R* (k+1), (A.6)

where [r(k+1)}c is the calculated value, corresponding to the
occurred value of the random variable r(k+1).

Having n(k+1) defined and assuming a diagonal Q{(k)
matrix whose elements q(k+1%; are components of the gﬁk+1) vector,
the foliowing model can be taken to represent the condition of
equation (A.3):

2(k+1) = h(k+1) a(kel) + n(ke?) (A.7)
where

h{ket) = [m2ket) = m2(ket) = oo m2 (k)]

2(k+1) = r2(ke1) + R{ke1) - m(k+1) P(k/K) m' (ke1).

The vector q(k+1) is then estimated using the
following algorithm:

(1) prediction or characterization of a priori information for
kK 1,



alk+1)/k) = qlk/k) , (A.8)

P (k+1/K) = PI(K/K) + diag (JL-ag(kik), §=1.2,..m);  (A.9)
9
(i1) filtering
Glk+1/k+1) = Glke1/7K) + KI(k+1)[z(k+1) - h(k+1)g(k+1/K)T (A.10)

PICk+1/k+1) = [1-KI(ke1)h(k+1)T PA(k+1/K) (A.11)
K(k+1) =g?(k+1/k)hT(k+1)[hﬁk+1)£9(k+1/k)nT(k+1)4-N(k+1)]'1. (A.12)

The matrix Q, is then approximately given by:

1=

Qy = diag {g(k1) = g (k+1/k¢1) 2 O} .



