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CHAPTER 10

PLASMA CONDUCTIVITY AND DIFFUSION

1. INTRODUCTION

In the previous chapters we have introduced the
fundamental elements of kinetic theory and the macroscopic transport
equations necessary for the study of a variety of important phenomena
in plasmas. Many plasma phenomena can be analyzed using the macroscopic
transport equations, either considering the plasma as a
multi-constituent fluid or by treating the whole plasma as a single
conducting fluid. In some cases, however, a satisfactory description
can only be obtained through the use of the phase space distribution

function.

In this and in the following chapter we investigate a
number of basic plasma phenomena which illustrate the use of the cold
and warm plasma models, and of the phase space distribution function.
Phenomena that can be analyzed treating the whole plasma as a single
conducting fluid are usually considered under the general title of
magnetohydrodynamics (MHD), and will be studied in Chapters 12, 13
and 15.



2. THE LANGEVIN EQUATION

Before we consider the phenomena of plasma conductivity
and diffusion, it is convenient to introduce a very simple form of the
equation of conservation of momentum for a weakly ionized cold plasma,
known as the Langevin equation. In a weakly ionized plasma the number
density of the charged particles are much smaller than that of the
neutral particles. In this case the interactions between charged and
neutral particles are dominant. The electron-electron and electron-ion

interactions are considered to be of secondary importance.

The macroscopic equation of motion for an average
electron, under the action of the Lorentz force and the collisional

forces, can be written as

(2.1)

where ge(g, t) is the average electron velocity and (Ecoli)e denotes
symbolically the rate of change of the average electron momentum due
to collisions with neutral particles. The macroscopic collision term
(Eco1l)e can be expressed in a phenomenological way as the product of
the average electron momentum with an effective constant collision
frequency, Ve for momentum transfer between electrons and heavy
(neutral) particles,

(F

Feollde =~V

¢ Me Ye (2.2)
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In doing thiswe are neglecting the averagemotion of the neutral particles, as
they are much more massive than the electrons. Note that this does not
mean that the velocities of the individual neutral particles are zero,
but only that they are completely random so that their average

velocity 1is zero. We obtain, therefore, the following equation, known

as the Langevin equation,

Du
m _:gz_e(gq.g

X B) -v. m
EDt e ~

c Me Yo (2.3)

The effect of the collision term in the Langevin equation
can be seen as follows. In the absence of the electric and magnetic

fields, Eq. (2.3) reduces to

—— ==~y u (2.4)

whose solution is

e (1) = g (0) exp (~vt) (2.5)

Thus, the collisions between electrons and neutral particles tend to
decrease the average electron velocity exponentially in time, at a

rate governed by the collision frequency.

An equation analogous to Eq.(2.3) can bewritten for the jons



Dui
m.—=e (E+u;, xB) - (F

— i Feot1/; (2.6)

where gidenotes the average ion velocity. In many cases of interest, as
in high-frequency phenomena, we can neglect the motion of the heavy
ions and assume that their average velocity is zero, since the mass of
the ions is typically about 103 or 10% times greater than the mass of the
electrons. The type of plasma in which only the motion of the electrons
is important, is usually called a Lorentz gas. When dealing with very

low frequencies, however, the motion of the ions must be considered.

Despite the approximations implicit in the Langevin
equation, it has been successfullyused to describe a variety of
phenomena in plasmas, including the propagation of electromagnetic
waves in cold magnetoplasmas. Particularly, the analysis of the
characteristics of electromagnetic wave propagation in the Earth's
ionosphere, using this equation, has been guite sucessful. A great

advantage of the Langevin equation is its simplicity.

3. LINEARIZATION OF THE LANGEVIN EQUATION

In the form presented in Eq. (2.3), the Langevin equation
contains nonlinear terms which involve the product of two variables. In
many situations of interest the difficulty inherent in the nonlinear

terms can be eliminated through a linearization approximation.



The total time derivative contains the nonlinear
convective term (u,.v) u,, which is called the inertial term in
hydrodynamics. The omission of this inertial term is justified when

the average velocity and its space derivatives are small, or when u

~
is normal to its gradient (such as in the case of transverse waves).
For the nonlinear term Ug X B, we can separate the
magnetic flux density B(r, t) into two parts
B (r, t) =B, +B' (r, t) (3.1)

where B s constant and B'(r, t) is the variable component. Without

any loss of generality wemay write for the Lorentz force term

q (E + U X B) =q (E+u,xB +u_, xB") (3.2)
For situations in which

lug x B'| < < | E| (3.3)
the noniinear term u, x B' in (3.2) can be neglected.

With the linearization approximations the Langevin

equation becomes

m,—=-¢e (E+u, x §0) =My Ve Ug (3.4)



For steady state problems, and for many problems involving wave
propagation, this linearized form of the Langevin equation is

applicable.

A case of great practical interest is the one in which
the variables E, B' and Ug all vary harmonically in space and time.
The treatment in terms of plane waves has the advantage of great
mathematical simplicity, besides the fact that any complex and
physically realizable wave motion can be synthesized in terms of a
superposition of plane waves. Let us consider, therefore, plane wave

solutions for E, g' and Yo in the form

E, B', U = exp i (kr- wt)] (3.5)

where w denotes the angular frequency, k is the propagation vector
normal to the wave front, and r is a position vector drawn from the
origin of a coordinate system to the point considered on the wave

front (Fig. 1).



Fig. 1 - Position vector r drawn from the origin of a coordinate system
(x, ¥, z) to a point P on the wave front, whose normal is
given by the propagation vector k.

For the space and time dependence given in (3.5), the
differential operators v and 2 /3t are transformed into simple
algebraic operators, according to v -~ ik and 3 /5t »<iw. Substituting

(3.1) into Maxwell equation v x E = - 3B /3t, we obtain

ik x E = iu B (3.6)
where 3B, / 8t = 0, since B, is constant. Therefore,

Bz ——— (3.7)

and plugging this result back into (3.3) yields the condition

lug X (kK xE) /o | << |E| (3.8)
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The magnitude of the nonlinear term Uy X B' may be equal to or smaller

than |ue k E/w|. Hence, the nonlinear term can be neglected if

|ue kK fu | < <1 (3.9)
or, equivalently, if

| ue| < < |w /k| (3.10)

The term (w/k) represents the phase velocity of the plane wave. Since
this term is usually of the order of the velocity of light, c¢,whereas
the magnitude of the mean velocity of the electrons, Ugs is much less
than c, the nonlinear term can generally be neglected. However, in

cases of resonance w/k is very small, whereas g becomes Targe. Under

conditions of resonance, therefore, the nonlinear terms is important

and a nonlinear analysis must be used.

4, DC CONDUCTIVITY AND ELECTRON MOBILITY

In this section we apply the steady state Langevin
equation to derive an expression for the DC {direct current)
conductivity of a weakly ionized plasma, for which the Lorentz model
(electron gas) is applicable. The applied electric field is constant
and uniform. Two situations will be considered: (1) <sotropic plasma
without a magnetic field, and (2) anisotropic plasma immersed in a

uniform and constant magnetic field.



4.1 - Isotropic plasma

In the absence of a magnetic field, the steady state

Langevin equation for the electrons becomes

0=-ekE - my Ve Ug (4.1)
In this case the action of the applied electric field is balanced
dynamically by the collisions between electrons and neutral particles.
The electric current density associated with the motion of the

electrons is

e e (4.2)

J=(——) E (4.3)

From Ohm's law, J = 9 E, we identify the following expression for the

DC conductivity of an isotropic electron gas

o =& (4.4)
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The electron mobility, Hg> is defined as the ratio of

the mean velocity of the electrons to the applied electric field,

by = (4.5)

p, = - =-_09 (4.6)

4.7 - Anisotropic magnetoplasma

In the presence of a magnetic field the plasma becomes

anisotropic. The steady state Langevin equation can be written as

0=-¢e(E+ Ug X §0) - My v Ug (4.7)

where §0 is a constant and uniform magnetic field. Combining (4.7)

with J =-& Ny Ugo yields

(4.8)

which may be written in the form

=0, (E+u, xB) (4.9)
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where A is given in (4.4). This last equation is a simplified form of

the generalized Ohm's law.

At this point it is worth to consider a useful result
which arises when the collisional effects are negligible. When vc~+0
the DC conductivity becomes very large (cO + =) so that we must have,

from (4.9},
E+u, xB =0 {4.10)
This expression represents, therefore, the simplified form of the

generalized Chm's law for a plasma with a very large conductivity. In

this case, taking the cross product of Eq. (4.10) with B_, and noting

=0
that
- 2
(Ee X go) X §0 = Qe; B0 (4.11)
we obtain
ExB
u, = e (4.12)
~t1 2
Bo

This result shows that, in the absence of collisions, the electrons
have a drift velocity, EE;’ perpendicular to both the electric and
magnetic fields. Since this result is independent of the mass and
charge of the particles, the same result will be obtained for the ions

if their motion is taken into account. This can be easily shown
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considering the Langevin equation for the ions. Thus, in the absence
of collisions, both electrons and ions move together with the drift
velocity (4.12), and there is no electric current (J = 0). When the
collisional effects are not negligible, the motion of the ions suffers
a larger retardation than that of the electrons, as a result of

collisions. In this case, there is an electric current @ssumingne=ni)

Q; = en, (gil - Be;) (4.13)

perpendicular to both E and Eo’ known as the Hall current. Note that,

since u_ > u,
e, i,
is, opposite to the drift velocity of both types of particles.

, this current is in the direction of - (E x QO), that

Returning now to the generalized Chm's law in the
simplified form (4.9), let us rewrite it in a way which relates the
current density directly to the appiied electric field. We define,

therefore, a DC conductivity dyad (ortensor), o, by the equation

(4.14)

1C.
1l
na

1rm

In order to obtain an expression for o, consider a Cartesian coordinate
system with the z axis parallel to the magnetic field, that is,

B, = B, Z- Replacing U in Eg. (4.9) by - J /(ene), we get

J=o E-—-22 (Jx3 (4.15)
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Noting that

y’
dxz = |J, Jy dy 0 = Jy X - d, Yy (4.16)
0 0 1

we obtain the following set of equations for the X, y and Z components

of Eq. (4.15)

-~ _ ce

B9 e, B —y (4.17)
c

- “ee

By me, B v (4.18)
¢

2 J =0, E (4.19)

where Wee denotes the electron cyclotron frequency. We can combine
Egs. (4.17) and (4.18) to eliminate Jy from the first one ande from the

second one, obtaining

vé Ve “ce
J, = o E - o E (4.20)
X 2 2 ¢ X 2 2 oy
(\)C + wce) (\)C + Wee
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Ve Yeg “ﬁ
3y = c ¢ o, E, + % Ey (4.21)
(vé +ule) (VE t ol
In matrix form we can write, therefore,
( ) [ , Y ( )
J AY] \)C wce 0 E
X 2 2 2 2 X
(\)C + Chn (vc + mce)
AY w \)2
Iy | =% £..t8 ¢ 0 £, (4.22)
2 2 2 2
(vc + mce) (vc + mce)
J, 0 0 1 E,
-0 L

whichis now in the form given in (4.14). The DC condutivity dyad is

therefore given by

o, -0 0
o= | oy a, 0 (4.23)
0 0 oy
where we have used the notation
2
v
C
G, = o (4.24)
(vZ2 + w2 ) °
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v,
o, = — L& (4.25)
H (v + w2 0
C ce
2
- _ nee
On =0y = ——— (4.26)
Me Ve

To illustrate the physical meaning of the components of
g it is convenient to separate the applied electric field in a
component parallel to go’ Eu, and a component in the plane normal to
Eo, E., as shown in Fig. 2. The element o. is called the perpendicular
(or transverse) conductivity (also called Pedersen conductivity) since
it governs the electric current in the direction of the component of
the electric field normal to the magnetic field

(I[El, l EO)’ while O s known as the Hall conductivity,

I:I! (G‘ll)
//ﬁ\
pd B,
/.f
//

E &

i uE >-ExB,

1 (o)

l

!

El (o)

Fig. 2 - Relative orientation of the vector fields Eps EJ and-E x B3
the conductivities ou, o,,and oy govern the magnitude of the
electric currents along these directions, respectively.
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governs the electric current in the direction perpendicular to both
the electric and magnetic fields (] E, l-Eo)' The element o, is the
longitudinal conductivity, since it governs the electric current in
the direction of the electric field component along the magnetic field
(1| Eus [|B,). Note that the electric current along B, is governed by

the same conductivity (oo) as in the case of an isotropic plasma.

The dependence of o, and oy on the ratio of the
cyclotron frequency to the collision frequency is shown in Fig. 3. As
the ratio (mce/vc) increases, o, and oy decrease rapidly, the efect
being more pronouced for o,. Thus, when (mce/vc) is relatively large,
very little current is produced across the magnetic field lines, as
compared with the current produced along the field Tines, for

the same applied electric field. Note that o, increases as Ve

QA
K

I 1 i i i . Wee
0 J 2 3 4 5 6 Ve

Fig. 3 - Dependence of the Hall conductivity O and the perpendicular

conductivity o, on the ratio of the cyclotron freguency Weg

to the collision frequency Ve
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diminishes and is independent of the magnitude of the magnetic field
and, therefore, of Wear Thus, inararefied plasma immersed in a
relatively strong magnetic field, the electric current flows

essentially along the magnetic field Tines.

Note that in the absence of a magnetic field (wce = 0)

Egs. (4.24), (4.25) and (4.26) give 0, =0,=a_and o

0 H =0: thus, the

plasma becomes isotropic.

We deduce next an expression for the electron mobility.
Due to the anisotropy introduced by the magnetic field we have, in this

case, a mobility dyad Hoe We define the electron mobility dyad by the

equation

U = e * E (4.27)
Since J = - en, U, we can write

J=-en, He E (4.28)

Comparing this Tast equation with J = ¢ - E, we find that

g
-

(4.29)

Ha

Explicit expressions for the components of bo can be easily written

down considering Eqs. (4.23), (4.24), (4.25) and (4.26).
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5. AC CONDUCTIVITY AND ELECTRON MOBILITY

Consider now the case when the electric field E (r, t)
and the mean electron velocity Ug (r, t} vary harmonically in time,
that is, as exp (-iwt). We have seen that for time harmonic
disturbances 3 /3t is replaced by - iw. Therefore, the linearized
Langevin equation (3.4) becomes

~lem oy

=-e (E+ Uy X go) -m. v, u {5.1)

e e ¢ ~&

which can be written as

0=-e(E+u, x B,) - m, (vc - w) Ug (5.2)

e
This equation is identical to Eq. (4.7), except for the change in the
collision frequency Ve to (vc - jw). We obtain, therefore, solutions
similar to the ones obtained for the dc conductivity dyad in the
previous section, except that now we must replace Ve by (vc - dw) in
each element of the dyad. Therefore, the expressionsfor the frequency
- dependent perpendicular conductivity, Hall conductivity and

Tongitudinal conductivity are, respectively,

Ol
o, = _2"‘ —— 9 (5.3)
(Ve + mce)
vV ow
oy = ce o (5.4)
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n_e? n_e? (vc + iw)
Oy = 0 = = (5.5)
m,ov Mg (vé + w?)

where we have used the notation

V=, - iw (5.6)

When the collisions between electrons and neutral
particles can be neglected (vc = 0) we have v = - iw. For this
collisionless case, the expressions for the components of the ac

conductivity dyad are

o, = c (5.7)
2 - .2 0
{w “ce)
iw w
o, = ce 5 (5.8)
H (wg _ wz 0
ce
n. e?
oy = o, = i & (5.9)
my ©

The electron mobility, in any of the cases considered in
this section, cah be easily written down considering the relation

(4.29).
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6. CONDUCTIVITY WITH ION MOTION

The evaluation of the conductivity dyad, when the
contribution due to the motion of the ions is included, can be
performed in a straightforward way. For this purpose, consider the

linearized Langevin equation for the type o species,

3y
~0

ot

m
o

=9, (E+ o X ]~3~0) "My Voo Yo (6.1)

where Veu is an effective collision frequency or damping termfor the typea
species resulting from collisions with neutral particles. Note that
the equations (6.1), for each charged particlie species, are uncoupled.

Therefore, the net current density is given by

). E (6.2)

and the total conductivity is simply

(6.3)

Ha

]
2 1
na
1

For a plasma with electrons and several types of ions (index j) we

obtain, using Eqs. (5.3) (5.4) and (5.5),
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(Vog = Tw)? (v . - iw)2
g, = CE. e * = - 0pj  (6:4)
[(uce - 1w)? + wg, j [(\)Cj -~ dw)<+ w%j
o = (vce - iw) 0ee . i (vcj - iw) we s 0. (6.5
)2 g2 o€ o Y2 1.2 0]
[(uce iw) +wZe i [(VCJ. iw) tugg
n_ e? (v_ . +iw) n, ez (v .+ iw
oy = 0. + Yo . = ce vy I c (6.6)
! ce Lol m (vZ _ +w?) .om. (vZ. + w?)
J e ce J A cj
where W, =@ BD/ma . In terms of the plasma frequency
n, e 1/2
Wpy = ¢ — ) (6.7)
a O

the elements of the conductivity dyad for the muiti~component plasma

become
2 o i 2 iy T
0. = e “pe (Ve = 10) 7 “nj (vej = iw) (6.8)
I (Vee - 'iw)2+mze i (\)CJ - iw)%+ ng
I_ w2 w2 )
- dm)2 . :
I‘(vce iw) 4 + mze 3 (\JCJ. - iw)? + u%j i
- (.I.\ze UJ2-
%= &y —B sy — P (6.10)
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7. THE PLASMA AS A DIELECTRIC MEDIUM

The plasma can also be treated as a dielectric medium
characterized by a dielectric dyad, in which the internal particle
behavior is not considered. So far, we have treated the plasma as a
collection of charged and neutral particies moving about in their own
internal fields. Thus, as far as the constitutive relations are

concerned, we have taken

D=¢, E (7.1)

(7.2)

which is the case for vacuum, and the plasma effects show up through
the motion and interaction of the charged particles inside the plasma.
In this sense, the use of the Langevin equation constitutes a
microscopic description involving the average motion of the particles
in the plasma. A different approach is provided by a macroseopic
description through the use of a dielectric dyad, in which we are
concerned only with the gross macroscopic properties of the plasma

and not with the motion of the particles.

Thus, instead of the Langevin equation, let us consider
the following Maxwell equation

v x B =y (J+e, oE/at) (7.3)

(8] —~
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and incorporate the effects of the plasma in the conductivity dyad g,

defined by the equation

1 Ca
1
ta
m

(7.4)

Substituting (7.4) into (7.3), and assuming time-harmonic variations

of the form exp (- iwt), we obtain

a

« £ - duw Ho EOE (7.5)

If we Tet 1 be the unit dyad, we can write

1

VxB=-dwu e (l+——g).E (7.6)

TXB=-in wy e (7.7)
where
eze, (1 +——0) (7.8)
= pad WE =

is called the dielectric dyad for the plasma. The use of the dielectric
dyad represents, therefore, a different approach for the treatment of
a plasma, as compared to the one we have used so far. Adopting this

approach, Eq. (7.1) must be replaced by
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12
1]
tm
-

1M

(7.9)
and the plasma is considered as a dielectric medium, without bringing

into the picture its internal particle behavior. Note that ¢ depends

on the frequency w.

The dielectric dyad can be written in matrix form as

( €y —-£5 0)
€= ey £, €y 0 (7.10)
L 0 0 53‘

ezl +— o, (7.11)
LI.\EO
_
, = o, (7.12)
we
S [ (7.13)
LUEO

For the case of a multi-constituent plasma the total
conductivity must be used in (7.8), so that the expressions to be
substituted for o, ©

(6.6).

H and o, are those given in Eqs. {6.4), (6.5) and
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8. FREE ELECTRON DIFFUSION

The presence of a pressure gradient term in the
momentum transport equation provides a force which tends to smooth out
any inhomogeneities in the density of the plasma. The diffusion of
particles in a plasma results from this pressure gradient force. To
deduce the electron diffusion coefficient for a warm weakly ionized
plasma we will use the momentum transport eguation for the electrons
with a constant collision frequency between electrons and neutral
particles. We assume that the deviations from the equilibrium state
caused by inhomogeneities in the density are very small, so that they
may be considered as small first order quantities. This means that the
mean velocity of the electrons Ug is also a first order quantity, and
since the velocity distribuition will be approximately isotropic, we

can replace the pressure dyad Po by a scalar pressure Po-

Consider the case in which E and B are zero and the
electron temperature Te is constant. For a slightly nonwuniform

electron number density, we have

H
=
+
3

-
=3
ct

-

—
oo
—]

el

ng (rs t)

Pe (rs t)

H
=
m
——
=5
w
ot
Nemr”
-~
—
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where |né| << n s a first order quantity and n, is constant. Since
Uy is also a first order quantity, the continuity equation for the

electron gas becomes

+n v:ru =0 (8.3)

where the second order term né Ug has been neglected. Similarly,for

the momentum transport equation,

+
—_—
o
<1
g
li
|
=<l
=
{®
1
-
[}
=
D
<
O
[
M
——
o
i
e

' -n v u (8.5)
0 3¢ ~ B g C ~g

n 2 (v-u)-=- V2 p'-n v.V-u (8.6)
5t e m e 0 C e

Using Eq. (8.3) to substitute for Ny ¥ * Ug» yields
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aZn’ kT an'
- e e

3t2 m € ¢ 4

which is called the electron free-diffusion coefficient.

(8.8)

(8.9)

To obtain a rough estimate of the order of magnitude

of the various terms in Eq. (8.8), let t and L represent, respectively,

a characteristic time and a characteristic length over which n;}varies

significantly. Thus, any spatial derivative is of the order of L-! and

any time derivative is of the order 1-1,sothat theorder of magnitude

of the terms in Eq. (8.8) are

an'

ot T €

(8.10)
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D
2hl o~ e L
D, v2n) s n, (8.11)
a%n’
1 g 1 .
e = " Na (8.12)
vc ] vc T

Comparing Eqs. (8.10) and (8.12) we see that if Ve T >> 1, that is, if
the average number of collisions between the electrons and the heavy
neutral particles is large during the time interval t, then the last
term in Eq. (8.8) can be neglected and it reduces to the following

diffusion equation

- 2 1
=D, v2 n} (8.13)

Therefore, when the rate of change in the number density is slow
compared to the collision frequency, the number density is governed by
a diffusion equation with a free electron diffusion coefficient as

given by Eq. (8.9).

The condition Ve T >>1 impliesin the omission of the
acceleration term in the momentum transport equation, that is, du, / ot
is neglected. From the Tinearized Eq. (8.5}, when there are no time

variations in Ug> We obtain,

n

u., = - von

o Vc “e ~ e (8.14)
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which can be written as

1l

ry = - D, m: (8.15)

where Ee n

o Ye denotes the linearized electronflux. Eq. (8.15) is
analogous to the simple Ohm's Taw J = %y E, replacing J by T o by De,
and E;by-gné. Thus, we see that the electron flux Ta is caused by a
density gradient, in a way analogous to the electric current caused by
an electric field, under steady state conditions for Ug-

9., ELECTRON DIFFUSION IN A MAGNETIC FIELD

Consider now the problem of electron diffusion in the
presence of a constant and uniform magnetic field go' We make the same
assumptions as in the previous section, and neglect the acceleration

term U, / 3t in the equation of motion.

In the linearized momentum transport equation (8.5),
with the time derivative set equal to zero, we include now a magnetic

force term, which results in

= - D, ¥n, - —=— (r xB8) (9.1)

Choosing a Cartesian coordinate system with the z-axis pointing in the

direction of the constant B, field, that is, B, = B z, we have

0 0



r, =-D, ¥l - (r_ x Z) {9.2)

This equation is analogous to Eq. (4.15) with s replacing J, De
replacing oo,and—yné replacing E (note that wce/ Ve = 9 Bo/ene).
Therefore, in analogy with the expression J = o E, we can write

re=-D- (9.3)

where D is the dyad coefficient for free electron diffusion given by

D, D, O
D=|-D, D, O (9.4)
0 0 D,

%
D, = D, (9.5)
(v + uge)
v,ow
(v + oge)
k
D = D :.._._.-re— (9 7)
= Ye )
m., v
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A diffusion equation for né, when there is a constant
and uniform magnetic field present, can also be derived in the same
way as in the previous section. First, we write the continuity equation

(8.3) in the form

ang
tV T, = 0 (9.8)
at -7

=V + (D .yn) (9.9)

D ‘V"é = X (D, +DH € Y+y (-DH < +D, € ) +
= 7 - X By ax Ay
B“é
£30, (9.10)
- ¥4

=Dy (——— 4 € 3+D € (9.11)
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Since D, <« De and since D, decreases rapidly with increasing values

of w.o/ Ve (simitary to o., as shown in Fig. 3) the diffusion of
particles in a direction perpendicular to the magnetic field is always
less than that in the direction parallel to the magnetic field.

For values of w, much lTarger than Ve the diffusion of particles across

e
the magnetic field lines is greatly reduced {from Egs. (9.5) and (9.6)
it can be seen that for Wee >> V. We have, approximately, D, « 1/BZ2

and DH = 1/B}.

As a final point in this section we note that the
momentum transport equation for a gas of electrons, neglecting the
acceleration term but including the electromagnetic force, and when

the temperature is constant, can be written in the general form

Ty = Mg (ne E+ o X B) - De . (9.12)
From this equation we can see that the electron flux is produced by
either, or both,electromagnetic fields and density gradients. The
ratio of the scalar mobility Ha to the diffusion coefficient is known

as the Einstein relation and is given by

(9.13)
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10. AMBIPOLAR DIFFUSION

We have seen in section 8 that the steady
state momentum equation, in the absence of electromagnetic forces and
when the temperature is constant, gives the following diffusion

equation for the electrons

r. = -D vn' (10.1)

D = ——2t (10.2)

The subscript e has been added here to Ve to indicate that the
constant collision frequency Vea refers to collisions

between electrons and neutral particles.
If we consider similar equations for the ions in a
weakly ionized plasma, under the same assumptions, we obtain the

following diffusion equation for the ions

= -D, vn' (10.3)

where
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. = — 1 (10.4)

denotes the <on free-diffusion coefficient, and Vei is the constant

collision frequency between ions and heutral particles.

In deriving the results given by Egs. (10.1) and (10.3),
the mutual interaction between the electrons and the ions were not taken
into account. Since the diffusion coefficient is inversely proportional
to the mass of the particles, the electrons diffuse faster than the
ions leaving an excess of positive charge behind them. This gives rise
to a space charge electric field in the same direction as the
diffusion of the particles, and which accelerates the diffusion of the
ions and slow down that of the electrons. The diffusion in which the
effect of the space charge electric field is not included is known as

free diffusion.

For most problems of plasma diffusion, however, the
space charge electric field canmmot be neglected. According to Maxwell

equation

VeE=p Je, = - (ni - ne) (10.5)

it is clear that an electric field is present whenever the electron

density differs from the ion density. To estimate the
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importance of the space charge electric field in diffusion problems,
we may use dimensional analysis and Tet L represent a characteristic
Tength over which the number density changes significantly. Thus, from

Eq. (10.5) we may write

E . 2Nt (10.6)

so that the electric force per unit mass, fE’ is of the order

2
fE - et - enlL (107)

m me
4]

The diffusion force per unit mass, fD’ obtained from Eq. (10.1), is

of the order

vn| = (10.8)

Therefore, the space charge electric field can be neglected only if

fE << fD’ or equivalently, if

L2 <« —2_ = 23 (10.9)
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where Ap is the Debye length. Since the Debye length is generally very
small (see Fig. 2 of Chapter 1), the condition L << Ap is rarely
satisfied and for most plasma diffusion problems we cannot neglect the
space charge electric field. In what follows we will reexamine,
therefore, the problem of plasma diffusion taking into account the
motion of both ions and electrons and including the space charge
electric field E. The combined diffusion of the electrons and the ions,
forced by the space charge E field, is known as ambipolar diffusion.
Since the electric field retards the electrons and accelerates the
ions, the two kinds of charged particles diffuse at a rate which is

intermediate in value to their free diffusion rates.

To investigate the characteristics of ambipolar
diffusion we assume that the disturbance for both electrons and ions
are small first order quantities, so that (for a = e, i)

Ny (ro t) =n_+ n& {r, t) (10.10)

o

with |né| << n., and that the mean velocities u, and y, are of very
small amplitude. We obtain, under these assumptions, the following

linearized mass conservation equations (o = e, 1)
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+n VU =0 (10.11)

The linearized momentum equations, assuming that the temperatures

are constant, and without a magnetic field, become {a = e, i)

(10.12)

where the space charge E field satisfies Maxwell equation (10.5). We
are assuming that the neutral mean velocity U is zero, and we are
neglecting electron-ion collisions, since the plasma is weakly

jonized. Taking the divergence of Eg. (10.12) and using Eq. (10.17),

we obtain,
an& q, N, kT an,,
- - (V- E) + v2n' - v, (10.13)
at2 m -7 m o % et
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If we replace v-E from Eq. (10.5), we obtain the following set of

coupled equations for the two variables né and n},

32n’ e? n kT sn'
€ = © (n, - n' )+ € v2n' - v € (10.4)
at? m. e 1 € m € ce 3t
e o e
a%n' e? n kT. an',
l=- O . - n' )+ ——Tg2nr, -y . ! (10.15)
@ 1 e 1 o8]
ot |‘n1 €0 m, at

These equations, however, are still too complicated for
a detailed analytical treatment and to go further we will make some
additional simplifying assumptions, Recall that, if Ve T 2> 1, that is,
if the average electron or ion has many collisions with neutral
particles during the characteristic time for diffusion <, the term
32 n' /3t2 (originated from the acceleration term in the momentum
equation) can be neglected. With this assumption we neglect the term in

the left-hand side of Eqs. (10.14) and (10.15).Combining these equations

we obtain

0=kT. ¥2n' + kT, 92n'. - m_v € _m, v, —1_ (10.16)

As a second approximation we will set n} =ng = n'in

Eq. (10.16) to obtain the following diffusion equation

on'

ot

0=k (Ty+ 1) v2n' - (my veg + M5 ves)

(10.17)
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which can be written in the form

an

- D, v2n' (10.18)

where

D, =k (Te + T}.)/(me Vea T \)C_i) (10.19)

is the ambipolar diffusion coefficient. Note that the coupling of the two
Eqs. (10.14) and (10.15) is a consequence of the electric field term,
and that the simplifying approximation n% =|1; was introduced only
after the two equations were combined into Eq. (10.16). This
approximation implies that the space charge electric field becomes a
negligible perturbation with the result that both ions and electrons
diffuse together. This situation is known as perfect ambipolar
diffusion, since the coupling between the two types of charged

particles is complete.

Instead of taking n} =Ngs 3 Tess restrictive

simplifying approximation would be to assume

n', =Cn' (10.20)

where C is a constant. Using this approximation in Eq. (10,16) we

obtain
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an'
= 2nt - e ;
0=k (Te + CTi) v ne (me Vee + CHH vci) " (10.21)
or
ar1g )
=D ven' (10.22)
3t a e

where the ambipolar diffusion coefficient is now given by

k (T +CT.)
D = € 1 (10.23)

+ LV,
(mg Yee ¢ m; vc1)

The space charge density is now

p=e(ny -ny) = ent (C-1) (10.24)

and the electric field can be obtained from Maxwell equation

v-E=ent (C-1)/c (10.25)

The effect of the electric field is to accelerate the diffusion of the
ions and toretard the diffusion of the electrons, as compared to their
individual free diffusion rates, so that, to a good approximation, both
species diffuse together. Whenever there is a significant

deviation from charge neutrality (C # 1), the
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electric field force becomes very strong as can be seen from the

following dimensional argument.

A comparison of the magnitude of the electric force

per unit mass, fE =q, E/mu, and the diffusion force per unit mass,

fy = - (kT /m n ) ¥n', which are of the order
_~ ol o 0 ~ 4O
Lez (n'. - n') Le2n' (C-1)
fr = 1 e’ . € (10.26)
mso ITIEO
kTn'
o - e (10.27)
D mn_ L
0
shows that
12
fe/fy = v (C-1) (10,28)
D

where Aip = (k'Feo,fno e2)1/2 is the Debye length. Since in most cases
L2 is much larger than A%, we see that if n' differs significantly
from n;, the etectric field force {which tends to equalize n} and n; )

becomes very strong.
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11. DIFFUSION IN A FULLY IONIZED PLASMA

Consider now the problem of diffusion in a fully ionized
plasma. For simplicity, we shall describe the plasma as a single
conducting fluid for which the equation of motion under steady state

conditions, in the presence of magnetic and pressure-gradient forces,

is
J x B = 9p (11.1)

where J denotes the total electric current density, B is the magnetic
induction, and p represents the total pressure of the conducting fluid.
Note that the electric force is zero since the plasma, as a whole, is
macroscopically neutral (pc = 0). This equation is complemented by the
generalized Ohm's law 1in the following simplified form,

J = o, (E + uxB) (11.2)

where % is the longitudinal electric  conductivity and u is the

total fluid velocity.

Taking the cross-product of Eq. {11.2) with B, yields

JxB=o0, (ExB - BZu,) (11.3)
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where u, is the component of uin a direction normal to the external

field B. Using (11.1) and rearranging, (11.3) gives

u, = - vp (11.4)

This result shows that the total fluid velocity across the magnetic
field 1is given by the E x B drift of the whole plasma plus a

diffusion velocity in the direction of - vp.

The flux associated with the diffusion velocity only,

is given by

o 2N U = - ————— VP (11.5)

where n denotes the electron (or total ion) number density. Considering

a two-fluid plasma (electrons and one type of ions), we have

P =P+ P

nk (T, +T,) (11.6)

so that Eq. (11.5) becomes, assuming the temperatures to be constant,

nk (T +T.)
r = - B R

g B2 -
)
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==-0, Vn (11.7)
The quantity
nk (T, +T.)
D, = € 1 (11.8)
c B?

o)

is known as the classical diffusion coefficient for a fully ionized

plasma.

This diffusion coefficient is proportional to 1/B2,
just as in the case of a weakly ionized plasma. Nevertheless, there
are some fundamental differences between D, as given by {11.8), and
the corresponding coefficient for a partially ionized plasma.
Initially note that in a fully ionized plasma D, is not constant,
but depends on the number density n. Further, since it can be shown
that a, is proportional to T 3/2 for a Maxwellian distribution of
velocities, D, decreases with increasing temperature in a fully
ionized plasma, while the opposite is true for a weakly ionized
piasma. Finally, the diffusion coefficient D, in (11.8) was derived
for the whole plasma as a conducting fluid and, since both ions and

electrons diffuse together, there is no ambipolar electric field.

In some experiments it has been observed a dependence of
D, on the magnetic field as B-!, rather than B2, and the decay of the
plasma was found to be exponential, rather than reciprocal with time.

Furthermore, the absolute value of D, was found to be much larger than
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that given in (11.8). This anomalously poor magnetic confinement was
first noted in laboratory by Bohm, in 1946, who obtained the

following semiempirical formula

Db = D = —— (11.9)

Since this diffusion coefficient does not depend on the density, the
decay of the plasma density is exponential with time. This type of

diffusion in plasmas is known as Bohm diffusion.
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PROBLEMS

10.1 - Consider a solid state plasma with the same number of electrons

(e} and holes (h). Using the linearized Langevin equation

{(with « = e, h)
B,
My ot =q, (E+u, xBg) - v, m u,

taking Ma = Mps Voo = Yeps assuming a time dependence for both
E and u, of the form exp (-1 wt}, and choosing a Cartesian
coordinate system with the z axis pointing along the constant

and uniform magnetic field @0, show that the conductivity dyad

is given by

where o, = v2 00/(v2 +w%),ob = ne2/ mv and v =v, -iw. Explain,

in physical terms, why o, = 0 in this case.

10.2 - Assume that the average velocities of the electrons and ions in
a completely ionized plasma, in the presence of constant and
uniform electric (E) and magnetic (@0) fields, satisfy,

respectively, the following equations of motion
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Bu
~p - _ _ ) -

M - = - e(E + Ug X go) Mg “(Ee Ei) (electrons)
agi

m, ” = e(E + us X EO) - my “(91 ~ ge) {ions)

(a) Determine expressions for the steady state DC conductivities
OH 201 >0
{b) For Ugs Us and E all proportional to exp (-1wt) and §0

constant, calculate the AC conductivity dyad for the plasma.

10.3 - Consider the equation J = ¢ « E, with g as given in Eq. (4.23).
If we choose a Cartesian coordinate sy;tem such that Ex =E,,
Ey =0, E =E,and B =B Z (refer to Fig. 2), verify that in
this coordinate system we have

Jy = oy E,
JZ = 0y E.

Interpret physically this result with reference to Fig. 2.

10.4 - What is the physical meaning of a complex conductivity, as given
in Egs. (5.8) and (5.9)? Consider, for example, that

E(r, t) = E (r) exp (-iwt), and calculate the real parts of
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E(r, t) and of J(r, t) = o » E(r, t). Interpret physically the

e

results considering the phase differences between J and E.

10.5 - Write expressions for the components of the dielectric dyad, e,

of a multi-constituent magnetized plasma.

10.6 - Consider the electrons in a plasma acted upon by a small,
constant and uniform external electric field E. Under steady
state conditions with no spatial gradients, obtain an expression
for the nonequilibrium distribution function f for the electrons,
by applying a perturbation technique to the Boltzmann equation
(take f = f_ + f, with [ fi] << f, and neglect all second order

terms) using the relaxation model for the collision term

(1) = ()
5t ©
coll

where v is a relaxation collision frequency and fo is the
equilibrium Maxwellian distribution function. Assuming that
v is independent of velocity, obtain an expression for the
electric conductivity % of the plasma, by taking J =0, E.

10.7 - Same as Problem 10.6, but including also a constant and uniform

magnetic field Eo'
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10.8 - Imagine a horizontally stratified ionosphere in the absence
of a magnetic field, constituted only of electrons (density n,
temperature T, charge -e, mass me) and one type of ions
(density n, temperature T, charge +e, mass mi), subjected to
thegravitational field (g), vertical pressure gradient (vp},
and the internal electric field (E) due to the charge
separation associated with ambipolar diffusion. Neglect the
gravitational force for the electrons and consider the system
in equilibrium. Using the collisionless equations of motion
for the electrons and the ions, show that the internal electric
field acts downward on the electrons with a force mig/2, and
upward on the ions with the same force. Consequently, the net

effect is the same as if both ions and electrons had mass mi/z.

10.9 - {a) In order to solve the diffusion equation

an(r,t)

- = D 92 n{r,t)
3t ~

by the method of separation of variables, let

n{r,t) = S(r) T(t)

and show that



-5 -
Tk(t) = (constant} exp{-D k2t)
(v2 + k2) S(r) = 0

where k2 is the separation constant.

(b) Assuming that S depends only on the x-coordinate show that
S{x) = c(k) exp{ikx)

where k can be either positive or negative, and that

nix,t) = J+w c(k) exp(ikx - D k2t) dk
oo
no(x) = [ c(k) exp(ikx) dk

where no(x) = n(x,0) 1is the known <inttial densitydistribution.

(¢) Using Fourier transform theory, show that

+oo
c(k) = — ny(x) exp(-ikx) dx
2m

and, consequently, that



(d) Taking as initial condition
n,(x) = exp (-x2/x2)

prove that

n(xot) = (—L 317 oy [ S )J

2
) + 4% XO ) + 4t

where T = xg/D is a characteristic time for diffusion to

smooth out the density n.

(e) Genmeralize the problem for the three-dimensional case in

Cartesian coordinates, when S = S(r).

10.10 - Consider the solution of the diffusion equation by separation
of variables in the linear geometry of the plasma slab
indicated in Fig. P 10.1. Show that the solution of the

equation

2
_d7S(X) 4 e S(x) = 0

dx?
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which satisfies the boundary condition S =0 at x = I, is

S(x) =E-| am coS [M]
L

and

S(x) = b sin(-T2)

X n(x,t) »
N\ 7
\
N 7
\ Z
E /
L o ‘L "
Fig. P10.1

Explain why the solution as a sine series is not a physically
acceptable solution for the diffusion problem. Consequentiy,
from n{x,t) = S(x} T{t), show that the number density can be

expressed as
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n{x,t) = % a_ exp {- D F;Elﬂillgjjzt} cos[ n(m+1/2)x ]
L L ’_

Therefore, the decay time constant for the mth mode is

m n(m+1/2) D

This result shows that the higher modes decay faster than the
Tower ones. How are the coefficients 3 determined in terms

of no(x)?

10.11 - Show that the solution of the diffusion equation in the case

of cylindrical geometry (see Fig. P 10.2),

d2s(r) , 1 ds{r)
dr2 r dr

+ k2 S(r) =0

is given in terms of Bessel's functions I (kr).

Explain how k must be determined in order that n(r,t)

satisfies the boundary condition n =0 atyr = Ro'
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PLASMA

Fig. P 10.2

10.12 - Verify that plane wave solutions to the diffusion equation

an(r,t)
~ = D v2 n(r,t)
at -

yields the following dispersion relation between k and w

k2D = ju

Then, show that for free electron diffusion we obtain

2 Y2 = i
k Vse 1mvce



10.13 -

- 56 -

1/2 1/2

where Vse = (kB Te/me) = (pe/pe) is the isothermal
speed of sound in the electron gas and kB is Boltzmann's
constant. Next, show that for ambipcilar diffusion we obtain

2 y2 = i
k Vsp - .lw \Jci

where

V2L Tpe + 0 (og * o) 1Y

Vsp = [kB (Tg + Ti)/mi]
is the isothermal plasma sound speed. Calculate the phase
velocity and the damping factor for these waves and verify

if they are longitudinal or transverse.

Consider a weakly ionized plasma immersed in a uniform
magnetostatic field 90 oriented along the z-axis of a

Cartesian coordinate system.

(a) Show that the diffusion equation for the electrons (with
D Ee/Dt = 0) in the presence of the space charge electric
field, E, is given by

Lg =~ 7 - (Dgned + mgpe - E
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where
( D ) 0 \
el eH
De = | Den D O
0 0 De-'J

with the following notation

2
N
_ ce
De; - ) , De
(Ve * vee)
v w
_ ce “ce
DeH - , R De
(Vee * vee!
k Te
Deu = De=m
evce
and where
e
g = - D
=€ kT, =€
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(b) Deduce the corresponding equation for the ions in the
presence of the space charge electric field E. Combine the
equations for the electrons and the ions to eliminate the
space charge electric field. Then, assuming that the electron

and ion fluxes are equal, Te = Tis and that their number

densities are also equal, n nss determine the ambipolar

e
diffusion coefficient, and notice that it is not affected by

the presence of the magnetostatic field.

Consider the following heat flow equation, derived in Problem
8.11, for a stationary electron gas immersed in a magnetic

field,

L}

1
n=
<]
—

by
(ke %, 0|
K= |k K o
00 K




where

2 2
(v + mce)

5kp

2m_ v
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