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CHAPTER 6

AVERAGE VALUES AND MACROSCOPIC VARIABLES

1. AVERAGE VALUE OF A PHYSICAL QUANTITY

A systematic method for obtaining the average values
of functions of particle velocities is presented in this chapter. The
macroscopic variables, such as number density, average velocity,
kinetic pressure, thermal energy flux, and so on, can be considered as
average values of physical quantities, involving the collective
behavior of a large number of particles. These macroscopic variables

are all moments of the distribution function.

To each particle in the plasma we can associate some
molecular property, x (r, v, t}, which in general may be a function of
the position r of the particle, of its velocity v and of the time t.
This property may be, for example, the mass, the velocity, the

momentum, or the energy of the particie.

In order to calculate the average value of y (r, v, t),
recall thatdsna (f, v, t) represents the number of particles of type a
inside the phase space volume element d°r d°v about (r, v) at the
instant t. Thus, the total value of x (r, v, t) for all the

particles of type o inside d®r d%, is given by



X (rs v, t) d®n_(ry v, t) = x (X, v, t) f

(rs v, t) d°r d®v  (1.1)

The total value of x (r, v, t) for all the particles of type o inside
the volume element d°r of configuration space, irrespective of
velocity, is obtained by integrating expression (1.1} over all

possible velocities, that is,

a*r | x (s ¥s 1) F, (r vs £) A (1.2)

The average value of x (r, v, t) can now be obtained by dividing (1.2)
by the number of particles of type o inside d¢°r about r at the
instant t, n, (r, t) d®r. We define, therefore, the average value

of the property x (r, v, t), for the particles of type a, by



The symbol < >, denotes the average value with respect to velocity
space for the particles of type o. Note that the average value is

independent of v, being a function of only r and t.

If we take x = T in Eq. {1.3), the expression for the

number density, given in Eq. (5.4.2), is obtained.

2. AVERAGE VELOCITY AND PECULIAR VELOCITY

Consider now x (r, v, t) as being the velocity v of the
type o particles in the vicinity of the position r at the instant of
time t. Eq. (1.4) then gives the macroscopic average velocity

u (r, t) for the particles of type o,

~

u (ryt)=<y> =———— v f (r,y,t)dY (2.1)

which is the same expression given in Eq. (5.4.4).

Note that r, v and t are taken as independent
variables, whereas the average velocity U, depends on the position r
and the time t. For the cases in which x is independent of the

velocity, we have

<x (rs t) > = x (s t) (2.2)



so that, for example, < u, > =4, In what follows, the index a« after
the average value symbol will be omitted whenever it is redundant,
that is, <u_> =<u > .

~C [s 3 -0

The peculiar or rendom valocity ¢ is defined as the

velocity of a type a particle relative to the average velocity U,

(2.3)

Consequently we have < ¢ > = 0, since < v >y S Uy The peculiar

velocity <, is the one associated with the random thermal kinetic

energy of the particles of type «. When u, vanishes we have c, = V-
3. FLUX

From the concept of distribution function many other
macroscopic variables can be defined in terms of average values.
Macroscopic variables such as the particle current density (particle
flux), the pressure dyad or tensor, and the heat-flow vector (thermal
energy flux), involve the flux of some molecular property x (r, v, t).
The flux of x (r, v, t) is defined as the amount of the quantity
x (r, v, t) transported across some given surface, per unit area, and

per unit time.



Consider a surface element dS, inside the plasma. If
the distribution of velocities is isotropic the flux will be independent
of the relative orientation in space of the surface element dS. However,
more generally, when the velocity distribution is anisotropic the flux
will depend on the relative orientation in space of dS. Suppose,
therefore, that the surface element of magnitude dS is oriented along

some direction specified by the unit vector n, that is,

dS = f dS 3.1}

ﬁ being normal to the surface element. In the case of an open surface
there are two possible directions for the normal E, one opposite to
the other. The direction which is taken as positive is related to the
positive sense of traversing the perimeter (bounding curve) of the
open surface, according to the following convention: if the positive
sense of traversal of the perimeter of a horizontal open surface is
taken as counterclockwise, then the positive normal to the open
surface is up; if the positive sense of traversal of the perimeter is
clockwise, then the positive normal to the open surface is down, as
shown in Fig. 1. For a closed surface the normal unit vector is

conventionally chosen to point outward .

The particles inside the plasma, due to their
velocities, will move across the surface element dS carrying the
property x (r, v, t) with them. We want to calculate the number of

particles of type a« that move across dS during the time interval dt.



dS

1/

Fig. 1 - Direction of positive normal to

the surface element dS as related to
the sense of traversing the
perimeter of d8S.

The particles with velocity between v and v + dv that will cross
dS in the time interval between t and t + dt, must 1ie initially in
the volume of prism of base dS and side v dt, as indicated in Fig. 2.
The volume of this prism is

d3r = dS.v dt =

15}
£

ds dt (3.2)

From the definition of fu (r, v, t), the number of particles of type o

in the volume of this prism, that have velocities between vand y + dv

is

f,(rs va t) drddv = f (r, v, t)f-vds dt ddv (3.3)



so that the total amount of x (r, v, t) transported across dS, in the
time interval dt, is obtained by multiplying this number of particles

by x (rs v, t) and integrating the result over all possible velocities,
that is,

x (rs ¥s t) f (r, v, t) fi-v div dS dt (3.4)

v

.
.

~
~
s
— g
.
O
~

Mydt

.ﬁ
=
id

Fig. 2 - Prism of volume d3% = dS-v dt =n-y dS dt
containing the particles of type o with
velocities between v and v + dv, and which
will cross d$ in the time interval dt.



Note that the contributions corresponding to a rotation of the segment
v dt over all possible directions about dS$ are taken into account in
the integration over velocity space. Particles that cross dS ina
direction such that ﬁ - v is positive give a positive contribution to
the flux in the direction of n, while particles that cross dS in a
direction such that ﬁ - v is negative give a negative contribution to

the flux in the direction of n. This is i1lustrated in Fig. 3

dsS dS
v 4
W
/: /04/6

/ o d//
(-3, | (=) /()
(a) {b)
Fig. 3 - (a) Particles that cross dS from the (-) region to the

(a

(+) region contribute positively to the flux in direction
n, while (b) particles that cross dS from the (+) region
to the (-) region contribute negatively to the flux in
direction 7.



The net amount of the quantity yx (r, v, t) transported
by the particles of type a,per unit area,and per unit time, is obtained
by dividing expression (3.4) by dS dt. The flux in the direction

n, ¢ . (x)s is, therefore, given by

= n 3
o (= Ix (s ¥, ) Bev £ (r, v, t) div (3.5)

v

or, using the average value symbol.,

]

q’om na (r’ t)<X(E! v, t) .ﬁ,'fﬁ

n, <XV, > (3.6)

o

where v, = ﬁ « v denotes the component of v along the direction

specified by the unit vector n.

When x (r, v, t) is a scalar quantity, N {x) can be

considered as the component along n, of a vector flux 2, (x)» that is,
o0 (x)=0-2 (x) (3.7)
with

¢ (x)=n_ <xv> (3.8)
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If x (r, v, t) represents a vector quantity, then we will have a flux

dyad (or tensor),

® (x})=n_ <xv-> (3.9)

and if it represents a dyad quantity we will have a flux triad, and

$0 on.

In many situations of practical interest it is important
to separately consider the contribution to the flux due to the average
velocity us and that due to the random velocity <, of the particles of

type a. Substituting v=c +u_ in Eq. (3.6) gives

2 (XY =0 <xc > Hn < xu > (3.10)

where ¢ =n-.c and u =
on ~

t35)
1=

For the cases in which the flow velocity u, is zero or,
equivalently, if we take dS to be in a frame of reference moving with

the average velocity u,s Eq. (3.10} becomes

e (X} =m0 <xc o> (3.11)

which is the flux of x (r, v, t} along n due to the random motions of

the particles of type «.
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4. PARTICLE CURRENT DENSITY

The particle current density {or particle flux) is
defined as the number of particies passing through a given surface,
per unit area, and per unit time. Taking ¥ = 1 in Eq.(3.6), we obtain

the flux of particles of type o in the direction n,

n
=
A
<<
v

I‘otn (r’ t)

=n u (4.1)

since <« Con > = 0. When u, vanishes, it is of interest to consider
only the flux in the positive direction instead of the resulting net
flux. The number of particles of type o« that cross a given surface
along the direction n from the same side, per unit area and time, due

to their random motions, is given by

) ety = | R Lg o (r, v, 1) ddy (4.2)

where the integral in velocity space is over only the velocities for

which n.c > 0.
~
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The random mass flux in the positive ditection of ﬁ 1S,

+)

consequently,mOC Pén

(r, t), where m, is the mass of the type a

particle.

5. MOMENTUM FLOW DYAD OR TENSOR

This quantity is defined as the net momentum transported
per unit area and time, through some surface element n dS. If we take,
in Eq. (3.6}, x (r, v, t) as the component of momentum of the
particles of type o« along some direction specified by the unit

vector j, that is,

x=m, oy - J=m v, (5.1)

we obtain the element pajn (r, t) of the momentum flow tensor for the

particles of type a,

=p <V; VvV > (5.2)

where Py =, M denotes the density of the particles of type a. Thus,

Q
the momentum flow element Pajn {r, t) represents the flux of the jEﬂ
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component of the momentum of the type o particles through a surface

element whose normal is oriented along ﬁ.Since v=oCotu e obtain

Pajn (r, t) = Py < Caj Can 1 Py uaj Yan (5.3)

or, in dyadic form,

>+ p, U, U {5.4)

~0k ~0

f‘.u (r, t) = e < & S

where we have used the fact that < ga Eu >=y < ¢ > =0.

In a Cartesian coordinate system (x, y, z) the momentum

flow dyad has the following form, in terms of its components,

gcx - 55 Paxx * Ex Paxy * -)SE Puxz
oYX Payx + Yy Payy + 0 yz Payz
I Paax v 2 Pogy * 22 P, (5.5)

From the rules of matrix multiplication,the dyad Ea can be expressed

as
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p p P ) (%)
aXX axy axz
= (XV 2 .b
P =¥ 2) | Py Puy Puyz Y (5-6)
L pot.ZX POLZ,Y PU.ZZ ] L Z J

It is usual, however, to omit the pre- and post-multiplicative dyadic
signs, such as X X, etc., and denote the dyad only by the 3 x 3 matrix
containing the elements Paij' Thus , Paij corresponds to the element of
the ith row and the 7 column. From Eq. (5.3) it is clear that .
Paij = Puji and, consequently, the 3 x 3 matrix in (5.6) is symmetric.
Therefore, only six of the components of the momentum flow dyad (or

tensor) are independent.

6. PRESSURE DYAD

6.1 - Concept of pressure

The pressure of a gas is usually defined as the force
per unit area exerted by the molecules of the gas through collisions
with the walls of the containing vessel. This force is equal to the
rate of transfer of molecular momentum to the walls of the container.
This definition applies also to any surface immersed in the gas as,

for example, the surface of a material body.

We may generalize this definition of pressure so that

it can be applied to any point inside the gas. To this end, we will
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define pressure in terms of an imaginary surface element d S = n ds,
inside the gas, moving with its average velocity u (r, t). The
pressure on dS is then defined as the rate of transport of molecular
momentum per unit area, that is, the flux of momentwn across dS due
to the random particle motions. When different species of particles
are present, as in a plasma, it is useful to define a {partial)
pressure due to the particles of type «, as the flux of momentum
transported by the particles of type « as they move back and forth

across the surface element n dS, moving with the average velocity

u, (rs t).

In the frame of reference of dS Eq. (3.11) applies,
and taking x (r, v, t) as the jiil component of momentum of the type
a particles, m, Caj’ we obtain the element pajn of the pressure

tensor,

Poin = Po < a3 San ” (6.1)

The pressure dyad is, therefore, given by

(¢4 o ~0, ~0

p =p <C C > (6.2)

From Eq. (5.4) we find the following relation between the pressure

dyad B, and the momentum flow dyad E&,

By © Pe ™ Po Yo Yq (6.3)

They are equal only when the flow velocity U, (r, t) vanishes.



- 16 -

6.2 - Force per unit area

Consider now a small element of volume inside the
plasma, bounded by the closed surface S, and let dS=n dS be an

n
E normal to the

element of area belonging to S, with the unit vector
surface element and pointing outward (see Fig. 4). The force per unit

area acting on the element of area ﬁ dS, as the result of the random

motion of the particles of type «, is given by

- .n= - < ¢ {c
2 n Pa. —-a(-«a

) (6.4)

The reason for the minus sign can be seen as follows. Suppose,

for the moment, that all type o particles have the same velocity C,

Fig. 4 - Element of volume VY bounded by a closed
surface S, with the surface element n d$S
pointing outward.
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If [ forms an angle of less than 90% with n, then the quantity

n, (ga-ﬁ) dS is the number of type o« particles leaving, per unit time,
the volume enclosed by the closed surface S, through dS. The
corresponding change {decrease) in momentum of the plasma enclosed by

the surface S is - n m c (¢

<, -n) dS,since (ga-ﬁ) is positive. On the

o
other hand, if <, forms an angle greater than 90° with ﬁ, then

-n, (gu -ﬁ) dS represents the number of particles entering, per unit
time, the bounded volume through dS, and the corresponding change
(Znerease} in momentum of the plasma within the closed surface S is

again -n_m c (c - n) dS, since now (¢ +n) is negative.

We conclude, by generalizing this result, that for any

arbitrary distribution of individual velocities, the vector quantity

-nom o< ¢ (¢ cn)>dS = PN ds {6.5)

represents the rate of change of momentum of the plasma within the
closed surface S, due to the exchange of type o« particles through the
surface element ﬁ dS. Therefore, the force per unit area exerted on an
element of area oriented along the unit vector fi is -ga-ﬁ. If we

take, for example, an element of area along the g direction, that is,

t 5}

= ¥, we have

-— - -—

B2 T EPuxx T Payx T FPuzx (6.6)



- 18 -

where Paxx is normal to the surface and towards it, just Tike a
hydrostatic pressure, whereas the components payx and Pyzx 3T€
pressures due to shear forces which are tangential te the surface, as
indicated in Fig. 5. A1l other components of p, are interpreted in an
analogous way. Generally, the force per unit area pajn acts along the
negative direction of the axis denoted by the first subscript (j).

on a surface whose outward normal is parallel to the axis indicated

by the second subscript (n). Alternatively, if the outward normal to
the surface is in the negative direction of the axis indicated by the
second subscript (n), then the force acts in the same direction as the

axis denoted by the first subscript (j).

T ayx

_’y

Fig. 5 - Components of the pressure dyad corresponding to the tangential

shear stresses, payx and Porx? and to the normal stress, Poxx?

acting on a surface element whose normal is oriented along X.
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6.3 - Force per unit volume

The force per unit volume inside the plasma, due to
the random motion of the particles of type «, can be obtained by
integrating Eq. (6.5) over the closed surface S bounding the volume
glement V, dividing the result by V, and then taking the Timit as V

tends to zero. This procedure is just the definition of the divergence,

and, from Gauss' divergence theorem,

We conclude, therefore, that the negative divergence of the kinetic
pressure dyad (-y.Ba) is the force exerted on a unit volume of the

plasma due to the random motion of the particles of type o, and

- P n is the force acting on a unit area of a surface normal to the

unit vector g.
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6.4 - Scalar pressure and absolute temperature

An important macroscopic variable is the scalar
pressure, Or mean hydrostatic pressure, Py It is defined as one third

the trace of the pressure tensor,

1 1
= pe 0, = — s
pu 3 1}j pa1J 1] 3 % pa11

+p

(paxx oYy * paZZ) (6°9)

-1
3

where Gij is the Kronecker delta, such that 5ij =1 for i=jand

6ij =0 for i # j. The pressure elements Pyii with i = x, ¥, z, are
-]

just the hydrostatic pressures normal to the surfaces described by

i = constant, Using Eq. (6.1),

1 2 7 2
= r— < + C + > .
pa 3 pa X oy Caz (6 }O)
. 2
Since ¢“ = Céx + Céy + ciz, we have

p. = —i— p, < 2> (6.11)

o

Another important parameter for a macroscopic

description of a gas is its temperature. The absolute temperature Ta,
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for the type o particles, is a measure of the mean kinetic energy of
the random motion of the particles of type a. According to the
thermodynamic definition of absolute temperature, there is a thermal
energy of k Ta / 2 associated with each translational degree of

freedom, so that

Lot = Lo <2 (6.12)
2

1
o 2 [s 1
where k is Boltzmann's constant.

When the distribution of random velocites is isotropic,
as is the case of the Maxwell-Boltzmann distribution function (to be
considered in the next chapter) which characterizes the state of

i ag s 2 = r2 =2 =2 p2
thermal equilibriam of a gas, we have Cix cuy ciz = € / 3, and

therefore,

— = = - 2
Pa ™ Paxx ~ payy Pazz 7 P < Sai 7 (6.13)

Combining (6.13) and (6.12), gives

p=n kT (6.14)
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which is the equation of state of an Zdeal gas. For the Maxwell-
-Boltzmann distribution function the non-diagonal elements of the

kinetic pressure dyad p, are all zero and the pressure dyad reduces

to

B, = X+ ¥y +2Z)p, =10p, (6.15)

where 1 stands for the unit dyad, which in matrix form is

1 0 0
1=|0 1 0 (6.16)
0 0 1
\

In this case the negative divergence of the pressure dyad becomes

- 9ep = - { X2 v —2 79
The " L ot By Pt 2 P )

= - TPy (6.17)

Thus, for an isotropic velocity distribution, the force per unit
volume, due to the random variations of the peculiar velocities, is

given by the negative gradient of the scalar pressure.
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In some problems, a simplification of practical interest

for the general form of the kinetic pressure dyad consists in taking

By & XX Ryxx % nyy v o2z Pozz (6.18)
or, in matrix form,
Paxx 0 0
Py = 0 payy 0 (6.19)
L 0 0 Pozz ]

where the diagonal elements are different from one another but all
non-diagonal elements vanish. This corresponds to an anisotropy of
the peculiar velocities and the absence of shear forces and viscous
drag. The effects of viscosity and shear stresses are incorporated in
the non-diagonal elements of the pressure dyad. Usually, the effects
of viscosity are relatively unimportant for most plasmas and the
non-diagonal elements of P, can, in many cases, be neglected. In this
anisotropic case, a different absolute temperature can be defined for

each direction in space, according to (6.12).

7. HEAT FLOW VECTOR

The component of the heat flow vector, I is defined

as the flux of random or thermal energy across a surface whose normal
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points in the direction of the unit vector ﬁ. Taking x {r, v, t}, in

Eg. (3.11), as the kinetic energy of random motion of the particles

of type a, that is, x =m Ci /2, we obtain for the component of the

heat flow vector along n,
q =g .ﬁ:.l_p <CZC . n >

The #Zeat flow vector is,therefore, given by

1 2
= — < = C >
Sa 2 pO‘. o~

8. HEAT FLOW TRIAD

(7.1)

(7.2)

It is convenient, at this point, to introduce a triad

of thermal energy flux, defined by

Its components are, explicitly,

Q

P .y = < C . C . C >
aijk Po al Taj ok

Using Cartesian coordinates, the thermal energy flux triad can be

written in the form

(8.2)
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(8.3)

s
+
o)
N

where each of the dyads Q with n = x, ¥, z, can be expressed in

Zgn’
matrix form as
anxn meyn anzn
gan - Qayxn Qayyn Qccyzn (8.4)
Qazxn Quzyn Qazzn

To obtain a relatijon between 9y and gu, note that

Eg. (7.1) can be written as

_ | 2 2 2
= ?; { Py < Co Can” TPy <Cy Can” o, <€, Cun” ) {(8.5)

qan an o ay on oz

and comparing this equation with (8.2), we see that Qyn becomes

(Q Q

aXXN * ayyn * Qazzn) (8.6)

1
q =
o )
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9. TOTAL ENERGY FLUX TRIAD

In analogy with the definition of the heat flow triad
Q, consider now the quantity
Euijk (ry t) = Py < Vi Vs Vi 7y (9.1)
which may be called the total emergy flux triad. This quantity can be
considered as the sum of three parts. Substituting Vi S us €

for each component in (9.1), and expanding,

< V. V. V¥, > = < C.C . C +UuU.C . C + . C c . +
Pa i V5 Yk "o Py al “aj ak ol e Tak uaJ ak Toi
+ c.C .+Uu.Uu. + U . c . +
Yak Cai aj al oj Cak aj Yak Cai
+ U.C.+Uu .U .Uu, B > 9.2
Yok Yo o] ai Taj Tak ( )

Noting that < Ugi > = Yoi and < C,q > = 0, and using Egs. (8.2) and
(6.1), we obtain

Py < Vi V5V > TP (9.3)

Ko = Pa Ve Yo Yok U Bodise t Quagk

where the following notation was employed

(Us Bdisi = Yai Pagk * Yaj Poki * Yok Paij (9.4)
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Therefore, we can write Eq. (9.3) intriadic form as

by <Y YYo= ey u U+ (usp) G (9.5)

The total energy flux triad p, <V YV V> can, therefore, be
considered as the sum of the energy flux density transported by the
convective particle motions, represented by the first two terms in the
right-hand side of (9.5), and the thermal energy flux ga due to the

random thermal motions of the particles of type a.

The physical interpretation of the heat flow triad Qa
is, in some sense, analogous to the physical interpretation of the

heat flow vector q,: For this purpose, consider the quantity

%; p<viy > (9.8)

o ~ o
which represents the average energy flux transported by the particles
of type «. This quantity can be written as the sum of three terms.
Substituting v = ¢, Ty, in expression (9.6} and expanding,

+c2u +uc +
o ~0 o ~0

2
+ 2 (ua . Ea) ¢y T € S (9.7)
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and since <¢ > =0and <u > = u,» we obtain

.-uu' —~]

1 <y2y > =1 U2 + <c2sYu +p u .<¢c c >+
p 0
2 [+ ~ & 2 o o4 o ~ o ~0 ~Q ~C
1 2 9.8
t—p, <C C, 7 (9.8)
> ¢

If we now use Egs. (6.2) and (7.2), which define p_ and g ,

~=0 ~0k

respectively, we obtain the identity

2 =
_E-pa VYT Nu Yo T8y Ba t (9.9)

where wu is the mean kinetic energy density of the type o particles,

defined by

W= ]?pu u2 + Jz_pa <c2 > (9.10)
Eq. (9.9) is written in a form analogous to Eq. (9.5).
It shows that the rate of transport per unit area (flux) of the
average energy of the type o particles, T vZy >, /2, can be
separated into three parts: the first term in the right-hand side of
(9.9) represents the flux of the mean kinetic energy transported
convectivelly, the second term is the rate of work per unit area done
by the kinetic pressure dyad, and the third one is the random thermal
energy flux transported by the particles of type o due to their random

thermal motions. It is instructive to note that in a frame of reference
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moving with the average velocity U,s the particle velocities

become identical to their random velocities, that is v = C,> SO that
Eq. {9.9) reduces to Eq. (7.2) which defines the thermal energy flux
vector q . When the thermal velocities c, are distributed uniformly
in all directions, that is isotropically, it turns out that q, * 0
(since the integrand in < Ci c, > is an odd function of gu).
Consequently, q, can be considered as a partial measure of the
anisotropies in the distribution of the thermal velocities. The

thermal enerqgy flux triad Q considerably extends the concept of the

o

al

heat flux vector and in this sense can be considered as a complete
measure of the anisotropies in the distribution of the thermal

velocities of the particles.

10. HIGHER MOMENTS OF THE DISTRIBUTION FINCTION

The first four moments of the distribution function
f (r, v, t) are related to the number density n. the average
velocity u, s the momentum flow dyad P, and the energy flow triad ga.

For reference, it is convenient to collect them here,

no(rot)= | f (r,v,t)d (10.1)
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U (rs t) = <vyo = v. £ (r, v, t) d¥ (10.2)

- - 3
Pisfryt)=p <vyv,> m, Vi Vs f, (r, v, t) d% (10.3)

- - 3
Eaijk (r, t) = Py < Vi Vj Ve >, =M vy vj Vi fDL (rs ¥, t) d3v (10.4)

When the average velocity u, vanishes, we have v = ¢ _, Eu becomes
the same as the pressure dyad Py and Ea becomes the same as the

thermal energy flux triad gm.

As a formal extension of these definitions we can,
whenever necessary, consider higher moments of the distribution

function. The moment of order N can be defined by the expression

wi)  (Bs B) = ] vy VeV

3
ij... i V5 o Ty (ry v, t) d°v (10.5)

N times
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PROBLEMS

Consider a system of particles characterized by the distribution

function of Problem 5.1.

(a) Show that the absolute temperature of the system is given
by T=m vg/Bk, where m is the mass of each particle and k

is Boltzmann's constant.

(b) Obtain the following expression for the pressure dyad

3

where p =nm and 1 is the unit dyad.

(c) Verify that the heat flow vector q = 0.

Suppose that the peculiar (random) velocities of the electrons
in a given plasma, satisfy the following (modified Maxwell-

Boltzmann) distribution function

172 c2+c2 c2
f(c) = n (—2—) (0 )/exp[—"‘ (XY, Zﬂ
2wkT, 2ukT,,

(a) Verify that the electron number density is given by Ny
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(b) Show that the kinetic pressure dyad is given by

p=n k[T, {

134!
1)

P+ Te 22

which indicates the presence of ananisotropy 1in the z-direction.

{c) Calculate the heat flow vector gq.

(d) Show that m<v? >/2 = kT, /2 and me<v% >/2 = kT,

For the Toss-cone distribution function of Problem 5.3, show
that m<v$ >/2 = mod /4 and m<vi>/2 = mof.
Compare these results with those of Problem 6.2(d), and provide
physical arguments to justify the difference in the perpendicular

part of the thermal energy.

Convince yourself that there are only ten independent elements
in the thermal energy flux triad Q. Note that Qijk =
=mo<cy cy € is symmetric under the the interchange of any

two of its three indices.
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6.5 - A plasma is made up of a mixture of various particle species, the
type o species having mass m s number density n,» average
velocity U, = <v> o, random velocity Cy =¥ - U temperature

- 2 -
Ta = (ma/3k) <c>, pressure dyad Eﬂ = nm-<c gm>,andheat

flow vector q, = (numa/Z) <c§ €, Similar quantities can be

defined for the plasma as a whole, for example:

total number density N =L n

a
auerage mMass m_ = 1 nm
g 0 n o od
0
average velocity u_ = ! I nmu
~0 Ny o o oa~o

We can also define an alternative random velocity for the type
o species as ¢ = Vv -u,, aswell as an alternative

_ 2 —
temperature Tao = (mu/3k) <C ,”s pressure dyad gﬂo =

< > = < 2 > .
nm C c o ? and heat flow vector q (n m /2) C C o

(a) Show that, for the plasma as a whole, the fotal pressure dyad
is given by
go = I (Eu +nm Www )

a o ~0~0

and the <total scalar pressure by
_ 1 2
Po © 5 (py # 3 notmou wa)

where W= U= U is the diffusion velocity.
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(b) Assuming that ¢ is isotropic, that is, <c§i> = <c§>/3, for

i =X, ¥y, z, show that the total heat flow vector is given by

- 5 1, 2
9% ° % (9, + —- Py ¥y ¥ 2 U fu)

(c) If an average temperature To’ for the piasma as a whole,

is defined by requiring that Py = no k TO, show that

(d) Verify that

2 on kT =3 1 nm <2
) 2 oo o0

Consider an infinitesimal element of volume d3r = dx dy dz in a

gas of number density n.

(a) Show that the time rate of increase of momentum in d3r, as
a result of particles of mass m entering d3r with average

velocity u, 1is given by - v.(nmu u) d3r.
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(b) If the infinitesimal volume element d3r moves with the
average particle velocity u, show that, because of the work
done by the kinetic pressure dyad p, the energy of the particies

inside d3r increases at a time rate given by - v.{u.p) d3r.

(c) Verify, by expansion, that

——
[l =]
13}
il
1=
il
——
e
==
g
=

where n denotes an outward unit vector, normal to the surface

bounding the volume element.

Consider Eq. (5.6.4), which is the solution of the Boltzmann
equation with the relaxation model for the collision term, in
the absence of external forces and spatial gradients, and when
fou and t are time-independent. Show that, according to this
result, we have

Gu(t) = GOa + [ Ga (0) - GOOL 1 exp (-t/T)
where
= 3 =
Gu(t) f f, x d%v n,<x?>,
v
- 3y =
GOu = I an X d3y nu <X >0a

v
Thus, according to the relaxation model for the collision term,
every average value < y > approaches equilibrium with the same

relaxation time .



