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1 - INTRODUCTION

The perturbations in the ambient flow created by a
satellite is of importance in calibrating satellite mounted probes and
in determining atmospheric densities. The problem is also of fundamental
engineering and scientific interest. Here, the problem of mapping the
density field around a spherical satellite moving with a constant
velocity is analyzed. In earlier works (Dolph and Weil, 1959; Kiel,
1966), the problem has been solved based on geometrical considerations.
In this work, the method of characteristics {Venkataraman, 1980) has
been used to solve the collisionless Boltzmann equation. The density
field is obtained by integrating the distribution function in the

velocity space. An analytical expression for the number density is
provided,

2 - THE FORMULATION AND SOLUTION

The geometry considered is shown in Figure 1. A spherical
satellite of radius R is moving with a constant velocity U in a rarefied
atmosphere. It is assumed that at large distances from the satellite the
gas is in equilibrium with a Maxwellian distribution. It is also assumed
that the intermolecular collisions can be neglected. The governing
equation is the collisioniess Boltzmann equation, which can be written
in a coordinate system fixed to the satellite as (Kogan, 1969)

C COS B %; + %—sin B COS v %g - % sin B %g

Ty tane &y O (1)

where f is the velocity distribution function; r, & and ¢ are the
spherical coordinates of the point P; Cns Cg and c¢ are the components
of the velocity ¢ along the directions r, @ and ¢ respectively. The
speed ¢, together with the angles 8 and v, are the spherical coordinates
of the velocity vector ¢, with respect to the Cps Cos C4

of axial symmetry there is no ¢ dependence. Thus we have

system. Because
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Fig. 1 - The coordinate system.

f=1F (r,0,c,Bv ), (2}
c. = C cos 8, (3)
¢y = ¢ sin B cos v, (4)
Cy=C sin B sin y. (5)

Far from the satellite, the distribution function in Maxwellian, that
is, for large r

fan (M2 exp { - (€ - 6)2} . (6)
0 omkT 2kT

where n, is the ambient number density, T is the ambient temperature,
m is the mass of the molecule, and k is the Boltzmann constant.
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The characteristic equations are (Courant and Hilbert,

1966)

df _  dr _ dg _ dc _ dg ~ dy (7)

0 CCOSB CSINBCOSY ©O --CSiNB ~cC5in B siny

r r r tan 6

Integrating the first and fourth terms of Equation 7, we get

f = constant along a dynamic trajectory in phase space
and

¢ = constant, (8)

Integrating the second and fifth expressions of Equation

7, we get

r sin g = constant. (9)

Integrating the third and sixth expressions of Equation 7, we get
sin v sin 8 = constant. (10}

These constants can be evaluated using suitable initial conditions.
Using Equations 8 and 9, Equation 10 can be written as

mc r sin g sin y sin & = constant. (11)

Equation 8 implies energy conservation and Equation 11 impiies
conservation of angular momentum about the vertical axis {(direction of
U). This is consistent with the physical situation because, in the
absence of intermolecular collision, the molecules are travelling in
straight Tines.

The characteristic Equation 9 is used to determine admis-



sible
reach

sip~t
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trajectories. From Figure 2, it is seen that for a molecule to
a point at a distance r from the sphere, the condition

R

FsBg T must be satisfied.

v

Fig. 2 - The Timiting trajectories.
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Thus, using the characteristic equations and the boundary
condition of Equation 6, the solution can be written as

n_ = (-2)% exp {-

> >
(c-U)Z} H
O 2qkT

2kT

(r sin g-R), (12)

where H (x)} is the Heavyside step function, such that H (x) = 1 if

x>0and H (x) =04f x <0

3. THE CALCULATION OF NUMBER DENSITY

The number density of particle is given by

n = Jf e , (13)
where dc is an infinitesimal volume element given by

d¢ = ¢? sin 8 dc dg dy . (14)
From Figure 1, it is seen that

¢.U = cU(singcosysine- cosgcoso) . (15)
Thus

(aﬁf =c2+U2-2cU(smBCSSYﬂne-cossuwe). (16)

Substituting Equations 12, 14 and 16 in E

0 2rkT

w 2T T _ |
= ()% J I exp [T L

- cosecose)}} ¢? singde dy dg .

quation 13, we get

{c2+U2-2cU (singcosysine

(17)
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To have generality of results, we introduce the following
nondimensional parameters:

Speed ratio, S = —lL—.
2T
m
Non-dimensional velocity, V = c .
2T
m
Then Equation 17 becomes
o, 2T
n_ 1 { vZ exp [-{ vZ+ S24+ 2Sv (cos B cos § -
"o 72 R
oo sin"!2
m
sin B cos y sin &) } 1 sin B dv dvy dB. (18)

=T
Now J exp (-2Sv sinB sing& siny) dy= 2nm IO(ZSV sinBsing )  (19)
0

(Abramowitz and stegun, 1964), where Io(x) is the modified Bessel
function of the first kind, order zero of argument x. Thus, the
expression for number density becomes

w Ty
n_ 2 exp Fv2- S%- 2vS cos 8 cos 8)
n, 7

S|

o sin!

I0 (2Sv sin & sin 8) v? sin B dv d3. (20)



Now we transform the variables v, g into new variables x, y as per the
following transformation:

vV SinB = X, (21)
V COSB= Y. (22)
Thus, dx dy = vdvdg (23)

and the limits of integration become

Y.Z
0sX2oand ~wsysX —_— 1 (24)
R?.

Using Equations 21 to 24 in Equation 20, we get

X — -1
n i R? 2 2 2
L exp (-x* -y*-2y S coso-52)
"o T { J
Q0 =@
I, (25x sine) x dx dy. (25)

The integration on y can written as
2
X [/ —J%; -1
[ R exp (-y?-S%-2yS coso) dy =

-0 2

S

X
2
exp - (-5% sin2g) [ R exp {- (y +Scos @ )2} dy =

- 0o

- 2
v exp (-5% sin2g) {1+—erf {(x / —lé-- 1 + SCOS(Dﬁ', (26}
2 R
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2
/v

where erf (x) =

X

[ exp (-t?) dt is the error function.
J

0

Substituting Equation 26 in Equation 25, we have

[>~]

n 2 . -Xz .

T = exp (-S? sin®e) [ X e I, (2xSsine)

0
1,..2

[1+erf{x —2-1 +5C0,-Se}:|dx (27}
R
But
2 » a2
J x exp (-x*) I (2x Ssino) dx = exp (52 sin’o) . (28)
0

(Abramowitz and Stegun, 1964}

Substituting Equation 28 in Equation 27, we get

]

ﬁl S exp (-$2 sinZo) Jx exp (-x*) I, (2x S sino)
0 2
0
r.2
erf {X — - 1 +Scose}dx (29)
R

4. RESULTS AND DISCUSSIONS

The expression for the number density as given by
Equation 29, has been evaluated numerically, for varius speed ratios
S, as functions for r and ¢. Constant number density curves are
shown for the typical cases of S=2 (Figure 3) and S=5 (Figure 4).



Fig. 3 - Constant number density profiles for 5=2

These results show that the density profile is a
strong function of © in the downstream region, but it is practically
spherically symmetric in the upstream region. As expected, the
downstream wake region increases with S.



‘g =5 40} sal1joud A3Lsuep Jaqunu jueisuc) - § b




REFERENCES

ABRAMOWITZ, M.; STEGUN, I.A. Handbook of mathematical funciions with
formulas, graphe and mathematical tables. MWashington, D.C.,
National Bureau of Standards, U.S. Department of Commerce, 1964.

COURANT, R.; HILBERT, D. Methods of mathematical physics. New York,
Interscience, 1966. v.2.

DOLPH, C.L.; WEIL, H. Studies in radar cross sections XLIII - Plasma
sheath suvrrounding a conducting spherical satellite and the effect
on radar cross section. Ann Arbor, MI, University of Michigan
Research Institute, 1959. (Report. 2778-2-F).

KIEL, R.E. Collisionless plasma flow fields. Ph.D Thesis, Lafayette,
IN, Purdue University, 1966.

KOGAN, M.N. Rarefied gas dynamics. New York, Plenum, 1969.

VENKATARAMAN, N.S. Application of the method of characteristics to

some problems in rarefied gas flows. Sao Jose dos Campos, INPE,
Sept. 1980. (INPE-1915-RPE/247).

- 171 -



