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High-dimensional interior crisis in the Kuramoto-Sivashinsky equation
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An investigation of interior crisis of high dimensions in an extended spatiotemporal system exemplified by
the Kuramoto-Sivashinsky equation is reported. It is shown that unstable periodic orbits and their associated
invariant manifolds in the Poincare´ hyperplane can effectively characterize the global bifurcation dynamics of
high-dimensional systems.
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The Kuramoto-Sivashinsky~KS! equation is a widely
studied nonlinear reaction-diffusion equation that exhibit
wealth of nonlinear and turbulent states found in spatia
extended systems. It was first derived to describe the non
ear saturation of the collisional trapped-ion mode, a d
wave associated with the oscillation of plasma partic
trapped in magnetic wells created by the inhomogene
magnetic field of a tokamak@1#. This equation is also rel
evant for other nonlinear plasma phenomena such as
edge-localized-mode in tokamaks@2#, glow-discharge struc-
tures in near-electrode plasma regions@3#, nonlinear cou-
pling of Langmuir and ion-acoustic waves@4#, and ionization
waves in a neon glow discharge@5#, all of which can be
modeled by the Ginzburg-Landau-type equation. It has b
proved that the KS equation is closely related to
Ginzburg-Landau equation since under certain approxi
tions it governs the phase evolution of the complex am
tude of the Ginzburg-Landau equation@6,7#. In addition to
plasma applications, the KS equation can model react
diffusion systems in chemical reactions@6#, hydrodynamical
instability in laminar flame fronts@8#, Rayleigh-Be´nard con-
vection and flow of a viscous fluid down a vertical plane@9#,
nonlinear saturation of Rayleigh-Taylor instability in th
films @10#, and the dynamics of bright spots formed by se
focusing of a laser beam@11#.

Crises are global bifurcations that cause sudden cha
in chaotic attractors resulting from the collision of a chao
attractor with an unstable periodic orbit~UPO! @12#. Interior
and boundary crises have been experimentally observed
CO2 laser@13#, two ions in a Paul trap@14#, a magnetoelastic
ribbon @15#, a pendulum@16#, and a leaky-faucet@17#. Re-
cent theoretical studies have indicated that crises can ap
in plasmas@18–21#. Intermittency of Alfvén waves in the
solar wind plasma can be induced by an interior crisis@18#.
Double boundary crises of Alfve´n waves are seen in a com
plex plasma region in the presence of a large numbe
coexisting attractors@19#. Other types of global bifurcation
that lead to crisis and torus breakdown in plasmas have b
identified theoretically@20# and experimentally@21#.

Most previous analysis of crises are restricted to lo
dimensional dynamical systems described by maps or o
nary differential equations@12,18,19#. In this paper, we re-
port interior crisis in an extended, spatiotemporal syst
described by the KS equation. High-dimensional chaotic
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namical systems may provide a crucial link between lo
dimensional chaotic dynamical systems and spatiotemp
chaos~‘‘intermediate’’ turbulence! @7#. It was shown that the
periodic orbit theory@22# can determine the global averag
of the KS equation using the fundamental unstable lim
cycles @23#. We argue in this paper that unstable period
orbits and their associated invariant manifolds in the Po
caréplane can be an effective tool for characterizing hig
dimensional global bifurcations in the KS equation, as h
been shown in the deterministic dynamical systems of l
dimension@12,18,19#.

The one-dimensional damped Kuramoto-Sivashins
equation can be written as@1,6,7,10#

] tu52]x
2u2n]x

4u2]xu
2, ~1!

where u(x,t) is subject to periodic boundary condition
u(x,t)5u(x12p,t) andn is a ‘‘viscosity’’ damping param-
eter. We adopt the spectral method by expanding the s
tions in a discrete spatial Fourier series

u~x,t !5 (
k52`

`

bk~ t !eikx. ~2!

A substitution of Eq.~2! into Eq. ~1! yields an infinite set of
ordinary differential equations for the complex Fourier co
ficientsbk(t),

ḃk~ t !5~k22nk4!bk~ t !2 ik (
m52`

`

bm~ t !bk2m~ t !, ~3!

where the dot denotes derivative with respect tot. Since
u(x,t) is a real variable, it follows thatb2k5bk* . We restrict
our investigation to the subspace of odd functionsu(x,t)5
2u(2x,t) and assume thatbk(t) are purely imaginary by
settingbk(t)52 iak(t)/2, whereak(t) are real. Under these
circumstances, Eq.~3! becomes

ȧk~ t !5~k22nk4!ak~ t !1
k

2 (
m52`

`

am~ t !ak2m~ t !, ~4!
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wherea050, 1<(k,m)<N, andN is the truncation order
We solve numerically the high-dimensional dynamical s
tem given by Eq.~4! using a fourth-order variable ste
Runge-Kutta integration routine. We chooseN516, since
numerical tests indicate that for the range of the control
rametern used in this paper the solution dynamics rema
essentially unaltered forN.16. We adopt a Poincare´ map as
the (N21)-dimensional hyperplane defined bya150, with
ȧ1.0.

A bifurcation diagram can be obtained from the numeri
solutions of the 16-mode truncation of Eq.~4! by varying the
control parametern. Figure 1~a! shows a period-3~p-3! win-

FIG. 1. ~a! Bifurcation diagram ofa6 as a function ofn. IC
denotes interior crisis and SN denotes saddle-node bifurcation.
dotted lines represent the period-3 unstable periodic orbit.~b! Varia-
tion of the maximum Lyapunov exponentlmax with n. ~c! Variation
of the correlation lengthj with n.
03520
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dow where we plot the Poincare´ points of the Fourier com-
ponenta6 as a function ofn. The corresponding behavior o
the maximum Lyapunov exponent, calculated by the W
algorithm @24#, is shown in Fig. 1~b!. Evidently, the high-
dimensional temporal dynamics of the KS equation preser
the typical dynamical features of a low-dimensional dynam
cal system@12,18,19#. The dotted lines in Fig. 1~a! denote
the Poincare´ points of the p-3 unstable periodic orbit whic
emerges via a saddle-node bifurcation atn50.029 924 98,
marked SN in Fig. 1~a!. In this paper, we will analyze the
role played by this p-3 UPO in the onset of interior crisis
n IC50.029 920 21, marked IC in Fig. 1.

The interior crisis atn IC occurs when the p-3 UPO col
lides head on with the three-band weak strange attra
evolved from the cascade of period-doubling bifurcations,
seen in Fig. 1~a!. The interior crisis leads to a sudden expa
sion of the strange attractor, turning the weak strange att
tor ~WSA! into a strong strange attractor~SSA!, as seen in
Fig. 2. Figure 2 is a three-dimensional projectio
(a1 ,a10,a16) of the strong strange attractor~light line! de-
fined in the 15-dimensional Poincare´ hyperplane right after
crisis (n50.029 920 20), superimposed by the three-ba
weak strange attractor ~dark line! at crisis (n
50.029 920 21). The interior crisis is characterized by
abrupt jump in the value of the maximum Lyapunov exp
nent, as indicated in Fig. 1~b!. At the crisis point (n IC)
lmax50.35, whereas after crisis atn50.029 920 06,lmax
50.62. Thus, the interior crisis under consideration results
a sudden increase in the temporal chaoticity of
Kuramoto-Sivashinsky system.

The spatiotemporal pattern ofu(x,t) after the interior cri-
sis (n50.029 920 06) is plotted in Fig. 3. Note that for th
chosen value of the damping parametern and the spatial
system size L52p, the dynamics of the Kuramoto
Sivashinsky equation is chaotic in time, but coherent
space@23#. In fact, the spatial coherence remains basica
unaltered throughout the whole range ofn used in Fig. 1~a!,
as indicated by the correlation lengthj @25# in Fig. 1~c!.

On the Poincare´ hyperplane, an unstable periodic orb
turns into a saddle fixed point, with its associated invari

he

FIG. 2. Three-dimensional projection (a1 ,a10,a16) of the strong
strange attractor SSA~light line! defined in the 15-dimensiona
Poincare´ hyperplane right after crisis atn50.029 920 20, superim-
posed by the three-band weak strange attractor WSA~dark line! at
crisis (n50.029 920 21).
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stable and unstable manifolds@26#. At crisis n IC only one of
the 16 stability eigenvalues for the p-3 UPO has an abso
value greater than 1, implying that the invariant unsta
manifolds are one-dimensional. Of the remaining eigenv
ues, one has an absolute value equal to unity and all the o
14 have absolute values less than 1, implying that the inv
ant stable manifolds have dimension 14. We will focus on
computation of the one-dimensional invariant unstable ma
folds since the computation of the invariant stable manifo
of such high dimension is beyond the current state-of-the
@27#. Figure 4 is a plot of the projection onto three ax
(a1 ,a10,a16) of the invariant unstable manifolds of the p
saddle ~denoted by three crosses! right after crisis (n
50.029 920 20), computed from the You-Kostelich-Yor
~YKY ! algorithm@28#. The invariant unstable manifolds con
sist of infinitely many distinct, discrete Poincare´ points
whose backward orbits converge to the saddle@26#.

We proceed next with the characterization of the hig
dimensional crisis atn IC by showing in Fig. 5 the collision of
the weak strange attractor with the p-3 UPO in the redu
two-dimensional Poincare´ plane (a5 versusa6), in the vicin-
ity of the upper fixed point in Fig. 4. The dark line denot
the strange attractor, and the light line denotes the num
cally computed invariant unstable manifolds of the sadd

FIG. 3. The spatiotemporal pattern ofu(x,t) after crisis atn
50.029 920 06. The system dynamics is chaotic in time but co
ent in space.

FIG. 4. Three-dimensional projection (a1 ,a10,a16) of the in-
variant unstable manifolds of the period-3 saddle~crosses! right
after crisis atn50.029 920 20.
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Figures 5~a!–5~c! display the dynamics before, at, and aft
crisis, respectively. Note that the strange attractor alw
‘‘overlaps’’ the invariant unstable manifolds. Figure 5~b!
shows the ‘‘head-on’’ collision of the weak strange attrac
with the p-3 UPO atn IC , which proves the occurrence of a
interior crisis @12,19,26#. This collision leads to an abrup
expansion of the strange attractor and a sudden increas
the system chaoticity, as seen in Fig. 5~c!. A comparison of
Figs. 2 and 4 confirms that, after crisis, the strong stra
attractor and the invariant unstable manifolds ‘‘overlap’’ wi
each other.

In conclusion, we have shown that high-dimensional in
rior crisis can be found in spatially extended systems exe
plified by the Kuramoto-Sivashinsky equation. Although w
have adopted a 16-mode truncated system in our analysis

r-

FIG. 5. The plots of the strange attractor~dark line! and invari-
ant unstable manifolds~light lines! of the saddle before~a!, at ~b!,
and after~c! crisis. The cross denotes one of the saddle points.
3-3
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the calculations performed can be extended to an arbit
high number (N,`) of modes for an appropriate choice
n andL. The identification of the unstable periodic orbits a
their invariant manifolds is fundamental for monitoring a
controlling the instabilities, chaos, and turbulence in to
mak experiments@29#. Further theoretical and experiment
studies of high-dimensional dynamical systems, followi
the methodology developed in this paper, may improve c
ce

,

et
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finement in tokamaks and the understanding of other co
plex systems.
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