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CHAPTFP 17 

WAVES IN WARM PLASMAS 

1 INTRODUCTION 

In the previous chapter we have analyzed the wave 

propagation problem in a cold plasma. Now we want to extend the theory 

developed in the previous chapter to includê the pressure-gradient 

tem in the momentum equation. We shall consi4erthe cases of wave 

propagation in a warm electron gas (in which ion motion is ignored)and 

inafullyto.nizdwarm plasma (consideringon1y one lon species), in 

the absence as well as in the presence of an externally applied 

magnetic field. 

2. WAVES DL A FULLY IONIZED ISOTROPIC WARM PLASMA 

2.1 - Derivation aí the ecivations for the electron and ion velocities 

We consider now a fully ionized warm plasma having only 

one ion species, with no externally applied magnetic field (B 0  = O). 

To analyse the problem of wave propagation in this case we start by 

writing down the equations of conservation of mass and of momentum 

for the electrons and the ions, 
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a 	+ v.(n a  u)=O -a 
(2.1) 

Du 
m 	= q (E + u x B) - 
	1 	vp - m v 	(u -u ) 	(2.2) a Dt 	a - -a 	

a 

- a 	a 	-a 

where for the electrons a = e, 	= 1, and for the ions a = i, 	= e. 

These equations are complemented by the following adiabatic energy 

equation. for each species (a = e, i), 

p= constant 
a a 

(2.3) 

where -- = 1 + 21W is the adiabatic constant and N denotes the 

number of degrees of freedoni. Applying the v operator to (2.3) and 

using the ideal gas law p = n k   T, we can rewrite (2.3) in the 

form 

VPa  = y k B a 
T vii 

- 	 a 
(2.4) 

We restri ct ou r attenti àn to small-amplitude 

waves iii order to linearize the equations, and assume that 

n (r, t) = n + n u  exp (1r - icot) a  - 	O 	a 

a (r t) 
= a 

exp (r - iwt)  

« n 0 	(2.5) 

Ua cc 	 (2.6) 

E (r, t) = E exp (ik.r - iwt) 	 (2.7) 
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B (r, t) = B exp (ik.r - twt) 
	

(2.8) 

Lising these expressions in (2.1), and negiecting second order terms,we 

f i nd 

n 	k.0 

no 
	 (2.9) 

Similarly, we obtain for (2.2), after the substitution of vp from 

(2.4). and linearizing, 

q 
lwU 

= 	
" E-V2 

-a. 	- 	Sa 
a 

n i 

ik(_
a ) 	

( u -u) 
a 	--a 

n0  
(2.10) 

where V 
Sa 	

1/2 
= (ykT/m) 	is the adiabatic sound speed for the 

particles of type a. 

Substituting (2.9) into (2.10), and mui tiplying by lw, 

we obtain the following equation involving Um variables u.,  u and E, 

u = 1w q0c  E - V 2  k (k.0) - 1w v 	(u - u  -a 	
m 	- 	sa- ----a 	aS -a 	-5 

OL 

The relationship between the electric field, and the 

electron and ion velocities, can be obtained frorn Maxwell curi 

equations, with harmonic variations of E and B, accordingto (2.7) and 

(2.8), 



fl 

k x E 	wB 	 (2.12) 

ikxB=p0 J- 	E 	 (2.13) 

and the linearized expression for the plasma current density, 

3 = no 	q ti 	= no  e (i - 	
( 2.14) 

a 

Combining (2.12), (2.13) and (2.14) we find 

ien 
o 

-4 	 ez - 	
( 2.15) 

Qi E0  

	

ien 	(ti
-e tit = 	o  

	

WE 0 	(1 - k 2c 2 /w 2 ) 

where the subscripts ! and t indicate components longitudinal and 

transverse, respectively, with respect to the direction of the wave 

propagation vector k (see Fig.. 1 of Chapter 16). 

Substituting (2.15) and (2.16) into (2.11), and writing 

this equation for each type of particles (electrons and ions), we have 

the foliowing set af coupled equations for the longitudinal components 

of the electron and ion velocities, 
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et (w 2  - W2  - k 2  V 2  + lw V ) + u 	(w 2  - iw v) = O 	(2.17) pe 	se 	ei 	—iz 	pe 

k 2  V 2  + 1w Vie) = O 	(2.18)pi 	sieg, (w 	- iw v.) + u. j  (w2  - 2 - 

and.. for the transverse components, 

et 
[2 - 

	
+ 	

+ it [ 	
- i 	= o 

	

(1 - k2c2/w2) 	
eij 	(1 - k2c2/w2) 	

ei 

(2.19) 

t  L 	V. 
	+ it 

[2 - 
	
+ iw 

ie] = O (1 - k 2 c 2 /w2 ) (1 - k 2c/w2 ) 

(2.20) 

Note that the effect of the pressure gradient term 

appears only on the longitudinal cornponent oF the motion and, 

consequently, the transverse modes of propagation are the sSe ores 

as in the cold plasma model, but with the motion of the ions included. 

2.2 - Longitudinal waves 

In what foliows, in order to simplify the algebra, we 

shall neglect collisions ('U e i = Vie = O). In orderto have longitudinal 
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aves (u 	O; 	$ O), the determinant of the coefficients- in the 

system of mEqs. (2.17) and (2.18) niust vanish. This condition gives 

(2 - w2  -k 2  V2 ) (w2 - 	- k2 V) - 	W 2 , = O 	(2.21) 
pe 	se 	P 	 e  

Multiplying the ternis within parenthesis, this equation can be recast 

into the form 

k4 (V 2  V 2
i 
 ) + k 2  I 

r 	
i 

2 V 2  + 2i v 2  - 2 (V 2  + V 2 ) 
se s 	L pe s 	p 	se 	se 	si 

+ 2 (2 - 2 - 	= O 
	

(2.22) 

Note that in the special case of the cold plasma model , in which the 

pressure gradient tens are ignored (i. e., Vse =v 	 = O), (2.22)
si  

gives 0)2 = 0)2 + 2•,  which corresponds to the longitudinal plasma 

oscillations when the motion of both the electrons and the ions are 

taken into account. Eq. (2.22) has two roots for k 2 , so that 

there are two longitudinal modes of propagation. One of these is termed 

the longitudinal electron plasma wave and the other is the 

longitudinal ion plasma wave. These plasma modes are electrostatic 

in characten, and contain all the charge accuniulation and no magnetic 

field,whereas the transverse electro magnetic mode contains the entire 

magnetic field and has no charge accumulation. 
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Although it is not difficult to obtain the two exact 

solutions for k 2  froni (2.22), it is more convenient to analyze it for 

some special cases which emphasize the role played by the inclusion of 

ion motion and the pressure gradient terms. 

For this purpose, let us first rewrite (2.22) for the 

case when ion motion is not taken into accourit, which beconies 

- k 2  V 2  co2  + co2  (co2 - 
se 	

= O 	 (2.23) 

or 

= co2  + k 2  V 2 	 (2.24) 
pe 	se 

Now, V e  = y kBTe/me and. since for a plane wave the compression is 

one-dimenstonal, we ha.ve  y = 3, so that 

0) 2  = 0)2 + (
3 kB T/m) ka pe 	 e e  

(2.25) 

This equation is known as the Bohm-Gross dispersion relation for the 

longitudinal electron plasma wave. This rel.ation shows a reflection 

point (k = O) for 
w = 

0)pe• For very high frequencies (co » pe• the 

phase. velocity is w/k = Vse which represents an electron acousticwave. 

Next, let us include the motion of the ions but under 

the assumption that its temperature is such that V 5  = O. Then, (2.22) 

simplifies to 



n 

k 2  V 2  (w2  - w2 ) + w 2  (w2 - (1)2 - w1) = O 	 (2.26) 
se 	pi  

At very high frequencies (c1) » Wpe) we stili have w/k = Vse but now 

(2.26) shows a reflection point (k = O) at w = ( we + 

Finaily, let us analyze (2.22) in the limits af high 

and 10w frequencies. From the definitions of w 	 and V51 , we have
pe  

T. 
(2 2 	= 1  2 
pe si 

T 
se 

(2.27) 

Therefore, (2.22) can be rewritten as 

k4 V 2  V2  + k2 	V 2  (1+ 
se si  

II 
..L) - 2  (V 2  + V2.)j + 

T 	 se 

+ w2  (w2 - 	- w) = O 
	

(2.28) 

For high frequencies, such that w2 » W 2 pi  (1 +Ti/Te) 

(2.28) becorues 

j4 V2 j2. -k2 2  (V 2  + v2'l + 2 (w2 - °
e - 4 .j) = O 	(2.29) 

se si 	 se 	si' 

Further, considering Ve w 2  » V 	(w 	+ w), or equivalently 

wj (Ti/Te) (1 +ni/m), a condition whtch also s a t i s f i e s 



fl 

W
2 » W 2 (1 +T./T), we can add the term k 2  V 	+ 	to the pi  

left-hand side of (2.29) and rearrange this equation in the foliowing 

approxiniate form 

'k 2  V 2 i  - w2) (k2 V 	
- 	+ 0)2 + 2.) 	O 	 (2.30) 

s 	 e  

From this equation we see that., for high frequencies 

w 2  »( 1 + Ti/Te)] the dispersion relation for the longitudinal 

ion plasfna Wave is 

= k 2  V 2  si (2.31) 

while, for the electron plasma wave, the dispersion relation is 

k 2  v 2  2 	0) 2 	+ 	
se (2.32) 

Next, for low frequencies, such that w 2 « W 2 pi  (1 +h/Te) 

(2.28) beconies 

T. 
k4 V 2  V 2  + k 2  V2 	2• (1+ 	1 	2 2 = o 	 (2.33) se si 	se pi 	

T 	
pe 

e   

Multiplying this equation by 	 k), assuniing k / O, it can be 
pe 

rewritten as 

W2p
iT.  

0)2 v 2 	(1+ 	' 	) V2V2 W2  - 	 =O(2.34) 
1< 	k 	se 	2 	 T 	se si 

pe 	e 	 0)pe 
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5ince we are considering low frequencies, w 2  c< W 2  pi  (1 +Tj/Te)  and as 

long as (w/k) is not much larger than V 5 , the last term. in the left 

hand side of (2.34): can be neglected as compared to the second one. 

Therefore, (2.34) gives, for low frequencies, 

T. 
(JL.)2 = v2 P' 

 
k 

se 2 
Te  Wp e  

(2.35) 

lising the relation (2.27), this equation can be rewritten in the form 

= k 2  V 2 	 (2.36) 
sp 

where 

=y kB (T + T i )/m i 	 (2.37) 

which is known as the plasma sound speed. It can be verified that the 

other root of (2.33) gives an evanescent wave. at very low frequencies. 

A piot of phase velocity versus frequency for the 

longitudinal waves is shown in Fig. 1. The longitudinal waves.. with 

phase velocities equal to V 	 or V 5 . at high frequencies represent,se  

respectively, acoustic oscillations due to the electrons and due to 

the ions. The low frequency wave travelling at the plasma sound speed, 

represents an acoustic osciliation of both the electrons and the 

ions. This low frequency wave is known as the ion••acoustic wave. 
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TRANS VER SE 
ELECTR0MAGNETIC 
WAVE 

ci— --------- 

LONGITUDINAL 
ELECTRON PLASMA 

/ NAVE 
Vse 

Vsp 

zm 	 ( C$ ~ Q)2 . )112 

Fig. 1 - Phase velocity, as a function of frequency for waves 

in a fully ionized. isotropic (B0 = 0) warm plasma. 

(The curves for the longitudinal waves also hold for 

propagation in the direction of 	when B o 0 O). 

2.3 - Transverse wave 

For the existence of a transverse moda of propagation 

!et 	
0; u 

it 	0) the deterniinant of the coefficients in the system 

of Eqs. (2.19) and (2.20) must vanish. Neglecting coilisions 

( Vei = vie = O), we find 

LONGITUDINAL 
ION PLASMA 

,/ NAVE 
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CO 	 w 2 . 	 CO2 	CO 2  
(w2_ 	 ) (w2_ 	P1 	 pe 	p1 	

=0 	(2.38) 
1-k 2 c 2 /w 2 	1-k2 c 2 /o 2 	(l-k 2 c 2 /oa 2 ) 2  

which siniplifies to 

k2  c2 =W
2- 

 ( W 2 + w)
pi 
	 (2.39) 

This equation is similár to the dispersion relation (16.4.12) for the 

propagation of transverse waves in a cold isotropic plasma, except that 

the reflection point is now ( W  +2+w2)1/2 as a consequence of the 

inclusion of ion niotion. A lot of phase velocity as a fõnction of 

frequency for the dispersion relation (2.39) is also shown in Fig. 1 A 

dispersion plot in terns ofw as a function of k is displayed in Fig. 2 

for the three modes of propagation. 

In summary there are three modes of wave propagation 

in a warni fully ionized isotropic plasma (as compareci to only one mode 

in the case of a cold isotropic plasma). They are the trcozsverse 

eleútromcrgnétic»rnode(also present in the case of a cold plasma), the 

longitudinalelectron-plasma mode and the longitudinal íon plasma 

mode. 
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TRANS VERSE 
ELECTROMAGNETIC 
WAVE 

LONGITUDINAL 
ELECTRON PLASMA 
WA V E 

(4e 4 I/2 

/ 	 cotvsek 
7 

/ 

/ 
/

CO=Vsp LONGITUDINAL 
IÜNPLASMA 

—WAVE 

Fig. 2 - Dispersion relation for the three modesofwave propagation in 

a warni isotropic fully ionized plasma. 

3: BASIC EQUATIONS FOR WAVES IN A WARM MAGNETOPLASMA 

The basic equations for the study of wave propagation 

in a warrn fully ionized magnetoplasma are (2.1), (2.2) and (2.3). 

Proceeding in the sarne manner as in the previous section, but now 

considering an externally applied uniform niagnetostatic field, B, we 

obtain, in place of (2.11), 
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u = 1w 	(E + u x B ) + V 2  k (k•u ) - lw v 	(ii -
a 	 a 	

u ) 	(3.1) 
Sa 	- -a 	a -a - - 	 - - 	O 

m 
a 

This equation is conipleniented by (2.15) and (2.16) or, equivalently, by 

k 	(kxE) +w 
 2 E=- iwen0 	

(3.2) 
C2 - 	c 2  

o 

If we choose a Cartesian coordinate system, such that 

the z-axis is alony B 0  and k is in the x-zplãne (Fig. 3), we have 

Fig. 3 - Cartesian coordinate system chosen with 

along the z-axis and k in the x-z plane. 
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(3.3) 

k = 1<,, + k,= k sin e 2 + k cos e 2 
	

(3.4) 

and consequently. (3.1) and (3.2) become, respectively, [see 

Eqs. (16.5.10) and (16.5.5)J 

q 
u - 1w B (ii -  u 	) - V 2  k2(sin e a 	+ cos e a 

m
)- -a 

	

O a)'- 	aX- 	Sa 	 aX 	 az 
a 

'(sin o 	+cos e ) + iw v 	(u - u8 ) = iw 

and 

1 en -° 	
!e 	 (3.6) 

o 

where the components of the dyad a, which represents the operator 

	

[(C2/w2) 1< x.(kx...)+ (...) , can be arranged i 	matrix form fl 

- k2c2 COS2 e 	o 	k2c2 	e cos e  sin 
W 2 

k 2 c 2  a = 	O 	 1 - 	 O 	(3.7) 
= 

k2c2 si 	 k2c2 

	

n o cos e 	O 	1 - 	sin 2  e 
W 2 	 W2 
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With this matrix definition of a, the dat product in Eq. (3.6) can 

be thought of as a matrix product between a and the vector column 

E. Taking the inverse of the matrix associated with a (assurning a 

non-vanishing deterniinant of its elenients) and multipi5'ing(3.6) by 

( a  ), we obtain 

ieri 
O 	

(a) 	(y1 	 (3.8) 

06 o 	- 

since ( a 	a = 1, where 1 is tEm unit dyad. 

Eq. (3.8) can be used to replace E in Eq. (3.5). For 

the electrons we take a = e and s = 1 in Eq. (3.5), whereas for the 

lons a = i and 	= e. We obtain, therefore, a system of six equations 

with the six unknownsu,.(with j = x, y, z, and a = e, 1). The 

requirenient that the determinant of its coefficients be equal to zero 

gives the dispersion relation. 

4. WAVES IN A WARM ELECTRON GAS IN A MAGNETIC FIELO 

In view of the complexity of the algebra involved, we 

shall initially consider the simple case of a gas of electrons 
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ininiersed in an externally applied niagnetic field, neylecting for the 

moment the macroscopic niotion of the ions (u i = O). 

4.1 - Derivation of the dispersion relation 

Froni Eq. (3.5) we obtain for the electrons (taking 

= O) 

V 2  k 

ce (Uey 	ex 2) - 	se 	(sin 9 U ex +COS 8Ue )(sin O 	+ 

+ cos e ) + 	
e 	U pe

= 	
( 4.1) 

e 	 e  

Using the notation 

(16.5.16), Eq. (4. 

v2 k 2  
se 

UUe+(- 
	

2 (J  

introduced in Eqs. (16.5.14), (16.5.15) and 

) can be rewritten in the form 

V2 k2
se 

Sifl2 OUex 	YUey - 
	: 2 	

si  ecos OUez) 



n 

V 2  k2 	 V 2  k2  
se 	 se 	 -. - 1 Y u 	' + (- 	sinecoseu 	- 	 COS 2  OU) z = 

ex
W2 	

ex 	
W2 	

ez 

= X 
	

(4.2) 

Deflning a dyad b through the matrix 

i  
V 2  k2  

(U - 	se 	sin 2  e) 
ti) 2  

V 2  k 
- 	se 

si  e cos e 

b = 	-iv 
	

u 
	

19 

63 
V 2  k 

- 	se 
sul ecos e 

V 2  k 
(U - 	se 	cos 2  e 

(4:3) 

equation (4.2) beconies 

- X (a)1 	
e = 
	

(4.4) 

This equation is of the form c u
e 
 = O, with o 	b - X (a) - '. A 

nontrivial solution exists 	oniy if the deterniinant of the matrix E 
vanishes. Therefore, in order to have nontrivial solutions 

(Ue  / O 

we must have 

det [b - X (a)-' J = 0 	 (4.5) 
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-This condition gives the dispersion relation for wave propagation in a 

warm electron gas irnniersed in a magnetic field. 

In order to simplify matters, in the two foliowing 

subsections we examine the dispersion relation (4.5) for the special 

cases of propagation paraliel and perpendicular to the niagnetic field. 

4.2 - Wave propagation along the niagnetic field 

For the case of propagation alcxng the magnetic field 

(k HB0 ) we have k = k i and e = 0, so that (3.7) and (4.3) simplify 

to 

a = 

(1 - k2c2/w2) 	 o 	 o 

O 	 (1 - 	 O (4.6) 

1 

U 	 i 	 O 

= 	-jy 	 u 	 O 

O 	 O 	(li - V2  k2 /w2 ) 
se 

(4.7) 
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Therefore, the determinant (4.5) becomes 

x 	
i 	 o 

1 

-i .Y 	 u- 	 o 
	

nu 
1- k2c2 /w 2  

V2 	k 
0 	 o U se -x 

W 9 

(4.8) 

Which gives the foliowing dispersion relations for transverse waves 

(U ex  ~ O; U ey  / O), 

	

U - 

	

x 	± Y 	 (4.9) 
1 - k 2c 2 /w 2  

and for a longitudinal wave (Uez / 

V 2  k2  

	

- 	 se 	
- 	 =0 	 (4.10) 

()2 
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Note that i  thts case thez component of Eq. (4.4) is uncoupled froru the 

x and y components, so that the longitudinal mode is independent 

of the transverse modes. 

Eq. (4.9) yields the following expressions 

corresponding, respectively, to the "plus" and "minus" signs, 

	

k2c 	= 	X 

	

()2 	 u - v 

k 2c 2 	= 	x 	 (4.12) 

	

W2 	 u+Y 

These dispersion relations correspond, respectively, to the right and 

leftci'cular.lypolarized zzves (RCP and LU) obtained in section 6, 

of Chapter 16 Lsee Eqs. (16.6.6) and (16.6.8)], for transvcrse waves 

in a cold plasma. 

For the longitudinal wave, substituting U = 1 + iv
e 
 /w 

and X = w2 e 	
2 in (4.10), the dispersion relation becomes 
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w 2 +iv ww2  +k2  V2  e pe 	se 
(4.13) 

Hence, as compared to the cold plasma model, instead of the 

longitudinal osciliation at w 	 (present iii the cold plasma) there is.
pe 

in this case, an additional mode of propagation, known as the electron 

plasma 	wave. Neglecting collisions (Ve = O), (4.13) becomes the same 

dispersion relation as obtained in section 2 [ Eq. (2.24) 	. for waves 

in an isotropic warm plasma. Hence, for propagation along the magnetic 

field, the longitudinal electron plasma wave is not affected by the 

presence of the magnetic field. 

In summary, thére are three modes of propagation in a 

warm electron gas for k paraliel to the magnetic field: the transverse 

RCP and LCP waves, and the longitudinal electron plasma wave. The 

addition of the pressure gradient term, in the equation oF motion for 

the electrons, has no effect on the transverse waves. A plot of phase 

velocity versus frequency for these three modes is displayed in 

Fig. 4. The corresporiding to(k) dispersion plot is shown in Fig. 5 

a 
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LMt 

Fig.4 - Phase velocity, as a function of frequency, for waves 

propagating in the direction of B in a warm electron 

gas. 
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E 
o 

o 

wtVsek 

Lã 
Fig. 5 - Dispersion piot for waves propagating paraliel to B 	in 

a warni electron gas. 
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4.3 - Wave propagation normal to the magnetic field 

For the case of propagation acrosa the magnetic field 

	

(k j B0 ) we have k = k 	and o = 900 , so that (3.7) and (4.3) 

simplify to 

1 	 0 	 O 

0 	(1 -k 2 c 2/w 2 ) 	 O 
	

(4.11) 

O 	 O 	 (1 -k 2 c 2 /w 2 ) 

	

(U_Ve k2 /w 2 ) 	i 	 O 

-iv 	 u 	o 	 (4.15) 

o 	 o 	u 

From these expressions it is clear that the z component 

of (4.4) is uncoupled from the x 	and y 	components. Thus, in order 
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to have a transverse wave oscillating along the z-axis (U ez  ~ O), we 

nust have from the zconiponerit of (4.4), 

=0 	 (4.16) 
(1 -k 2 c 2 /w 2 ) 

Ii 

k2c2 	 (4.17) 
u 

which is the familiar dispersion relation for the transverse ordinary 

wave (the electric field of the wave osciliates in the sarne direction 

as B0 ) found in section 7, of Chapter 16 Lsee Eq. (16.7.4)1. 

From (4.4), (4.14) and (4.15) it is clear that the 

equations for Uex  and Uey  are coupled. Therefore, in order to have 

nontrivial solutions (longitudinal wave for Uex  g O and transverse 

wave for Uey 	0) we must require the determinant forrned with the 

coeffdcients of the x 	and y 	components of (4.4) to vanish, that 

is, 
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U-V2  k/w2 -X 	 i  
se 

	

= O 	(4.18) 

 -iv 	 u - X/(1-k 2 c 2 /w 2 ) 

This determinarit gives, neglecting coilisions 	= O; U = 1), 

(2 - V 2  k -2  ) (2 - 
	pe 	)._ 2 0)2 - Q 	(4.19) 

se 	pe 	
1 - k2c2/w2 	

ce - 

Expanding this expressiori, and rearranging, we get 

k (c 2  V2 ) 	k2 	V2 (2 - w2 ) + c2 (2 - 	- 	) J + ( 2 - 2 )2 - 
se 	L se 	pe 	 pe 	ce 	 pe 

- 2 4e = 
	

(4.20) 

This dispersion relation is quadratic in k 2 , so that there will be two 

values of k 2  as a function of w, that is, two modes of propagation. 

Since, generaily. we have V 	 « o, the first temi within brackets. in
se 

the left-hand side of (4.20), can be neglected as compared to the other. 

With this approximation, (4.20) becomes, 

k 4  (c 2  V2 ) - k2c2 (2 - 0)2 
 pe  - °e 	+ 	

- 2 	= O (4.21)
ce  se 



E 

Although it is not difficult to obtain the exact 

solution of this equation, it is more instructive to analyze it for 

some special liniiting cases. First, let us obtain the approxiniatê 

solution of (4.21) in the region where w 1  » k2 V2 e that is, when the 

temi k4c2 Ve  is niuch smaller than any of the others. For k 2  positive 

this condition implies in phase velocities much larger than Vse  and, 

for this reason, it will be referred to as the high phase velocity 

limit. With this condition, (4.21) reduces to 

- k 2 c 2  (w2 - 
pe 

- w2 ) + (2 - °
pe 	

- (02 	= O 	(4.22)ce  ce 

or 

( w 2  + W 	+2) (w2 - 	
- 	

; (w 	> k V 2  ) k 2c 2   
se 

(w 2  - (0 2  

(4.23) 

This equation is exactly the sarne dispersion relation 	found in 

section 7,of Chapter 16 [Eq. (16.7.7) ], for the transverse 

extraordinary wave in a cold plasma, except that now the condition 

k2 Ve  rnust be satisfied for (4.23) to be applicable. 

Next, let us obtain the approxiniate soiution of (4.21) 

in the region where W2 « k 2 c 2 . For k 2  positive this condition 

implies in phase velocities much smaller than the velocity of light 

and, for this reason, it will be referred to as the low phase velocity 

limit. Thus, for W2 « k 2 c 2 , (4.21) reduces to 



k (C2 V2 ) - k 2 c 2  (tu2 - 	- tu 2 ) = 0 	 (4.24) 
se ce 

or 

w  = tu 2  + W2  + k2  V 2 	 (tu 2  «k 2 c 2 ) 	 ( 4.25) 
pe 	ce 	se 

When B = O (i. e.,wce = O) this equation becomes identical to the 

dispersion relation for the longitudinal electron plasma wave 

see Eq. (2.24) J . It is a valid solution for (4.21) only under the 

condition tu 2  cc k 2c 2 . 

Fig. 6 displays the phase velocity, as a function of 

frequency for the transverse ordinary mode [ Eq. (4.17) ] and for 

the two modes described by Eq. (4.20). Note that, of these last two 

modes, one is a purely transverse extraordinary wave, while the other 

is partially transverse (electromagnetic extraordinary wave in the 

high phase velocity linhit) and partially longitudinal (electron 

plasma. ixzve in the low phase velocity limit). In this last mode, the 

transition from a basically transverse electromagnetic wave to a 

basically longitudinal electron plasma wave. occurs in the frequency 

region where the phase velocity lies between c and Vse•  The 

corresponding w(k) dispersion plot is shown in Fig. 7. 

4.4 - Wave propaqation in an arbitrary direction 

For propagation in an arbitrary direction with 

respect to the magnetic field, the dispersion relation is obtained 
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frorn Eq.: (4.5) with the dyads a and b as given by Eqs. (3.7) and 

(4.3). For an arbitrary angle between 00  and 900,  we expect the 

phase velocity versus frequency curves to lie between those of 

Figs. 4 and 6. Therefore, instead of getting involved inthecumbersome 

algebra behind (4.5), we present only the dispersion curves of 

x o. x 	 --a 

ph 

- 	 1 

[ii 

ELECTRON 

	

Vse  -- - --- -
-r 

	
PLASMA 

1 	001 0pe 002 

Fig. 6 - Phase velocity as a function of frequency for waves 

propagating perpendicular to B o in a warni electron 

gas. 
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7 - Dispersion plot for waves propagatirig perpendicular 

to B 	in a warm electron gas. 

Fig. 8, in which the shaded area iliustrates how the transition 

occurs froni e 
= 0 

to e = 900 . It can be easily verified that the only 

resonance which exists for an arbitrary ang1e is at the frequency 

= Wce cos e. The reflection points, for any angle of propagation 

occur at the frequencies tü01 	and w02.pe 

w 02 

copo 

Fig 
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X LCP O 	X ROP 

O 	Coce 	401 COpe Co02 	 <0 

Fig. 8 - Phase velocity versus frequency for wave 

propagation in a warm electron gas immersed in a 

magnetic field. 

S. WAVES IN A FULLY IONIZEO WARM MAGNETOPLASMA 

We consider now the propagation of plane waves in a 

fully ionized warm plasma having only one ion species, imniersed in an 

externally applied. uniform magnetostatic field. 
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5.1 - Derivation of the dispersion relation 

The equation of motion, for the electrons is, from 

(3.5), 

u + iww 	(u -  u 	) - 

	

-e 	ce 	ey- 	ex- 

- V2 k 2  (sin O U 	+ cos o u ) (sin e i + cos o E) + se ez 

	

+ 1w Vi 	- 	= - iw 	 (5.1) 

and. for the ions, 

W2 u - lwwc j (u 	- u1 2) - 

- V 2  k 2  (sin o u. + cos o u. ) (sin e 	+ cos e 	+ si 	lx 	1Z 

	

+ IW VI 	- ie) = 1w 	
e 	E 	 (5.2) 
m i  

Eqs. (5.1) and (5.2), involving the variables u 	u 	and E, are 
complemented by (3.6), 

le n 

= 	WE 	ei 	
(5.3) 

o 

where the dyad a is defined according to (3.7). 
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Eqs. (5.1) and (5.2) can be written, respectively, in 

compact forru, as 

" = - 	urm 	- 	
ei 	

e - 	 (5 .4) 

and 

bi '!=1 	-i 	
Vie 	

(5.5) 

where the dyads be  and b 1  are apropriate1y defined by 

V 2 	k2  V 2 	k2  
(1 - 	se O) i y sin e cos e 

( 2 

= ze 1e 1 

V 2 	k2  V 2 	k2  - 	se 	e cos e O (1 - 	se 	COS 2  O) 
W 2 

W 2 j 

(5.6) 

V 2 	k2  
(1- 	sin2  O) -iY - 	sin ecos e 

W
2 

W
2 

b. i 	. 1 o =1 1 

V 	k2 V2 	k si  - 
sinecose O (1- 	S 	•cos2e) 

W 2 
W
2 

(5.7) 
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where Ye= wce 
	

and Y = wd/w. Multiplying Eqs. (5.4) and (5.5), 

respectively, by the inverse matrices corresponding to b and b 1 , we 

g et 

= - 	
w 	 - i 	

ei 	
(be ) l 	(u 0  - u j ) 	(5.8) 

=i 	:, 	(j)-'•g + 	i 	( b)' • 
	- y 1 ) 	(5.9) 

Subtracting (5.9) froni (5.8), and rearranging, yields 

[1+1 v:i 	e' 	
"ie 	

i']eiF[ M
e  

+ : ( i )-'] . 	
o =  (5.10) 

Combining (5.10) and (5.3) to eliminate the variable (ii - 

results in the foliowing equation involving only the electric field 

vector 

[i + i 
Vi 	

+ i " ie (b)-1].(a.E) 	
[_: 	- 

- 	
(b) -1  IE = o 	 (5.11) 

or 
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[i + 	
e1 

+ 	

V• 	

(bi)-'l 	
a - X 	- 

	

- x i  ( i) - '}.E = o 
	

(5.12) 

where X =We/W2  and X. = pi 

As before, the dispersion relation is obtained by 

setting the deterrninant of the 3 x 3 matrix in (5.12) equal to zero, 

that is, 

V 	 V 

det 	
[ 	

+ i 	 + 	
()-'] S 	

- 
Xe (b)1

w 	=e 

- x i  ()' 	= o 
	

(5.13) 

If collisions are neglected (v. 
= Vie = O), (5.13) simplifies to 

det [a - X 	e e 	' 

	

- x 	(b.) -1 = O 	 (5.14) 

In the foliowing subsections, in order to simplify the algebra 

involved, we shall neglect coilisions and analyze the problem using 

Eq. (5.14). 
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5.2 - Wave propagation along the magnetic field 

For e=O° (k 	B0 ) we hae from (3.7), (5.6) and (5.7), 

respectively, 

(1 - k 2 c 2 /w 2 ) 	 O 	 O 

a = 	O 	 (1 - k 2c 2 /w 2 ) 	O 

O 	 O 	 1 

1 	 i 	 O 

e 	e 1 	 O 

O 	 O 	(1 - V 2  k 2 /w 2 ) se 

1 	 -jyl 	 O 

i= 	iyi 	 1 	 O 

1 	O 	 O 	(1-V. k 2 /w 2 ) 

(5.15) 

(5.16) 

(5.17) 

The inverse of the matrices (5.16) and (5.17) are, respectively, 



1 
	 - 

(1-Y 
	

(1 -Y) 

= 

(1 -Y) 
	

- ( 	- Y) 

	 o 	(5.18) 

(1 -V2  k2/w2) 
se 

(b)'= zi  

1 

(1 -Y) 

- i Y i  

(1 -Y) 

i Y. 
1 

(1-Y) 

1 

(1-Y) 
[J (5.19) 

I  
(1 -V 2  k2 /w 2 ) 
' 	si  

Substituting the inatrices (5.15), (5.18) and (5.19), into (5.12), and 

setting v ei = Vie = O, we obtain 
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A 1 	A2 	O) 	ÍE ' xl 

	

-A2 	A1 	O 	E 
y 	

= O 	 (5.20) 
l 

	

0 	O 	Aj 'E 1 	z  

where 

k2 C 2  Xe  
A1 	_______ 	 (5.20a) 

(1 -Y?) 	(1 -Y 2 ) i)  

A2 
iX1Y 	+ lXeYe 	

(5.20b) ________ 
(1-??) 	(1 -V) 

1 

	

x. 	 x 

	

1 	 - 	e 	 (5.20c) 
(1 -V 2  k2 /w2 ) 	'l -V2 k 2  /w2 ) si 	 se 

It is clear from this matrix equation that the 

longitudinal component of the electric field (E»  is uncoupled from the 

tranaverse components (E x and E».  Therefore, for longitudinal waves to 

exist (Ez  $ 0), the coefficient of E  	in (5.20) must be equal to 

zero, which gives the following dispersion relation for longitudinal 

Waves, 

X. 	 X 
1  - 	 1 	 - 	 e 	O 	 (5.21) 

	

(1- V.k 2 /w2 ) 	(1 _Vek2/w2) 



This dispersion relation can be rearrariged in the foliowing forni 

k (V2  V2 .) + k 2 	w2  V2  +,W 2  V2  - 	+ V 2 )J + 
se si 	- pe si 	pi se 	se 	si j 

+ w 2  (o? - o? 	= O 
	

(5.22) 

which is identical to Eq. (2.22). Therefore, since it is a quadratic 

equation in k 2 , therearein general to longitudinal modes of 

propagation. Note that these two longitudinal modes, propagating 

along B 0 , are not affected by the niagnetic field strength. This 

dispersion reiation has aiready been analyzed iri section 2, where it 

was shown that the two longitudinal modes are the electron plasma 

wave and the ion plasma azve. 

The dispersion rei ation for transverse waves (E x 1 O; 

E 	O) are seen, from (5.20), to bêgiven by 

L i-k2c2 	- 	X 	- 	X 	12 1 -  X. '1. 	X e  Y  e  
_12=o 

2 (1 -Y) 	(1 -Y 2 ) 	-( 1 -Y) 	(1 
e 

(5.23) 

'Using the notation 
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ELECTRON PLASMA 

vse 
VA 	 01 

(i4V/c2t'ZVsp 	
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(a40  4- c4j)I/2  

Fig. 9 - Rhase velocity as a function of frequency for plane waves 

travelling along the magnetic field in a warm fully 

ionized magnetoplasma. 
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s=i - 	
xi 	- 	Xe 	

(5.24) 

	

(1 - Y) 	(1 - '( 2) 
e 

X.Y 1 	XY 
D = 	

- 	
(5.25) 

(1 -Y•(1 -Y) 

and letting 

R = S + D 	 (5.26) 

L=S - D 	 (5.27) 

then (5.23) becomes 

k2c2

- 
R)  (_

k2c2 - L) = O 	 (5.28) 
W

2 	 W 2 ______ 

There are, therefore, tW0 tranaverse modes that propagate along the 

magnetic field with dispersion relations given by 

k2c2 	= R 	 (5.29) 
W2 	R 

and 

k2 c 2  = L 	 (5.30) 
W2 L 

From the x-component of (5.20) we have 
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E 	= (S-k 2 c 2 /w 2 ) 
(5.31) 

E 	 i  x 

so that, using (5.29), we obtain 

E 
y 	= 	 (5.32) 

Ex R 

whereas, using (5.30), 

(5.33) 
EL 
x 

Therefore, the dispersion relation (k 2 c 2 /w2 ) = R corresponds to a right-

hand circularly polari2ed wave, and (k2c2/w2)L = L to a lcft-hand 

circularly polarized wave. 

The phase -,veloctty. as a, fuhction o:ffrequency. 

flor propagatton a1-ong B o is shown iii Fig. 9. Pie reflection 

poitts at w'01 and ?02  are not exactly the -sarne ones given by 

equations (16.6.13) and (16.6.14), but are slightly different as a 

result of the inclusion of ion motion. Also, because ion motion has 

been taken into account, besides the resonance at w = ce for the RCP 

wave, there is also a resonance at w = w
i 
 for the LCP wave. 



In the very low-frequency lirnit, the phase velocities of 

the ROP and LCP waves tend to VA/(l +V/c 2 )1/2, instead of going to 

zero as in the case of the cold plasma model. This result can be seen 

as foliows. For very low frequency waves such that 

W « Wj 	 (5.34) 

we obtain, using (5.24) and (5.25), 

R = L = 1 	+ 
pe 

ti)ci 	wce 
 

(w cc wcj) 
	

(5,35) 

Therefore, using the definitions of wpe °ci and 	the dispersion
ce  

relation for the RCP and LCP waves becomes 	 - 

k 2 c2 + 	0 
n m. 

1 =1 
ti) 2 	 E 0 B 

(5.36) 

lhe average rnass derFsi;t$c is p = no 	+ m1) 	n0 mand  since 

CO  =l/(p c 2 ),(5.36) can be rewritten as 

k2c2 	+ c
2  p0  p 

W
2 	 B2 

=1 

a 

(5.37) 

or 



- 45 - 

k2c2 
=1 

2 
A 

(5.38) 

where= (Bg/ 	)1/2 is the Alfvn velocity, defined in (15.1.4). 

Thus, from (5.38), in the very low-frequericy limit the phase velocity 

of both transverse waves is given by 

o) 	 ____ 
V ph  

k 	(1 +V/c 2 )
_____
'/ 2  

(5.39) 

Note that, for plasmas in which V2 cc c 2  (weak B0  field or high 

density), (5.39) reduces to V ph = 	This very low-frequency liniit 

corresponds to the A1fvn wave discussed in Chapter 15. 

5.3 - Wave propagation normal to the magnetic field 

Consideringnow k 1 B O I weset e = 900 in Eqs. (3.7), 

(5.6) ànd(5;7) 1  to.obtain, 

1 	 o 	 o 

= 	O 	(1 - k 2 c 2 /w2 ) 	o 	 (5.40) 

O 	 O 	 (1 - k2c2/w2) 



alt 

= 

(1-V 2 k 2 /w2 ) 	1V 	 O 
se 

	

1 	 O 

O 	 O 	 1 

(5.41) 

= 
zi 

- 	 O 

	

si 	 1 

	

iY. 	 1 	 O 

O 	 O 

(5.42) 

Taking the inverse of the matrices in 	(5.41) and 	(5.42), we obtain for 

(5.12)(neglecting coilisions), 

11 	
- i D 1  O E 	) 

1 	D 1 	(S I 	- k 2 C 2 /w2 ) O E = O 	(5.43) 

O O 	 (P-k 2 c 2 /w 2 ) Ez 

where 

	

X. (1 - k2V2 
s  .i

/w 2 ) 	X (1 - k 2 V 2  / e 	se w2) 
= 1 - _________________ 	- 	 (5.44) 

(1 - 	- k 2 V 2 ./w 2 ) 	( 1 - V - k2V2/w2)se 
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X. 	 X 
s II =1 

- 	 1 	 - 	 ( 5.45) 
(1 - 	- k2 V 2 /w2 ) 	( 1 - V 2  - kV2 /w2) 

	

1 	si e 	se 

	

X 1  Y. 	 XY 
(5.46) 

	

= (1 -Y - k 2 V 1 /w 2 ) - ( 1 	e - Y 2  - k2 V 2  /w 

P = 1 - X. - X e  

Froni (5.43) it it clear that E z is uncoupled from the 

electric field cornponents E x and E 	so that the ordinary rnode (the 

	

tranaverse mode, which has 	O and is not affected by the presence 

of the magnetostatic field) has the dispersion relation 

k2c2/2 = p 	 ( 5.48) 

or 

k 2 c 2  = 	1e + w) 	 (5.49) 

which is the sarne expression obtained in (2.39). 

The modes involving the field cornponents E x and E  

(longitudinal for E  / 0, and transverse for E 0 0) are seen, froni 

(5.43), to be coupled, and have the foliowing dispersion relation 

II 	
- k 2 c 2 /w2 ) - 	= O 	 (5.50) 



E 

Substituting the expressions for S 1 , S 11  and D into (5.50), results 

in a cubic equation in k 2 , showingthatin general there are three 

modes af propagation. A detailed analysis of this dispersion relation 

shows that these three modes of propagation are the partially 

trcmsverse extraordinary wave, the longitudinal electron plasma 

wave and the longitudinal íon plasma wave. 

Fig. 10 shows the phase velocity as a function of 

frequency for the four modes of propagation in a direction normal to 

the rnagnetic field. The basic points to be noted in this plot are: 

(1) the presence of the reflection points at 	+ 	1)1(2,  w'01 and 

w'02; (2) the transitiori from a basically longitudinal (electron 

plasma) wave to a basically transverse electromagnetic 

(extraordinary) wave, in the frequency region where the phase 

velocity lies between Vse  and c; and (3) in the very low-frequency 

liniit the phase velocity of the ion-acoustic wave tends to 

+ V2 ) 1(1 + v/c 2 )1Í/ 2  
- A 	sp 

5.4 - Wave propagation in an arbitrary direction 

For arbitrary directions of propagation the dispersion 

relation is given by (5.14). Since a detailed analysis of this 

dispersioiï relation is a rather hon-instrúctive and 

tedious affa ir, we shall content 	ou rsel ves by merely 
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Fig. 10 - Phase velocity- as a function of frequency for waves 

propagatingin a direction normal to the magnetic field in a 

warm fully ionized magnetoplasma. 

presenting the plot of phase velocity versus frequency in Fig. 11, in 

which the shaded areas give an indication of how the curves evolve, 

from e = 0 0 to e = 900. 
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6. SUMMARV 

The ruodes for wave propagation in a warm fully ionized 

plasma ,  can be suniniarized as foliows: 
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Transverse electromagnetic wave 

Longitudinal electron plasma Wave 

Longitudinal ion plasma Wave 

Ia 

Transverse right-hand circularly polarized wave 

Transverse ieft-hand circularly polarized Wave 

Longitudinal êlectronplasma Wave 

Longitudinal ion plasma wave 

kjB: 

Transverse irdinary wave 

Partially transverse extraordinary wave 

Longitudinal electron plasma Wave 

Longitudinal íon plasma wave 

For the case of a warm electron gas, in which the motion 

of the ions is ignored, the longitudinal ion plasma mode is absent. 

For the case of a cold plasma, both the ion plasma and the electron-

plasma modes are absent. Note that for kJ.B 0  the electron plasma 

mode and the extraordinary niode are coupled. 



PR 08 L EMS 

17.1 - Show that one of the roots of the dispersion relation (2.33), 

at very low frequencies, corresponds to an evanescent wave. 

17.2 - Make a plot analogous to Fig. 8 for wave propagation in a 

warm electron gas immersed in a magnetic field, but in teríns 

of w as a function of the real part of k. 

17.3 - Show that the reflection points w 1  and W62,  for the LCP ánd 

RCP waves propagating along 
§o  in a fully ionized warm 

plasma (see Fig. 9) are given, respectively, by 

- 

- - {- (w - w ) + 1 (w + w .)2  + 4w2 r12 ce 	c i 	' ce 	ci 	pe 

LO 	1 
= - { (w 	- w ) + - (w 	+ üi ) 2  + 4w2 j1/2 j.

02 	2 	ce 	ci 	- ce 	ci 	pe 

Compare these expressions with Eqs. (16.6.13) and (16.6.14). 
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17.4 - Starting froni Eqs. (5.12), (5.40), (5.41) and (5.42) provide 

ali the necessary steps to obtain Eq. (5.43). 

17.5 - Obtain a cubic equation in k 2 , from Eq. (5.50), and analyse the 

dispersionrelations for these three modes of wave propagation 

across B in a fuliy ionized warni plasma. 

17.6 - Nake piots analogous to Figs. 9, 10 and li-for wave propagation 

in a fully ionized warm plasma, but in ternis of w as function 

of the real part of k. 

17.7 - Show that the resonances in a warrn fully ionized magnetoplasma, 

negiecting coilisions, occur at the frequencies w = Wce cos O 

and ti = wci cos O. 
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