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The object ive of this paper is to study the problem of gravitational capture 
in the regularized restricted three-body problem. A gravitational capture 
occurs when a massless particle changes its two-body energy around one 
celestial body from positive to negative without the use of non-gravitational 
forces. We studied the importance of several of the parameters involved for 
a capture in the Earth-Moon system, including the time required for the 
capture and the effects of the periapse distance. Then, we generalize those 
results for other binary systems, like the Sun -Earth, Sun -Mars and Sun -
Jupiter systems. Next, we cover the whole interval of the mass parameter µ 
(the mass ratio of the two primaries) and we study the gravitational capture 
in the interval 0.0 < µ < 0.5. The elliptical restricted problem is also 
considered as an option for the model. 

 
 

1 - Introduction 
 
The phenomenon called gravitational capture is a very interesting characteristic of some 
dynamical system, li ke the three- or four- body system in celestial mechanics. It is under 
investigation for some time now, specially by Belbruno (1987, 1990, 1992a, 1992b), 
Belbruno and Miller (1990a, 1990b), Miller and Belbruno (1991), Yamakawa et. al. (1992, 
1993a, 1993b), Krish (1991), Krish et. al. (1992), Vieira-Neto and Prado (1998). The basic 
idea is that a slightly hyperbolic orbit (with a residual positive energy) around a celestial 
body can be transformed in a slightly elliptic orbit (with a residual negative energy) 
without the use of any propulsive system. The only forces responsible for this capture 
are gravitational perturbations from one or more other bodies. One of the most important 
applications of this property is the construction of trajectories to the Moon.  In this 
maneuver, a spacecraft leaves a parking orbit around the Earth on its way to the Moon, 
makes a Swing-By with the Moon to go to a distant region and then, using the 
perturbations of the Sun and the Earth, it comes back to the Moon for a gravitational 
capture. This capture is only temporary, but an impulse can be applied during this 
temporary capture to make it permanent. The advantage is that this impulse has a 



magnitude smaller than the one required for a standard maneuver without the 
gravitational capture, and it means that there is a saving in fuel involved in this special 
type of maneuver. 
 In this paper, we show a general survey of this topic, including the major steps 
given in the recent years. We also show in more detail the gravitational capture in the 
planar circular and elliptical restricted three-body problem. In this model it is assumed 
the existence of three bodies: two primaries orbiting their center of mass in circular or 
elliptical orbits and a third particle with negligible mass traveling in the orbital plane of 
the two primaries, with its motion governed by them. We integrate backward in time 
trajectories that start close to the Moon (in the Earth-Moon system) that has a two-
body (Moon-Spacecraft) energy slightly negative (so, in an elliptic orbit). Then we 
show our own results in this field, including the verification of in which cases an escape 
from the Moon occurs and the measurement of the time elapsed until the escape is 
complete (we define that an escape is complete when the spacecraft is at a distance of 
100000 km from the Moon, to follow the same convention used by Yamakawa). Then, we 
make contour-plots to shown this elapsed time as a function of the angle between the 
initial velocity and the Earth-Moon line (horizontal axis) and the initial energy (vertical 
axis). We vary the angle from 0 to 360 degrees and the energy from 0 until the limit 
where we can find escapes. Those escape trajectories obtained by integration in 
backward time are equivalent of trajectories that result in gravitational capture in 
forward time. Those results allow us to make a table that shows the balance between 
time and savings obtained for each possible transfer. It also allow us to find trajectories 
that give us the maximum savings in the impulse that ma ke the final capture for a given 
time limit for the capture. They can be used to construct Belbruno-Miller transfers to the 
Moon. We also extend our study to verify the influence of the initial distance from the 
Moon in those results and we also consider others systems, like the Sun-Earth and the 
Sun-Jupiter. 
 
 
2 - Mathematical Model and Some Properties 
 
The model used in most of this paper is the well-known planar circular restricted three-
body problem. This model assumes that two main bodies (M1 and M2) are orbiting their 
common center of mass in circular Keplerian orbits and a third body (M3), with 
negligible mass, is orbiting these two primaries. The motion of M3 is supposed to stay 
in the plane of the motion of M1 and M 2 and it is affected by both primaries, but it does 
not affect their motion (Szebehely, 1967). The standard canonical system of units 
associated with this model is used (the unit of distance is the distance M1-M2 and the 
unit of time is chosen such that the period of the motion of M2 around M 1 is 2π). Under 
this model, the equations of motion are: 
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where Ω is the pseudo-potential function given by: 
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and x and y are two perpendicular axes with the origin in the center of mass of the 
system, with x pointing from M1 (that has coordinates x = -µ, y = 0) to M2 (that has 
coordinates x = 1-µ, y = 0).  

One of the most important reasons why the rotating frame is more suitable to 
describe the motion of M3 in the three-body problem is the existence of an in variant, 
that is called Jacobi integral (or energy integral). There are many ways to define the 
Jacobi integral and the reference system used to describe this problem (see Szebehely, 
1967, pg. 449). In this paper the definitions used by Broucke (Broucke, 1979) are 
followed. Under this version, the Jacobi integral is given by:  
  

( ) ( ) Const = y,x-y+x2
1=J 22 Ω&&  

(3) 

                     
Another important property needed in this paper is the mirror image theorem 

(Miele, 60). It is an important and useful property of the planar circular restricted three-
body problem. It says that: "In the rotating coordinate system, for each trajectory 
defined by (t)y (t),x y(t), x(t), &&  that is found, there is a symmetric (in relation to the "x" 

axis) trajectory defined by t),x(-t),-y(-  (-t)y(-t),-x- && ".  

 
 
3 - Lamaître Regularization 
 
The equations of motion given by (1) are right, but they are not suitable for numerical 
integration in trajectories passing near one of the primaries. The reason is that the 
positions of both primaries are singularities in the potential U (since r1 or r2 goes to 
zero, or near zero) and the precision of the numerical integration is affected every time 
this situation occurs. 

The solution for this problem is to use regularization, that consists in a 
substitution of the variables for position (x-y) and time (t) by another set of variables 
(ω1, ω2, τ), such that the singularities are eliminated in these new variables. Several 
transformations with this goal are available in the literature (see Szebehely, 1967), 
chapter 3), like Thiele-Burrau, Lamaître and Birkhoff. They are called "global 
regularization", to emphasize that both singularities are eliminated at the same time.  

The case where only one singularity is eliminated at a time is called "local 
regularization". For the present research the Lamaître's regularization is used. To 
perform the required transformation, it is necessary first to define a new complex 
variable  q = q1+i*q2 (i is the imaginary unit), with q1 and q 2 given by: 
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Now, in terms of q, the transformation involved in Lamaître regularization is 
given by: 
 










ω
ωω 2

2 1
+

4
1
 = )(f = q  

(6) 

                            
for the old variables for position (x-y) and: 
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, for the time. 

In these new variables the equation of motion of the system is: 
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where ω = ω1 + i*ω2 is the new complex variable for position, ω' and ω" 

denotes first and second derivatives of ω with respect to the regularized time τ, 
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where C = µ(1-µ) - 2J. 
Equation (8) in complex variable can be separated in two second order 

equations in the real variables ω1 and ω2 and organized in the standard first order form, 
that is more suitable for numerical integration. The final form, after defining the 
regularized velocity components ω3 and ω4 as  1 3ω ω'=  and 2 4ω ω'= , is: 
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Another set of equations necessary for this research is the one that relates 

velocity components from one set of variables to another. They are: 
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4 - The Gravitational Capture 
 
To define the gravitational capture it is necessary to use a few basic concepts from the 
two -body celestial mechanics. Those concepts are:  
a) Closed orbit: a spacecraft in a orbit around a central body is in a closed orbit if its 
velocity is not large enough to escape from the central body. It remains always inside a 
sphere centered in the central body;  
b) Open orbit: a spacecraft in a orbit around a central body is in a open orbit if its 
velocity is large enough to escape from the central body. In this case the spacecraft can 
go to infinity, no matter what is its initial position. 

To identify the type of orbit of the spacecraft it is possible to use the definition 
of the two -body energy (E) of a massless particle orbiting a central body. The equation 

is 
r2

VE
2 µ

−= , where V is the velocity of the spacecraft relative to the central body, µ 

is the gravitational parameter of the central body and r is the distance between the 
spacecraft and the central body.  

With this definition it is possible to say that the spacecraft is in a open orbit if 
its energy is positive and that it is in a closed orbit if its energy is negative. In the two-
body problem this energy remains constant and it is necessary to apply an external 
force to change it. This energy is no longer constant in the restricted three-body 
problem. Then, for some initial conditions, a spacecraft can alternate the sign of its 
energy from positive to negative or from negative to positive. When the variation is 
from positive to negative the maneuver is called a "gravitational capture", to emphasize 
that the spacecraft was captured by gravitational forces only, with no use of an external 
force, like the thrust of an engine. The opposite situation, when the energy changes 
from negative to positive is called a "gravitational escape". In the restricted three-body 
problem there is no permanent gravitational capture. If the energy changes from positive 
to negative, it will change back to positive in the future. The mechanism of this capture 
is very well explained in Yamakawa (1992). 
 
 
5 - The Belbruno-Miller Trajectories 
 
One of the most important applications of the gravitational capture can be found in the 
Belbruno-Miller trajectories Belbruno (1987, 1990, 1992a, 1992b), Belbruno and Miller 



(1990a, 1990b), Miller and Belbruno (1991), Yamakawa et. al. (1992, 1993a, 1993b), Krish 
(1991), Krish et. al. (1992), Yamakawa (1992). The concept of gravitational capture is 
used together with the basic ideas of the gravity-assisted maneuver and the bi-elliptic 
transfer orbit to generate a trajectory that requires a fuel consumption smaller than the 
one required by the Hohmann (1925) transfer. This maneuver consists of the following 
steps: i) the spacecraft is launched from an initial circular orbit with radius r0 to an 
elliptic orbit that crosses the Moon's path; ii) a Swing-By with the Moon is used to 
increase the apoapsis of the elliptic orbit. This step completes the first part of the bi-
elliptic transfer, with some savings in ∆V due to the energy gained from the Swing-By; 
iii) With the spacecraft at the apoapsis, a second very small impulse is applied to rise 
the periapsis to the Earth-Moon distance. Solar effects can reduce even more the 
magnitude of this impulse; iv) The transfer is completed with the gravitational capture of 
the spacecraft by the Moon. 
 
 
6 - The Elliptic Restricted Three-Body Problem 
 
After studying the circular problem, we give attention to the elliptic problem. For this 
case, the equations of motion for the spacecraft are assumed to be the ones valid for the 
well-known planar restricted elliptic three-body problem. We also use the standard 
canonical sys tem of units, which implies that: 
1. The unit of distance is the semi-major axis of the orbit M1 and M2; 
2. The angular velocity (ω) of the motion of M1 and M2 is assumed to be one; 

3. The mass of the smaller primary (M2) is given by µ = 
21

2
mm

m
+

 (where m1 and m2 are 

the real masses of M1 and M2, respectively) and the mass of M2 is (1-µ), to make the 
total mass of the system unitary; 
4. The unit of time is defined such that the period of the motion of the two primaries is 
2π; 
5. The gravitational constant is one. 

There are several systems that can be used to describe the elliptic restricted 
problem (Szebehely, 1967). In this section the fixed (inertial) and the rotating-pulsating 
systems are described. 

In the fixed system the origin is located in the barycenter of the two heavy 
masses M1 and M2. The horizontal axis x  is the line connecting M1 and M2 and the 
vertical axis y  is perpendicular to x . In this system the position of M1 and M2 is: 
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where r is the distance between the two primaries, given by 
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true anomaly of M2. 
Then, in this system, the equations of motion of the massless particle are: 
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 where ( )″ means the second derivative with respect to time, r 1 and r2 are the distances 

from M 1 and M2, given by: 
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Now, we will introduce the rotating-pulsating system of reference. In this 

system, the origin is again the center of mass of the two massive primaries. The 
horizontal axis (x) is the line that connect the two primaries. It rotates with a variable 
angular velocity in a such way that the two massive primaries are always in this axis. 
The vertical axis (y) is perpendicular to the x axis. Besides the rotation, the system also 
pulsates in a such way to keep the massive primaries in fixed positions. To achieve this 
situation we have to multiply the unit of distances for the instantaneous value of the 
distance between the two primaries (r). In a system like this one, the positions of the 
primaries are: 

µ−=1x , µ−=1x2 , 0yy 21 ==  (20) 

 
 In this system, the equations of motion por the massless particle are: 
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and we also have an equation to relate time and the true anomaly of the primaries: 
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where the overdot means derivative with respect to the true anomaly of the primaries 
and p is the semi-lactus rectum of the ellipse. 
 The equations that relates one system to another are: 
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for the positions and: 
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7 - Results  
 
To quantify the "gravitational captures" we studied this problem under several different 
initial conditions. The assumptions made for the numerical examples presented in the 
first part of this section are (some of them will be changed later, to generalize our 
results): 
i) The system of primaries used is the Earth-Moon system;  



ii) The motion is planar everywhere;  
iii) The starting point of each trajectory is 100 km from the surface of the Moon (rp from 
the center of the Moon). Then, to specify the initial position completely it is necessary 
to give the value of one more variable. The variable used is the angle α, an angle 
measured from the Earth-Moon line, in the counter-clock-wise direction and starting in 
the side opposite to the Earth (see Fig. 1);  
iv) The magnitude of the initial velocity is calculated from a given value of 

r
2VE2C 2

3
µ

−== , where E is the two-body energy of the spacecraft with respect to 

the Moon, V is the velocity of the spacecraft, µ is the gravitational parameter of the 
Moon and r is the distance between the spacecraft and the center of the Moon. The 
direction of the velocity is assumed to be perpendicular to the line spacecraft -center of 
the Moon and pointing to the counter-clock-wise direction  for a direct orbit and to the 
clock-wise direction for a retrograde orbit (see Fig. 1);  
v) To consider that an escape occurred, we request two conditions (following the 
conditions used in Yamakawa (1992)): i) that the spacecraft reaches a distance of 100000 
km (0.26 canonical units) from the center of the Moon in a time shorter than 50 days; ii) 
the energy is positive at this point. Fig. 1 shows the point P where the escape occurs. 
The angle that specifies this point is called the "entry position angle" and it is 
designated with the letter β. 
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Fig. 1 - Variables to specify the initial conditions of the spacecraft. 
 

Then, for each initial position the trajectories were numerically integrated 
backward in time. Every escape in backward time corresponds to a "gravitational 
capture" in forward time. The time of flight until an escape occurs is obtained. Then, the 
results are organized and plotted in the next figures. Fig. 2 shows C3 plotted in a system 
of axis that has the time of flight for escape in canonical units in the horizontal axis and 
the angle α in degrees in the vertical axis. To avoid an excessive number of lines that 



would make the plots unclear, we split this figure in three parts. In the first part we 
plotted the cases where C3 = 0, -0.01, -0.02 (the inner curve represents C3 = 0 and the 
outer curve represents C3 = -0.02). From this part of the figure it is possible to see the 
existence of two regions of minimum time of flight for a given value of C3. Those 
minimums are close to 150° and 325°. They correspond to "windows" for the capture of 
the spacecraft. This phenomenon occurs for all the values of C3. In the second part of 
this figure we plotted the cases where C3 = 0, -0.04, -0.08, that confirm this behavior. In 
the third part of this figure we plotted the cases where C3 = 0, -0.1, -0.2 to give an idea of 
whole interval studied. We can see that not all the lines are continuos. It means that, for 
some values of C3, not all the values of α allow an escape to occur. For C3 ≅  -0.2 (close 
to the minimum value of C3 that allows an escape) only the regions close to the ranges 
0-20°, 160-220° and 320-360° has escapes. Those plots give important information to 
mission designers, because they have estimates for the time required for the 
gravitational capture. 

 
 

0

100

200

300

0.4 0.5 0.6 0.7 0.8 0.9

time (canonical units)

-0.02

-0.01

0

 
 
 

Fig. 2 - C3 for "Gravitational Captures". 
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Fig. 2 (Cont.) - C3 for "Gravitational Captures". 
 

Then, we calculated the value of the minimum energy that allows an escape for 
every initial angle α. The results are shown in Fig. 3. The radial variable is the absolute 
value of the minimum value of C3 and the angular variable is the angle α. Those results 
are very similar to the results obtained previously by Yamakawa (1992). We can see the 
existence of angles that provides maximum savings, like the interval 150-200°. We also 
can see that a direct orbit usually provides more savings than the retrograde orbits. 
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Fig. 3 - Absolute values of the minimum C3 for each α (direct and retrograde orbits).  
 
 

Fig. 4 shows the entry position angle β as a function of C3 for several values of 
α (0, 60, 120, 180, 240, 300 degrees). The range for the angle β was changed from 0 to 360 
degrees to -90 to 270 degrees to avoid discontinuities in some families. Yamakawa and 
his colleagues (Yamakawa 1992) show similar results for the case α = 180°. 

Then, we start to generalize our results a bit. Our next step is to study the 
effects of the variation of the initial distance (r p) from the Moon. We calculate and plot 
the minimum C3 as a function of the entry position angle for several values of the initial 
distance. Fig. 5 shows those results. The figure is separated in two parts: the first one 
shows the results when rp is close to the surface of the Moon (1838 km to 20838 km) 
and the second one shows the regions more distant from the surface of the Moon 
(20838 km to 50838 km). The results show that the plots seem to rotate in the clock-wise 
direction when rp increases. We can also see that, for some values of the angle α, the 
increase of rp makes the absolute values of C3 to increase (so, the real value decreases), 
like in the range 0-30°, and in some others it has the opposite effect, like in the 120-150° 
interval. So, there is no general rule to govern those effects.  
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Fig. 4 - Entry position angle β as a function of C3. 
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Fig. 4 (cont.) - Entry position angle β as a function of C3. 
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Fig. 5 - Absolute values of the minimum C3 for each α (several values for the initial 
distance). 

 
 

Our next generalization is to extended those results for other systems than the 
Earth-Moon. Fig. 6 shows the results for the Sun-Jupiter, Sun-Mars and Sun-Earth. 
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Fig. 6 - Results for the Sun-Jupiter, Sun-Mars and Sun-Earth systems. 
 
We clearly see that the savings provided by the gravitational capture in those cases are 
a lot smaller than in the Earth-Moon case, but they still exist. The savings decrease 
when the mass of the planet decreases. The plots also show that the "windows" of 
shorter times are preserved.  

As an example of the calculations that we made for th eelliptical case, we show 
the results for the cases where the eccentricity of the primaries is kept constant and the 



true anomaly assumes the values 0°, 90°, 180°, 270°. Figure 7 shows the numerical 
results in plots where the radial variable is the magnitude of C3 and the angular variable 
is the angle α. We can see that the savings are greater where the secondary body is at 
periapse (γ = 0°), what is expected, since the smaller distance between the two primaries 
increase the effect of the third body (the main cause of the savings). We can also see 
the regions of maximum and minimum savings. In figure 8 we can see the direct effect of 
the eccentricity. In this figure the true anomaly is  kept constant at γ = 0° and the 
eccentricity assumes the values 0.0, 0.1, 0.5 and 0.8. We can see the regions of maximum 
and minimum savings and we can conclude that when the eccentricity increases, the 
magnitude of the savings also increases. 
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Figure 7 - Minimum C3 for e = 0.5 and γ = 0°, 90°, 180°, 270°. 
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Figure 7 (Cont.) - Minimum C3 for e = 0.5 and γ = 0°, 90°, 180°, 270°. 
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Figure 8 - Minimum C3 for γ = 0o and e = 0.0, 0.1, 0.5, 0.8 



 
 

 

0 0.2 0.4 0.6 0.8 1

0°

30°

60°
90°

120°

150°

180°

210°

240°
270°

300°

330°

B B
B
B
B

B
B

BBBB
B

B

B
B

B

B
B

B

B

B

B
B

B B B
B

B

B

B

 
 

Figure 8  (Cont.) - Minimum C3 for γ = 0o and e = 0.0, 0.1, 0.5, 0.8 
 
 
8 - Conclusion 
 
This paper studied the "gravitational capture" in the regularized restricted three-body 
problem. Our results confirmed the results found previously by Yamakawa and his 
colleagues,  that showed the characteristics and importance of this problem for Earth-
Moon transfers. We also showed the regions of minimum energy for the capture with 
the correspondent time of flight. We found the existence of "windows" with short time 
for capture. Then we extended those results by varying the initial distance from the 
Moon and quantifying its effect. Next, new results were shown for other systems in the 
Solar System, like the Sun-Earth, Sun-Mars and Sun-Jupiter systems. Those results 
showed the existence of savings in those cases, but with smaller magnitudes. We also 
generalized this research for the interval 0.0 < µ < 0.5 and we concluded that the 
magnitude of the C3 minimum increases very much with µ. Those results are useful to 
design trajectories similar to the Belbruno-Miller transfers to the Moon. We also 
developed a numerical algorithm to study the problem of gravitational capture in the 
elliptical restricted three-body problem. The effect of the tru e anomaly for a fixed 
eccentricity and the effect of the eccentricity for a fixed true anomaly were studied. We 
showed the numerical results and we concluded that the savings increase with the 
eccentricity and when the true anomaly goes close to zero. 
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