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ABSTRACT

The response of a spherical resonant-mass gravitational wave antenna can be
written in terms of symmetric trace-free tensors. We apply this formalism to
determine the direction of an incoming monochromatic wave, the orientation of its
polarization ellipse and the wave’s two independent amplitudes, using the response
amplitudes at five different points on the sphere surface. This formalism also allows
us to determine the directions of burst sources.
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methods: analytical.

1 INTRODUCTION

Gravitational waves are expected to be an important source
of astrophysical information. They are radiated whenever
matter has a non-null third time derivative of its quadrupole
moment; in regions where gravity is relativistic, this emission
should be very strong. One of the main factors that makes
gravitational wave astronomy so interesting is the fact that
electromagnetic waves are easily absorbed and scattered by
matter, while gravitational waves pass through it with
impunity (Thorne 1987).

There are several gravitational wave detectors in opera-
tion, and other projects are being developed (Blair 1991). In
recent years, the construction of a resonant-mass gravi-
tational wave detector using a spherical antenna was
proposed (Aguiar et al. 1992). Some theoretical studies were
made long ago (Forward 1971; Ashby & Dreitlein 1975;
Wagoner & Paik 1977), and recently others have been
reported (Johnson & Merkowitz 1993; Zhou & Michelson
1995). One prototype is being tested at Louisiana State
University (USA), and an array of this kind of detector is
being planned for the coming years (Hamilton et al. 1995).

From the astronomical point of view, the spherical
antenna has an important characteristic: because it has five
degenerate modes, we should be able to determine the five
parameters that give all the information about the gravi-
tational wave from the proper examination of the sphere
motion. The determination of the direction, the polarization
and amplitude of a gravitational wave, from the response
amplitudes of five different points on the sphere surface, is
called the ‘inverse problem’. In this paper we will assume that
the sphere surface radial motion is monitored at five

different points by non-resonant, ideal transducers. We will
then solve the inverse problem assuming that there is no
noise present in the system. We expect this approach to be
useful for the investigation of the problem in the presence of
noise. The solution found coincides with that of an array of
bar detectors (Dhurandhar & Tinto 1988) and, as we will
see, this coincidence is not casual.

In Section 2, we present the expression for the radial dis-
placement amplitude of a point on the sphere surface, on the
wave’s frame.

The simultaneous observation of the radial motion of five
points on the sphere’s surface is analysed in Section 3, so that
the inverse problem can be solved in Section 4.

The main results of the work and some concluding
remarks are summarized in Section 5.

2 GENERAL EXPRESSION FOR THE

DISPLACEMENT AMPLITUDE

In this work, we will use three different frames. One of them
is centred at the sphere’s centre of mass, with the é, axis
directed towards a chosen point P; we will call it the ‘detec-
tion point frame’ and it will have coordinates (x, y, z) or (¢, 0,
¥). The second reference frame will be called the ‘wave

frame’, because it is the wave’s proper frame; its coordinates

will be (x', y', z') or (¢, 6', y') and the wave is supposed to
propagate in the é, direction. The third reference frame will
also be located at the sphere’s centre of mass, but it will be
rotated relative to the detection point frame; we will name it
the ‘lab frame’, and its coordinates will be (X, Y, Z) or (®, ©,
). Figs 1, 2 and 3 illustrate the relative positions of these
frames.
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We will assume that only the radial component of the
antenna surface displacement will be measured. This observ-
able is given by (see Appendix A)

R (t,x')=Fdd,
and in the wave frame it becomes

L x)= S ALY

m=-2

aZ(R) YZM(OI’ ¢I)’ (1)

where the only non-vanishing AY, () are AY;(s)and AY _,(1).
By Fourier transforming (1), we find

+2

jW(w,xl)= Z A;rrn<waxl)a2(R)YZm(0,9¢/)9 (2)
m=-2
where
ﬁw(w,x')=J' 2V, x e ds, (3)
and, from (A2),!
wZ 3
Ao, x')=-M""

w(z)" (O2+ifo-1 W ;=1
XJV Ton(%)x"0(x) & x{h, (0) R [mx)mi(x')]  (4)
+ (@) 3[m(x") my(x')]).

As we show in Appendix B, #% can be written as the
product of two 3 X 3 matrices:

7 Z W (0, x)D }(w, x'), (5)
where we introduced
W(w, x)=h, (0)R[mx')m(x')]
+hy (@) 3[m(x') my(x')] (6)
and

2

w(a,+38,) [8n
= —Ra,(R) ———2" P2 |22
Di(w,x) a{ )wz—w2+itolw 15

X [6,'1(51‘1)’2 - (5,'2)’4) =0,(6,,y,— 9,1 y4)]

with DY, Y and DY, =D}, the other D} =0.
Both the matrlces WW and DW are symmetrlc and trace
free. This kind of matrix can be spanned in terms of the

basis® of constant tensors ¥ 7" (m=-2, —1,0, +1, +2;
i=1,2,3), where
1 i 0
1 /15 _
[ zz__ [12 i -1 0 g =g,
2n ;
o 0 O

'R (x) means the real part of x, while 3 (x) means its imaginary part.
2In what follows, we use a formalism very close to that used in
Dhurandhar & Tinto (1988).
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0 0 1
1 /15
2N LRSI At A
1 0
-1 0 0
1 5
(7%=~ /— 0 -1 0
2\ 4xn 0 0 2
and
3 15
X yyyTt= : (9)

ij=1

On this basis, we can also span a particularly useful tensor,

T'?), which is able to rotate the spherical harmonics from one
frame to another (see Dhurandhar & Tinto 1988). For
instance, if the wave frame is obtained through a rotation
g(a, B, y) of the detection point frame (see Fig. 1), then the
relation between the spherical harmonics in the detection
point frame [Y,,(6, )] and the spherical harmonics in the
wave frame [Y,, (', ¢')]is given by

Z T2, (B, 7) Y6, 9). (10)

m=-]

lm0¢

The tensors T/ are given by (Gel'fand, Minlos & Shapiro
1963)

T\)(a, B, y)=e " P{ (cos B) e~imr (11)
where
by (=DM (I=m) (I +n)!
Plonlie)= 2(1=m) \ (I+m)\(i=n)!
(12)
dl—n

X (1= ga)m=mi2(] 4 o) ~m 02 ——
du

X[(1=p)' =1+ )],

with —I<m, n<I. The tensors T?)(a, B, ¥), when spanned
in the % ™ basis, assume the form

e )= 52 5 gpmmim
Sn
2, (a, B, 7)= Z 2% m*im* (13)
11 1
T a, B, v)= Z 2% nip),

i,j=1
In the wave frame mis given by (A4) while n is given by
n=¢,.

In the detector point frame, using the x-convention
(Goldstein 1980) for the rotation g(a, B, ) of this frame, we
have

n=(sin Bsin a, —sin S cos a, cos f) (14)
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Figure 1. Euler angles between the detection point frame (x, y and
z axes) and the wave frame (x/, ¥, and z' axes).

and m(a, B, y)=my(a, B) e 7, where

1
my(a, B)=—/cos a—icos fsin a, sin a
2
+icos Bcos a,isin§). (15)

From (9) and (13) it follows that (Dhurandhar & Tinto
1988)

i j 2“ & n
R(m'm)= [T X (T5, T2 YT, (16)
n=-2
3(m'm’)= ~ 1 TS (1819 (17)
n=-2
i Jlem & n
n'n’ s ZZ T Y. (18)
The matrix? WP can be written in the detection frame
using T'2), and % ™. Substitution of (16) and (17) in (6) yields
W, a,B,y)= Z Y7 k() T5(a, B, y)
n=—2
+T Zn(a .B’ )] ng)a ﬂ’ ) ( )
- T(-2-2n(a’ ﬂ, )’)]}~

Because we chose the point P to be located in the direc-
tion é,=(1, 0, 0) of the detection point frame, (7) will be

written in this frame as
D} (@, x)= —D%,(0,x)=%(w), other D}(w, x)=0, (20)

3The superscript ‘P’ in WP denotes that this function is being
described in the detection point frame.

where

. _ Ray(R)

@ (0)= wz(a2+3ﬂ2)

2, . -1 -
2 wi-w’+ir,'®

(21)

Therefore, using (20) and (19) in (5), we obtain the follow-
ing expression for the radial motion of the sphere surface at
the point P (in the detection point frame):

2 E(0)Sm0)

mn=-2

'27 P( w, a, ﬂ, ')’): T(,,Z,Z,(a, ﬂa ’}/)’ (22)

where the only non-vanishing $,,,,(w) are

1 . .
S—z,:tz( )=_[h+(w)—ihx(w)],
C (23)
1 .. -
S+212(w)=_[h+(w)+ihx(w)]
and j§
Sano(@)= ——= [ (@) £ iy (0] (24)

This result is formally the same as that obtained in
Dhurandhar & Tinto (1988), for the case of five different bar
detectors.

3 OBSERVING THE RADIAL MOTIONS OF
FIVE DIFFERENT POINTS ON THE SPHERE
SURFACE

In order to evaluate the wave parameters ©, ® (the direction
of the wave), W (the polarization angle), 4, and #, (the
amplitudes of the two polarization states), we must have at
least five independent measurements of the antenna motion.
Therefore we might consider five different points on the
spherical detector surface, instead of only one point P. It is
convenient to have a common lab frame and five different
detection point frames (which depend on the location of the
points on the sphere). All the axes are located at the sphere’s
centre of mass.

If a certain detection point frame is obtained from the lab
frame by a rotation* g(a;, 8., y.) (see Fig. 2), then the
response # of the detector (equation 22) will be given in
terms of two sets of Euler angles: (®, ©, ¥) and (a;, 8;, ¥.)-
An obvious way to write the observable.# in terms of the lab
frame coordinates, (®, ©, ¥), is provided by the addition
theorem for T!) (see Gel'fand et al. 1963):

+2

Y TW(®,0,9)TW (ay, BLy), (25

s==-2

T (a, B, y)=

To write % in the lab frame coordinates, we need the
inverse of the rotation g(a,, 8;, v ): T,-1 =(T;)*.

Therefore, in terms of the lab frame, the radial displace-
ment of a chosen point on the sphere surface is given by the
expression

4The index ‘L relates a certain detection point frame with the lab
frame. Since we are now considering five different detection point
frames, we will allow ‘L’ to assume the values —2, —1,0, +1 and "
+2.
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Figure 2. Euler angles between the lab frame (X, Y and Z axes)
and the detection point frame (x, yand z axes).

(26)
X T(nzl.z‘(q)’ 69 \P) T(nzs)*(ab ﬂL: yL)'

Because @, ® and W are the angles that describe the wave
from the lab’s viewpoint, we will define a 5 X 5 matrix that
depends exclusively on the five wave’s parameters:

G lhy (o), hi(0), @6, W= Y §,[h0)h (o)

m=-=2
T2)(®,0,¥).
Therefore equation (26) becomes

‘%7 L(w’ (1)’ 9’ lIJ)= gj(w) Tr[G(w, (D7 @a \IJ) T(2)*(aL’ ﬂL’ yl_ )]9
(28)

with @(w) and T®*(a,, B,, v.) depending exclusively on
parameters of the detector.

4 THE INVERSE PROBLEM SOLUTION

We will solve the inverse problem using the same method of
Dhurandhar & Tinto (1988). We recall equatlon (5) in the
lab frame coordinates and we expand W, and D;, on basis

(8) as follows:
W(w, ®,0,¥)= Z Mo, ®,0,¥)y % (29)
s==-2
2
Dilw)= 2 xS (0)¥ 5 (30)
s=-2
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Figure 3. Euler angles between the lab frame (X, Y and Z axes)
and the wave frame (x', y', and z' axes).

The index ‘L’ goes from —2 to +2, labelling the five dif-
ferent points on the sphere’s surface. If we use (9) in the
above equations, we get

8 3
Ao, ®,0, W)= 1—’5” S Wilw,@,0,%) 7% (31)
S k=1
and
3
sk
xs (@ Z 7% (32)

jok=

The xL can be calculated and are given by (Dhurandhar &
Tinto 1988)

2n

1_5 %'Z(w)[T%)(aL, Br,vi)t T(z)zs(au Br,vr)

_\/g T(gs)(ab ﬁL’ yL):|' (33)

As long as the five D; are linearly independent (so that ¥,
is a non-singular 5 X 5 matnx) ¥ can be inverted so that (30)
yields

1 w)=

2

Vi= 2 (1 o) Dilw). (34)

L=-2

If we take the complex conjugate of (34), and use (31), we
find

od]
M

2
10, @,0,W)=" Y 3 Woo0,¥)

15,2 J

x~

=1

(1" u() D ().
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Since D' (w)= [0*(0)/p(®))Dj(w),(35) becomes

Afw, ®,0, ‘P)=?—TSE Z’((ww)),_g_z E (x i) Wy

(36)
X(w, ®,0,¥)D; ().

From (5), and commutating the operations of conjugation
and inversion of the matrix y, the previous equation can be
rewritten as

Lo, 00,917 T 3 (1) 0)7 0, 0,0,%)
(37)
Finally, (37) and (29) yield
___8_::_1: @’*(w) 2 *\—1 = 2
W,‘k(w)“ls @(w) S'E_Z(x ) (@)% Y . (38)

Because the spherical antenna is a resonant mass, it will
resonate at frequencies from w,—(27,)"! to wy+(27,)7 7,
where w, is the central frequency, and 7, is the decay time of
the energy stored in each of its five fundamental modes.
Since we are adopting non-resonant transducers to monitor
the sphere surface motions such that the antenna is a free
solid, we can rewrite (21) as

?(Aw)z _ RaZ(R) QO(a2+ 3ﬂ2)
2 27,Aw+i

; (39)

where Q,=w, 1, is the mechanical quality factor of the
antenna and Aw=|w,—w|. The reason for this is
that Aw=<(27,)"! and (Q,)"!'<1, which implies that
(Aw/wy) << 1. In this limit, (38) becomes

5 ~8_~75 %-’*(Aw) 2 *\ -1 = L, 28
W‘k"ls @(Aw) s’Lg_z(X ) (Aw) % Y (40)

Therefore we are able to determine W, experimentally from
(40), as long as we know the detector parameters and the
measure of the radial displacements of the sphere surface at
five different points (% L). To solve the inverse problem, we
have to express Wy (o, @, ©, ¥) explicitly in terms of the
wave parameters. Dhurandhar & Tinto (1988) have solved a
formally identical problem, and found that

___szWm_szWzs

tan ® — 41
an Wanz—Wanz ( )
and
Wnle_Wlles
tan®@=t—————=
?2"'WHW22
(42)
x[1+(ﬂlzz Wls_le Wzs)z}m’
WnWla—Wllwzs

(which correspond to the two possible locations of the
source, diametrically opposed to each other; these results are
valid for both bursts and continuous sources). Furthermore,

L

Figure 4. For a cylindrical antenna, the detection point frame (x, y
and z axes) coincides with the lab frame. The gravitational wave is
assumed to travel in the &, direction of its proper frame (x’, y', and
7' axes).

for the case that /2, and /i, are real (as in the case of mono-
chromatic, linearly polarized signals), they obtained’

3

> Wij‘mm(q’, © )mo,‘(q), o)
ij=1

VA —iln . (43)
ij:i(q), (C] )m:j(q)’ o)

M e

ij=1

[(43) has two solutions for ¥ corresponding to each of the
possible solutions for ® and ©] and

M w

h

+X

2 Y WR(mi(@,0,¥") m}(®,0,¥"), (44)

1

ij

M
X

=

2

i

T

W}S[mT(Q’ @, \PM) m’]“(q)’ 9’ WM)]’ (45)

1

with m,(®, ©, ¥M) completely determined from (41), (42)
and (43). The possibility of applying Dhurandhar and
Tinto’s results to the solution of the sphere inverse problem
is a consequence of the physical correspondence between an
array of bar antennae and the sphere, as we show in
Appendix C. This correspondence is possible because we are
assuming that there is no noise present in the system (this
allows for the degeneracy of the modes) and that the antenna
quality factor is high enough to leave the modes uncoupled.

In general, the results (43), (44) and (45) will be valid for
any source that emits gravitational waves with polarization
amplitudes of the form

hi (@)= ko, (@)e!™

>The superscript ‘M’ in WM indicates that this parameter refers to a
monochromatic wave.
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and
B (@)= Fox (@)™,
as long as

h~0+(w) sin 0, (0)= —iiox(w) sin o (w),

hy, and hy, being real. This condition assures that
i, (w)+ h, (o) will be real, thus implying a resulting linearly
polarized wave.

Equations (44) and (45) may also be used to calculate the
polarization amplitudes for burst signals if we arbitrarily
choose a value for W (e.g. ¥ = 0). These results, however, do
not provide enough information about the burst polarization
unless we somehow increase the bandwidth of observation in
such a way as to include most of the burst signal. By either
using a multimode resonant antenna or a ‘xylophone’ of
detectors, or both, we are able to determine the burst shape
and, therefore, the evolution of the polarization amplitudes
with time.

5 CONCLUSIONS

By using a spherical gravitational wave antenna, we were
able to determine the five astrophysical parameters of a
monochromatic signal: its direction (equations 41 and 42),
the polarization angle (equation 43) and the amplitudes of
the two polarization states (equations 44 and 45). Possible
sources of monochromatic gravitational waves are pulsars or
compact binary systems. We were also able to find the
direction of astrophysical burst sources of gravitational
waves.

In this work, we assumed we were able to monitor
the radial motion of a spherical antenna surface at five
different points. Besides, we were not concerned about
spurious noises at the antenna, and assumed that it had an
infinite quality factor; these conditions allow for the
complete degeneracy and uncoupling of the modes, so that
the antenna response is equivalent to that of an array of
cylindrical bars located at the same point in space. The next
step should be to include sources of noise in the system,
because they are always present in real experiments. Several
kinds of noise, such as Brownian noise and back-action of
the transducer, can be included by adding random force
terms to the right-hand side of (A2). As long as noise, finite
quality factor, time resolution of actual measurements and
other specific features of a real detection scheme are taken
into account in the study of the spherical detector, the
similarities between this detector and the bar array will tend
to vanish.

An important experimental issue refers to the linear
independence among the five points that have to be chosen
for the measurements (see equation 34). In the absence of
noise this seems to be the case, but it may not happen when
the noise is present in the system. Also, the particular distri-
bution of the five points chosen for the measurements may
become relevant in the presence of noise.

Finally, the case of a spherical antenna coupled to
resonant transducers should also be investigated in future
work.
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APPENDIX A: THE SPHERICAL
GRAVITATIONAL WAVE ANTENNA MODEL

In this appendix we present the Wagoner & Paik (1977)
model for the spherical antenna, which we use for the
solution of the inverse problem.

Let dd be the displacement of a point P within the spheri-
cal gravitational wave antenna relative to its equilibrium
position. Because the spherical detector has five eigenmodes
T, (x), 6d can be decomposed as

2

od(t, x)= 2. A, (07 (). (A1)

n=-2

The complete set of eigenfunctions T ,(x) is normalized such
that

J T,(x): 15(x) p(x) d*x =6, M,

where V} is the sphere volume, M is its effective mass and o
is its density.

Neglecting any sources of noise, and assuming that non-
resonant transducers are monitoring the sphere motions, the
basic equation governing the response of the detector is
(Misner, Thorne & Wheeler 1973)

A () +75 A1)+ 0FA () =M f,(2), (A2)

where 7, is the decay time of the antenna and w, is the
frequency of the five degenerate modes.
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f.(2) is the gravitational wave driving force on the detector,
given by

fn<t>=1J

The tensor 4,(t) can also be written in terms of the two
polarization states of the gravitational wave, namely ‘+’ and
‘x’ (see Misner et al. 1973). Introducing (Dhurandhar &
Tinto 1988) the complex null vector m,

i T (x) B () x 0 dx. (A3)

Vo i,j=1

(&, +iey), (A4)

where €, and é, are unit vectors in the x', y' directions,
respectively, of the wave axes, 4;(¢) can be put in the form

hi(6)=2[h, ()R (m;m)+ h(1)3(m;m;)]. (AS)
Explicitly, in the wave reference frame (assuming the trans-
verse-traceless gauge)
hyp=—hy,=h,, hyy=hyo=hy, all other &;=0.
(A6)
From (A3), T,,(x) can be put in the form
(%) =Ty, (x)=[a/r)F + b(r)RV]Y,,(6, §), (A7)

where [ is even and R is the radius of the sphere. a,(r) and
b/(r) are dimensionless, real, radial eigenfunctions.

From (A3), (A6) and (A7), it is found that the non-zero
components of the driving force® fV (¢) in the wave-based

frame are

FR0=7Y0 = 15 Rlay+36:) R0, (A8)
FY0=1Y0= [2Z Riay+38)hx (1),

2,-2 X 15 2 2

where

a,—(MR)'IJ (Nriodr (A9)
and

IBIEM_’J' b(r)r’odr. (A10)

We will assume that only the radial component of the
surface displacement will be measured. This observable
quantity is given by

R (t,x')=Fdd,
and in the wave frame it becomes

2 Am(Day(R) Y, (6, ¢).

I,m=-2

2Vt x)= (A11)

The superscript W in f}\,(¢) denotes that the function f,,(¢) is being
described in the wave frame.

Since we are dealing with gravitational waves, /= 2. Further-
more, from (A2) and (A8) we can show that the only non-
vanishing AY,, (1) are AY,(r)and AY _,(¢).

APPENDIX B: DETERMINATION OF
EQUATION (5)

From (4), we rewrite (2) as

3
2w, x)= Y Wi(o,x)D}(0,x), (B1)
iLj=1
where we defined
WY (o, x')= b, (0)R(m;m)+ hy(0)I(mm;) (B2)
and
’ R) (1)2
ﬁw E_az(
(@) M wy-o’+it,'o
(B3)
+2 . .
) J T5,(x)x'p(x) d’xY,,,(6, ¢).
Lm==-2]JV,

In order to put (B1) in a more convenient form, we must
solve integrals like (see equation B3)

~

3
I,= 2 R(mm)| Timx'pdx. (B4)
i,j=

,j=1 IV

Substitution of (A7) in (B4) yields

,

[ay(r)F+ba(r)RVI'Y (6, §) ¥/ p d’x.

3
IL,= Z m(mimj)
i=

=1 JV

(BS)
The relation
1 - b .
“R(mm)x'= > V,|=x'R(mm,)x’ (B6)
2 =1 4 )
substituted in (B5) implies
Im511m+12m9 (B7)
where (with dQ =sin 6d6dg)

IlmEJ'aZ(r)prZJ Y;m(e’ ¢);V

(B8)
x [:21— Z_ x"R(m,m,-)x’} dQ dr
and
L= RJ by(nrip erVY;",,,(o, ¢)-V
(B9)

[ 23: R(m,m) x]dQ.
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We can separate the spherical harmonics into its real and
imaginary parts as follows:

Y2m(0’ ¢)=§ {)’|m|(0, ¢)+I[Slgn(m)]ylm|+2(01 ¢)}’ (Blo)
with
-1, m<90,
sign(m)=4 0, m=0, (B11)
+1, m>0.

The y,,, are called real spherical harmonics and obey the
following relations

Jymyn aQ=4,,, (B12)

6
JVy,,,-Vy,,dQ=7 0 un- (B13)

Because of the structure of y,, (6, ¢), in the wave frame we
can also write (B6) as

3 ) 8
Vi|: Z xlm(mlmj)x]}=vi|:r2 'I_J;YZ(O’ ¢) ’ l=17 2’
=1

(B14)
Therefore (B8) becomes

11m=Jaz(r>r2pJ Y 2nl(6, )7V (r'y,) dQ %/%dr (B15)

and (B9) becomes

8_n dr,

1
L, =RJ bz(’)"ZPJ'VY;m(e, ¢)'V("2}’2) dQ 5 15

(B16)

withm=-2,-1,0, +1, +2.
Using (B12) and (B13), we obtain

/4n .
l,,,=RMa, E [6Im|,2 —i(sign m)6|m|+2,2]

and

(B17)

[4x L
L =RM3p, E[5|m|,2_1(51811 M) O\ mi+2,2); (B18)

where we used the definitions (A9) and (A10).
Therefore (B7) becomes

4 L
I,= % MR(a;+3,)[0),2 —i(sign ) 6422 (B19)
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A similar calculation yields

Mw

S(m,-m,-)J [ay(r)F +by(r)RV]Y3,(6, §) X' o d’x

1 Vo

iJ

4n Sl
= /E MR(a;+3p,)[0),,4 —i(sign n) 6.4 (B20)

Rewriting (B1) using (B2), (B3), (B19) and (B20), we get

3

# M0, x)= 2 [h(0)R(mm)+ h(0)3(mm,)]

* 8n

X[~ ay(R)R] (B21)

wi—w’+ity ' w\ 15

X(ay+38,)[0,1(0;,y2+0,,y4) — 0:2(0,,— 0,1 y4)).

This expression can again be put in the form (B1) as long
as

(az+3ﬂz)w2 @

w ’
v = —Ra,(R
Dylw,x) s )wg—-w2+iro"w 15

(B22)
X[0;1(0/1y2+0,2Y4) = 0,2(0,2y, — 0,1 y4)],

with DY, = — DY\ and DY, =D}, the other D)} =0. (These
choices ensure that the matrix DV is symmetric and trace-
free.)

APPENDIX C: PHYSICAL RELATIONSHIP
BETWEEN AN ARRAY OF BARS AND THE
SPHERICAL ANTENNA

When only the gravitational wave is exciting a resonant
detector (e.g. a cylindrical bar or a sphere with degenerate,
uncoupled modes) the antenna response is given by (A2). For
a bar antenna with mass Mj the only mode sensitive to gravi-
tational waves in the long, thin bar approximation is given by

BAR/ .\ _ a o X
T (x) exsmL.

L is the bar length (supposed much bigger than the cylinder
radius in this approximation) and &, is in the same direction
as the cylinder axis (see Fig. 4). From (A3), we find, in this
approximation,

£ =22 L) ()

For a spherical antenna with mass Mj, the reference frame
analogous to the one used in the above calculation is the
detection point frame (Fig. 1). Each transducer of the
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spherical detector can monitor only the radial motion of a
point on the sphere surface located on the é, direction of the
respective detection point frame. From this frame viewpoint,
the sphere quadrupole zero mode, T (x), is enough to
describe the motion of this point, and the corresponding
gravitational wave driving force is proportional to
(Merkowitz & Johnson 1995)

FEPHERE (1) = M Rh,o1), (C2)

with h(f)=(3/2) b, (2) sin®B.

Because of the proportionality of (C1) and (C2) we
conclude that an array of » cyclical bars will respond to the
gravitational wave in a similar way as the non-noisy, high-Q
spherical antenna monitored by » transducers.

© Royal Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1995MNRAS.274..670M

