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PARAMETER INTERFERENCE IN
DISTORTION AND ALIGNMENT CALIBRATION

Malcolm D. Shuster * and Roberto V. F. Lopes

Estimation algorithms are presented. for the consistent determina-
tion inflight of focal-plane distortion parameters and alignment pa-
rameters for attitude sensing instruments. The ambiguity in the spec-
ification of the parameter sets is demonstrated and a simple prescrip-
tion is given for removing it for the case of polynomial representa-
tions of the focal-plane distortion. We develop estimation algorithms
for both the case in which the instrument determines the distortion
coefficients and the three-axis attitude (alignment to an external co-
ordinate system) as well as for the case in which the instrument mea-
surements are used to determine the distortion coefficients and the
relative alignment from another fixed sensor.

INTRODUCTION

The practical use of scientific instruments and attitude sensors on spacecraft generally re-
quires that these be recalibrated after launch. In addition, due to changes in the spacecraft
structure arising from thermal flexure and zero-gravity effects, the alignment of these devices
must also be determined. For unmanned spacecrafi, the separation of alignment and distor-
tion corrections is non-trivial. In addition, it is made more complicated by the fact that we
commonly represent spacecraft alignment in terms of transformations in three dimensions,
while distortions of the focal plane are most conveniently treated in two dimensions. Thus, in-
vestigations of the interference of focal-plane distortion and misalignment are compromised
by a fundamental difference in treatment. A previous report’ developed the representation of
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rotations in the focal plane. In the present work, we develop and test algorithms which apply
this representation to the estimation of sensor focal-plane distortion parameters and rotational
parameters.

It is not always appreciated that distortion and misalignment are not independent transfor-
mations of the focal plane. Therefore, attempts to calibrate sensors both for distortion and
misalignment corrections sometimes lead to estimates of the parameters which are not mean-
ingful individually. In ground calibration, when the sensor alignment and the calibration are
commonly referred to an optical alignment cube mounted on the sensor, no ambiguity arises.
In space, unfortunately, one no longer has any knowledge of the orientation of the optical
alignment cube, and the unambiguous separation of alignment and distortion parameters is
no longer possible.

If one is interested only in representing the transformation of sensor data from the space-
craft to an inertial coordinate system then the inherent ambiguity will not lead to any errors
in the analysis of the data. However, if one wishes to trend the alignments or correlate them
with other spacecraft data, such as temperature, then meaningful results are unlikely to be ob-
tained. The principal purpose of this report is to present a methodology in which the estimated
misalignment and distortion parameters will be meaningful.

We begin by reviewing the representation of misalignment and focal-plane distortion devel-
oped in Ref. 1. We then study various ways of combining these two transformations of the focal
plane, demonstrate the fundamentat redundancy between them, and present a simple method
which removes the redundancy. The distortion of a sensor focat plane is most frequently rep-
resented by a Taylor series in the focal-plane coordinates. However, the sensor vendor may
sometimes specify a functional form for the distortion calibration functions derived from the
physical nature of the sensor which are not simple polynomials. In that case, onc must de-
velop a means of transforming these function to account for the redundancy. We posiponc the
treatment of an arbitrary parameterization of the focal-plane distortion for a later report.

Having developed the proper unambiguous representation of alignment and distortion we
develop specific algorithms for estimating these parameters, There are two cases to consider.
In the first case, the rotation parameters characterize the alignment of one sensor with respect
to another. Thus, in this case the rotation parameters are constant in time and both the ro-
tation and the distortion parameters are global. In the second casc, the rotation parameters
characterize the entire attitude, In this casc, therefore, the rotation parameters change as
a function of time and are frame specific, while the distortion parameters are constant and,
therefore, global. Thus the treatment of data sampled at different times will not be the same
in the two cases. However, the significant component of the present problem is not the formu-
lation of batch and sequential estimators but of a measurement model, which takes account
of the special character of focal-plane distortion and alignment parameters. Thus, our focus
in this paper is on the development of correct parameter set and the composite measurement
model.

Generally, alignment and distortion calibration activities are carried out by different groups
which communicate incompletely with one another, Neither of these two groups is concerned
with the problem of parameter redundancy, since each uses a non-redundant parameter set
for its own purposes. We show, however, that this practice can lead to random walk effects in
the estimates of both the distortion and the alignment parameters.



GEOMETRY OF ALIGNMENT AND DISTORTION

Generally, we represent a direction in space by the 3 x 1 matrix of its components with
respect to a basis. For this study we will choose the basis so that the z-axis is perpendicular to
the focal plane of the sensor and passes through the origin of the focal plane and the origin of
coordinate system, which is separated from the focal plane by a distance f. Hence the z- and
y-axes lic nominally in the focal plane. We say nominally because distortion and misalignment
make these statements somewhat inexact, The purpose of a distortion/alignment calibration
is to find corrections which theoretically make this description exact.

We write, therefore, for a general direction in three-dimensional space
- Wl
W= | W, (1)

The caret denotes a unit vector. Let us imagine that our sensor behaves like a perfect pin-hole
camera with the focal plane is at a distance f from the origin. Then a straight line through the
origin in the direction of W will intersect the focal plane at coordinates (X, Y') in such a way
that the proportionality X : Y : f =W, : W, : W; holds. Hence,

or
Xszi— and Y=f%. (3)
These equations may be inverted to give
W= . P] (4)
VXE+YI+ 2 | g
It will be advantageous, hovwevcr, to define specific focal-plane coordinates given by
r=X/f and y=Y/f, (5)
so that W, 3
a:=w; and 3":';?/;’ (6)
leading to

X 1 *
Ws —— .
Vet +y? 41 [f] O

In this way we achieve a representation of the distortion which does not depend explicitly on
the dimensions of the pin-hole camera. In fact, these specific focal-plane coordinates do not
depend on the instrument at all and may be used to represent the data for any focal-plane
sensor, no matter what its construction. Thus, we have a universal set of coordinates.



PARAMETERIZATION OF DISTORTION AND ALIGNMENT

Part of the confusion surrounding alignment and distortion is that the two are represented
in two different spaces. Generally, distortion is represented in terms of the focal-plane param-
eters, which we can write in terms of focal-plane vectors as

x' =x+ F(x), (8)

or in terms of components as

x! x Fi(z, v)
== '+' 1 . 9
=G+ REY ®
Here x' is the observed focal-plane vector without correction for instrument distortion (i.e., the
distorted vector), and x is the true (i.e., ideal) focal-plane vector without any distortion effects.

Generally, one assumes that the two functions F(z, y) and F,(z, y) are given by polynomial
series

Fi(2,y) =g+ 8100+ Qg ¥+ 202"+, 0y + 80,8 + ... (10a)
Fy(z,y) = byg +b1o2+ b1 y+by02” +b 13y +bo2v" +.... (10b)

Frequently, one terminates the series at second order, which leads to six terms in each compo-
nent, or at third order, which leads to ten terms in each component (expansions to sixth order,
or 28 terms in each component, are not unheard of). The functions F(z, ¥) and Fy{z, y)
assume very small values over the focal plane of the sensors. Apart from the effects of mis-
alignments, whose effect we will soon examine in detail, the largest terms will most likely be
@,  and b, ,, which arise from thermal expansion of the focal plane.

Alignment, on the other hand, is a pure rotation, and we tend to represent it in the full
three-dimensional space as an orthogonal transformation,>3 which we may write as*

8§ =cosfl, 5+ (1~cosd)ai? +sind{[#]], (11)

where 8 is the angle of rotation and i, a unit vectoy, is the axis of rotation. As in Refs. 2and 3,
[[v]] denotes the 3 x 3 antisymmetric matrix

0 v —v
(vll=|-» 0 o (12)

‘The Taylor expansions of Egs. (10), if carried out to all orders can represent any transfor-
mation of the focal plane. Therefore, it must be true that a rotation of the focal plane about
any of the three axes of the focal-plane coordinate system, must be expressible in terms of
Eqs. (10) for the appropriate values of the coefficients {ay g, @y 0, -+ > by g+ b1, - -+ }. These
coefficients are, in fact, derived to all orders in Ref. 1. Therefore, it is trivially obvious that the -
rotations are redundant with distortions.



Clearly, one could treat the transformation of the sensor focal-plane totally in terms of dis-
tortions and never introduce a rotation matrix in our representation. Unfortunately, while the
distortions of the focal plane arising from thermal distortion, zero gravity, and other environ-
mental effects are small, the rotation of the sensor focal plane (particularly, if we measure this
rotation from inertia! axes) can be quite large. Therefore, the Taylor series would require an
infinite number of terms. The intelligent approach, therefore, is to treat the rotation to all
orders by expressing it in terms of the 3 x 3 rotation matrix (or the quaternion, or the Euler
angles, etc.), and removing those degrees of freedom from the distortion equation, Egs. (10),
so that the expansion will be non-redundant. The ultimate goal of this memo is to show exactly
how to accomplish this.

In order to speak about rotations and distortions together, we must be able to speak about
them first in the same terms. It will be easier to represent rotations in terms of focal-plane
coordinates than to express focal-plane distortions in terms of a 3 x 3 matrix.

Consider the equation
& Bz + Ry + Ry
U = R y = Rzlx + Rzzy + R23 (13)
1 317 + Rypy + Ry

The third component of the vector U is obviously not unity, and therefore the first two compo-
nents of U do not correspond to focal-plane coordinates. To make the third component unity,
however, we simply divide the right member of Eq. (13) by the third component to obtain

z' 1 x
v = Rly|. (14)

1 Rz + Rypy+ By |

or
Ry,z+ R,y + R

.’8' - 11 12 13 , 15&
Ry 2z + Bygy + Ry (132)
o R‘le + R2_2_y + R23 (15]))

v= Ryjz + Rag 4 Ryy

This is the focal-plane representation of a transformation in three dimensions. Equations (15)
hold for any linear transformation, although in this case, /L is a rotation matrix. Equations (15)
are known generally as the collinearity equations and play an important role in satellite photo-
grammetry.>$

CORRESPONDENCE OF ALIGNMENT AND DISTORTION
FOR INFINITESIMAL ROTATIONS

Let us examine an infinitesimal rotation, which we write as
1 8, -6,
R@)~ |-0, 1 & 1. (16)
6, -6, 1



From Ref. 1, we know that the focal-plane distortion coefficients for a pure rotation are given

by
A %éi}f—fl [(FH971) R (RuaRes - Rusk)
+ (H“;‘ 1) Ray (Ryy Ry — R,3R31)] ., (17a)
and

1 RS, i+j-1 “
i = (- 1)""""'1 R;....,f] [ ( :: ) By, (R‘zzﬂsa = Rzaﬂsz)
i 4j-1
+ (‘+'§; )Raz(RmRaa "'stRm)] » (17b)

where (%) is the binomial coefficient

n!
ST Py forl1<i<n,
(1:') = { i(n ~ i) i (18)
0 otherwise
Substituting Eq. (16) leads to the corresponding expressions for infinitesimal rotations
o= (-1) 6571 6i ™ [(t ti- )9203 (e +é—- 1) 91] , (192)
by = (-1)y 61 6] [(‘*i,“ ) 8, + (”’j_" 1) 9133] , (19b)

where we have kept only the leading terms. Clearly, a; ; and b, ; will be at least quadratic in
the angles for 1 4 j > 2. Thus, infinitesimal rotations contribute to only a few distortion terms.
If we evaluate Eqs. (19) for ¢ + j < 2, we will find to first order in the infinitesimal angles that

e -0, +0,y-0,2"+8,zy+..., (20a)
Y =y+0, -0z —-0zy+ 0,y +.... (20b)

so that eight of the first twelve distortion terms are affected by infinitesimal rotations. These
same equations follow also by inserting Eq. (16) directly into Eqgs. (15). Within an infinitesimal
region of the center of the focal plane, corresponding to (z, ¥} = (0, 0), we have that

xf=3—02+93y+-..‘ (213)
S =yt 0 =yt (21b)

In any practical application (see examples below), we will wish to drive the three angles to zero.
Thus, these are the only terms we have to consider infinitesimally near the center of the focal

plane.



Clearly, if we wish to remove the redundancy between the distortion parameters and rota-
tional parameters from an examination of the behavior of the coordinates at the center of the
focal plane, then we must set

o0 =bog =0, (22)

since the action of these parameters is indistinguishable from that of —8, and 8,. For 8, the
argument is slightly more complicated. If we rewrite the first few terms of Eq. (9) as

' =aggta oz +[(agy +b,0)/2+(agy = b 0) 2y +..., (23a)
¥ =boo+ (g +00)/ 2= (001 =01 0)/ 2z +b,9+..., (23b)

Then we see that at the center of the field of view the action of an infinitesimal 8, is indistin-
guishable from that of (a; ; — b, 4)/2. Therefore, to remove the redundancy, we must set

This is not the only choice we could have made. For example, we might have chosen to set
g0 = by 3 = ag = by =0. (25)

since a, o and by, are also effected linearly by the infinitesimal rotations. Mathematically,
this is a perfectly acceptable prescription, since it leads to a non-redundant set of variables.
Physically, however, such a choice would be disastrous, since it would lead to the rotation
parameters being influenced enormously by non-linear distortions of the focal plane and what
we would physically consider to be the misalignment of the center of the focal plane would be
dominate several of the focal-plane distortion parameters. The distortion parameters would
then be very sensitive to the attitude of the sensor, and could therefore be very large. Such a
prescription is mathematically consistent, but it would not accomplish the goal of suppressing
a strong attitude dependence in the distortion parameters, and would be even more confusing
than using the complete set of distortion parameters without explicit parameterization of a
rotation. We choose, therefore, as our focal-plane parameters set the three parameters of the
attitude and the distortion parameters with the constraint that

Qop = bo.o =5, — bl,o =0. (26)

ORDER OF DISTORTION AND ALIGNMENT TRANSFORMATIONS

Let £ denote the inertial frame and Z denote the instrument frame. Likewise, let D denote
the distortion transformation and R denote the rotation transformation expressed in focal
plane coordinates. Thus, we may write the change in focal-plane coordinates due to distortion

alone by
x' = D(x, A), (27)

where A denotes the totality of distortion parameters {(except, naturally for a; o and by, o, which
now vanish identically and for b, o, which is given identically by a, , ). The change in focal-plane
coordinates due to rotation alone is given by

x! = R(x, 9), (28)



where @ is the (finite) rotation vector characterizing the rotation. These equations are simply a
shorthand for Egs. (10) and (15). Ifwe consider the effect of both misalignment and distortion,
then we are led to describe the combined effect either by writing

x' = D(Xpy A)s (29a)
X,, = R(x, 8). (29b)

for the alignment transformation computed first followed by the distortion or

x' = R(xy, 9'), (30a)
xy = D(x, A'), (30b)

with the transformations taking place in the opposite order. Thus, we either first misalign
and then distort or we first distort and then misalign. If @ is large, then clearly there will be
a large difference between the instrument frame and the inertial frame. If we perform the
distortion first, then effectively, we are computing the distortion coefficients with respect to
inertial axes, which makes little sense. Also, distortion is a phenomenon which we identify
with the instrument itself, while misalignment is associated more with the spacecraft structure.
But if we distort the focal plane before rotating it, then the focal-plane parameters will depend
on the attitude, which we want to avoid. Thus, physically the first alternative, Eqgs, (29), is more
natural, and from a practical standpoint it is much simpler.

FRAMES OF REFERENCE

Consider first the case in which the rotational parameters represent the alignment. The
convention which was adopted in Refs. 2 and 3 for misalignment is not entirely suited to the
study of misalignment and distortion. Let ﬁ, «¢ denote the ¢-th vector observed by sensor
i at time {,, in the sensor coordinate system and let V,,u and Wg,k.e be the corresponding
column vectors in inertial coordinates and body coordinates. Then the attitude matrix causes

the transformation A i
Wie= 4 Viwe + AW 00, (31)

while the alignment transformation causes the transformation

-

W= 504, (32)

Here AW, x,¢ is the measurement noise. (Note that the measurement noise appears only
implicitly in Eq (32).) Clearly, the attitude must depend on the time but not on the specific
sensor, and the alignment matrix depends on the sensor but not on the time, This last statement
is an idealization, because in practice alighments can change with time due, for example, to
changes in the thermal loading of the spacecraft.

In Ref. 2, if §¢ was an a priori value of the alignment matrix, and $; was the correct align-
ment, then the misalignment matrix MF (written simply as M, in Refs, 2 and 3} was defined
so that

S, = MESe. (33)



From Eq. (32) it is clear that M# is a transformation from an e priori body frame to the correct
body frame. Combining Egs. (31), (32) and (33) we have that

ﬁi.k,! =57 Wt’.k,t (34a)
= S?Akvi,k,t + Aﬁi,k.t (34b)
= 5¢TMP TAkvi,kl,t + Aﬁi.k,t . (34c)

It is the parameters of M2 7 that we wish to estimate from the measurements U, k¢ These,
obviously, are not convenient because of the transformation S¢7. We therefore, define an
instrument-referenced misalignment according to

5, =S¢ MF, (35)
so that _
ME = 5¢ MF 5?7 . (36)
Writing in the usual way
MP s Iyya +([0°]) and M7 =~ I, + (671, 37
it follows that
6 = 576f. (38)
Thus, we can write
Uige=MITSITAN, (ot AU, ., (39a)
= MITO?, .+ AT 40, (39b)
208, = 10708k + A0, 40, (39¢)
= ﬁ?,k,e + [[ﬁ?,k.t Nef + Aﬂi,k.e ). (39d)
where X X
U2e=57TAVise (40)

is the a priori value of the instrument measurement in the instrument frame given the g priori
alignment matrix and the attitude.

In practical calculations, one does not know A, but only A3, the estimated attitude, given

by
Ap=ellell 4 (41)

Here, €, is the attitude estimation error, assumed to be Gaussian, zero-mean, and having
covariance Fg .. In this case Eq. (39a) becomes

Oipe= MITS TN A3V, + 00, ,, (42)
which leads to
Uipe =00+ 108, 1107 + AU, o+ [0 N8 €, (43)



where now X .
U= 8774 Vike, (44)

and there is an extra noise term.

In general, the complete set of absolute alignments cannot be determined with high confi-
dence.® Therefore, it is common in practice to define one of the misalignment matrices M7 to
be equal to the identity matrix. This effectively defines the spacecraft body coordinate system
as a fixed rotation from the coordinate system of sensor ¢, and the sensor alignments become
effectively coalignments.

Equation (39) assumes that A, the spacecraft attitude matrix is known from some source.
This may not always be the case, For example, if wish to compute instrument coalignment
and distortion coefficients by first computing instrument attitude and distortion coeflicients
for each sensor (this assumes that each sensor can measure multiple directions) and then com-
puting the coalignments from the individual instrument attitudes. In that situation, we define

Ay = STA,, (45)
as the instrument attitude. Then
A= (64, )AL, (46)

where A{, is the a priori attitude of the instrument and 64, , is the attitude correction, which
we hope is also a small correction.

The complete set of transformations which we apply to obtain the distorted and misaligned
datum from the given a priori knowledge is as follows:

e GivenV;,,, £ =1,...,n,, and the a priori instrument attitude (or V, , ,, £ =
1, ..., n;,, the spacecraft attitude and the a priori instrument alignment matrix)

we compute ﬁ?.k,e: £=1,...,n;,, and we write
ﬁi.k,( = (60) ﬁ?,k,t’s i=1,..., ik
where §C denotes 64, , (or MIT).

¢ Using Eq. (6) we compute x, the fochl-plane representation of U¢, ,.

¢ Using Eq. (20) we compute x,,,, the focal-plane coordinates corrected for misalign-
ment.

e Using Egs. 10 and the reduced set of coefficients (Eq. (21)), we compute the dis-
torted focal-plane coordinates x'.

THE MEASUREMENT MODEL

We are now prepared to estimate alignment and distortion parameters, that is, the parame-
ters of §C and the reduced set of distortion parameters { a, g, @91, Gy gy «-+ s g 15 by 0y -+ }.



The two cases presented above, in which one is estimating either the parameters of M7 or of
8 A, , are fundamentally different. If knowledge of the attitude is available from some source
other than the instrument being considered, then we can regard §C (i.e., M¥) as being the
same for every frame of data (i.e., every value of k). All of the parameters being estimated in
this case are global. However, in the case where attitude is being determined from the same
data, then §C (i.¢., Ai‘k in this case) will be different in every frame. We must, therefore, esti-
mate a mixture of global and frame-specific parameters. We will examine these two cases both
within the framework of batch estimation and within the framework of the Kalman filter.

We compute the measurement model (i.e., the measurement sensitivity matrix) in three
steps. In each case above we are given an a priori rotation, which we denote here by R, and
a set of @ priori measurement vectors U,N, ¢ =1,...,n,, From this R}, and the a priori
directions we compute x(i, k, £), the a priori focal plane coordinates, accordlng o Eq. (15).
We then apply the (infinitesimal) rotation correction § R; ;, which in focal-plane coordinates
is accomplished by

, _ [#al6 %, 6)
x, (¢ k, &) = [ym(i, k0 {(47a)
x(3, k,f)] [-92 +B3y—-92:c2+3,a:y] )
=" + + O(l1°) -
[y(t, k, ) 0, -0,z-60,zy+ 6, y? oy (47b)
Finally, we apply the distortion correction
LI o
Ym F2(xm' ym
and
Fy(%y, ¥) = zzai,j Ttk s (49a)
i=0 j=0
o0 . .
By(@pms ¥m) = 3 ) biy b » (490)
i=0 j=0
with the restriction that
80=0, byo=0, and by=109,. (50)

For simplicity we have not written the subscripts i.x,¢ for each pair of focal-plane coordinates.
The measurement is given by
!
Zike = Xiket Vike (51)
where v, , , is the measurement noise, which we assume generally to be white and Gaussian.

We denote the complete set of parameters (rotation plus distortion) by

= m (52a)

= {6,,0,,8,, @100 @91 A200 By 1y +-0 s bo,11 b200 01,15 ---]T- (52b)



Since we want to estimate the parameters, we wish to write
Zike = Zonet Hine A+ Viges (53)
with
z?,k,e = Xkt (54)

which was determined from the U, ke €= 1, .. ,m, and R?,, and we may partition the
measurement sensitivity matrix as

Hive=[Hoine Hyinel (55)
Clearly,
H.. ‘k.e Z O e 02,04 0) (56)
dikd = 9z, (4, 5, ) 30 !
and
Bz
Hyipe= —"““é}:" . (57)

The individual partial derivatives are given by

5 1"‘2 Z“i,j-"’:ly;i:
'z =1 j=0
9z, | .,: (58a)
BN EDID I V-4 "A
L i=1 j=0
9 Za Z-; s b
el B (58)
" 1+) Y by
L i=0 3=1 ]
i}
;9 =[ay (-1-2%) ] (59a)
d
—a%‘*=[(1+y2) -zy -z] (59b)
i i
6‘:_1 = [%Bym] for (i, 4) # (0, 1) or (0, 0), (60a)
0
%‘. = L..- i ] for (i, 7) # (1, 0) or (0, 0), (60b)
L% mdam
% Ym
3“:1 - [3‘ ] ' (60c)



In all of the above formulas we emphasize once more that ay o = by = 0and b, 4 = a, 4. In
the formulas above we have adopted the convention that the derivative of a scalar with respect
to a column vector is a row vector.

NUMERICAL EXAMPLES

To illustrate the need to estimate alignment and distortion parameters in this way we have
considered a typical example. In normal operations, the flight operations team will estimaie
the attitude and the alignments, assuming a given set of distortion parameters, while distortion
parameters will be estimated by the instrument team, assuming a given attitude and alignment.
Generally, each team will use different data sets and carry out their operations at different
times. Since each teams parameter sets are well defined, there will be no problem of redun-
dancy in each individual case. Communication between each team is usually limited to trans-
mitting the estimated parameter sets. This is the normal mode of operations for all spacecraft
known to the authors. (In fact, this is the normal mode even if the distortion cocflicients and
the misalignments are being estimated by the same team!)

Clearly, there will be a redundancy of parameters between the two teams but not for each
individual teams activities. In the figures which follow we have considered this method, which
we label “Method 1,” and two other methods. Method 1 is identical to Method 1 except that
the focal-plane distortion coefficients have been constrained to have

agg = by =ag, — bo=0.

In Method 3 the alignments and constrained distortion coefficients are estimated simultane-
ously. In each case we assumed that the true value of all of the distortion coefficients was 0
and the attitude matrix of the sensor was (he identity matrix, which means that the true value
of the misalignments was zero. For sixteen frames of data, 50 directions were measured in
each frame. It was assumed that the error in each direction measurement was 1 deg/axis. The
sensor field of view was 20 deg full width in each direction.

Since the true value of all of the parameters is zero, the estimates are equivalent to the
estimate errors. Ten experiments were performed for each method and the sampled covari-
ance computed. Figure 1 shows the results for the estimate of 8,. The solid line shows the
result of estimating the misalignment and the reduced (non-redundant) set of distortion pa-
rameters simultaneously (Method 3). The dotted and dashed line gives the case of alternate
estimation of the misalignments and the distortion coefficients (Method 2). The dashed line
shows Method 1, in which alternately one estimates the misalignments and the redundant set
of parameters (Method 1). Methods 2 and 3 are barely distinguishable, while Method 1 shows
a large random walk. The same phenomenon is appareat in the estimation of 4, and &;, shown
in Figures 2 and 3. Figure 4 shows the performance for a, 4, which is not expected to be as
sensitive to the redundancy with the misalignment parameters. In fact, the estimate errors for
this quantity shows the same behavior for all three methods,

Figure 5 shows the behavior of b 4, 8, and b, ¢ + 8, when these are estimated using Method
1. The obvious random walk in the sample variances or the individual variables contrasts dra-
matically with the more or less constant behavior of the sum of the two estimates, as was to be
expected.
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To understand the random walk phenomenon, consider the following simple model
z2,=8@+a+v,. {61)

and v, is a white Gaussian sequence with covariance R. Here, 8 represents the misalignments
and a represents the corresponding redundant distortion coefficients. The above model is
somewhat simplification but contains the important component that the two parameter scts
are complctely redundant. This measurement model is not (ar-felched, however. [n practice,
it can always be constructed as the maximum-likelihood estimate of (8 + a).

If the variable & is estimated at the odd times assuming the previous estimate (or g priori
value) for a, then we obtain for the estimate of 85,

6341 = Bgpgr — B2k - (62)

Likewise at the next interval, estimating a assuming the previous estimate for 8 yields

a3k+2 = Zykgs — Oyy - (63)

Combining these two results yields

* — » - -
82k42 = A25 + 244 ~ Boper S Aok Vappr — Vg (64)



Likewise for the estimates of 8 one obtains

Oktr = 031 + Zoiegr — 29 = Ohpiy + Vorgy ~ Vo (65)
Let us suppose that the true and a priori values of @ and a are zero. Then both 8;, | and a3,
will execute a random walk with covariance 2R (since each interval spans two time intervals). If
calibrations are performed every day over the course of five years, then, at the end of five years,
an estimate error in @ and a with covariance on the order of 1600 R will be introduced. The
individual instrument and flight operations teams, on the other hand, will believe incorrectly
that their estimate error covariance matrices are on the order of R, amounting to an error in
confidence in the standard deviation of a factor of 40. If the single frame estimation error in
this case is on the order of 5 arc seconds, then at the end of five years in the above example,
the random walk standard deviation will be on the order of 3.5 arc minutes, which is generally
unacceptable. The solution, of course, is to estimate only a, or better, only 8 but not both.

CONCLUSIONS

A consistent methodology has been developed for estimating the alignment and distortion
parameters of a focal plane sensor. This methodology discards poorly identifiable parameters
from the distortion model which become redundant in the limit that the number of focal plane
distortion parameters becomes infinite. Specific algorithms have been given for the carrying
out computations efficiently.
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