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Abstract - In the present paper we propose a soh- 
tion for overcoming possible Lacks of covering of the 
h u t  space in fuzzy rule bases. O w  approach is based 
on similarity-based reasoning and considers a kind of 
extrapohtive inference rule which enlarges the range 
of applicability of a fuzzy rule by replacing condi- 
tions in the premise of the form “X is A” by “X is 
appozimate lyA”,  where approximately4 is the image 
of A by a suitable fiuzy similarity relation. 

implicativebased systems use truly implication opera- 
tors (as opposed to conjunction operators) to implement 
the if-then operator and a t-norm, usually the min oper- 
ator, to aggregate the outputs. Also in (31, the authors 
provide a typology for conjunction and implication-based 
rules based on their different semantics. 

Here we adopt the following basic terminology, regard- 
ing some characteristics that a fuzzy rulebased system 
may present: . A FRS couers the input space if for each precise in- I. INTRODUCTION 

The term fuzzy rule based system, FRS for short, is 
a common designation to systems that make use of a 
knowledge base K B  consisting of a set of rules of the 
kind “If X is A; then Y is Bi”, where both the Ai’s and 
Bi’s are fuzzy sets [Z], [7], together with an approximate 
inference mechanism. Ideally, such systems should be ca- 
pable to produce, for any given input A‘, a corresponding 
global output B‘ that is useful, in the sense that B‘ is 
neither the empty set nor the whole universe of discourse 
of the output variable. 

In [3], fuzzy rules are basically classified as conjunctive 
or implicative-based, depending on the kind of if-then o p  
erator employed to define, from the fuzzy sets appearing 
in the premise and in the conclusion, the fuzzy relation 
induced by each rule. If we think of a fuzzy rulebased 
system as modeling an imprecise description of a graph, 
the two models of rules respectively correspond to two 
possible ways of specifying an imprecise graph: either as 
a disjunction of fuzzy points UierA; x B;, or as a con- 
junction of fuzzy implications nitrAi -+ E;. Therefore, 
conjunctive rulebased systems, widely used in real-world 
applications, use a t-norm (i.e. a conjunction operator), 
such as minor product, in order to implement the if-then 
operator and a t-conorm (i.e. a disjunction operator), 
usually the max operator, to aggregate the output issued 
by the rules fired by a given input. On the other hand, 
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put X = zo there is at least one fuzzy rule “If X is 
Ai then Y is Bi” for which Ai(to) > 0. In implica 
tive systems, this amounts to guarantee, under ger- 
eral conditions, that outputs will never be the whole 
universe of Y, whereas in conjunctive this amounts 
to guarantee that we never get an empty output. 
A FRS is (potentially) inconsistent if there exists an 
input such that the rules fired by that input produce 
completely “conflicting” outputs (this corresponds 
to the notion of coherence in [4], [5] ) .  An implicative 
system may easily get into inconsistency problems as 
soon as an input can simultaneously fire rules with 
incompatible conclusions (i.e. with empty intersec- 
tion). In contrast, due to their different nature, con- 
junctive systems are never inconsistent from a logical 
point of view, however, it can be argued that the in- 
ference of non-convex outputs can be considered as 
a kind of inconsistency (see e.g. [5],  [8]). 

According to this terminology, a FRS may present at 
least two different kinds of defficiencies; one regarding 
the covering of the input space, and the other concern- 
ing the consistency. Although similar, solutions to these 
problems are of different nature. Namely, in what re- 
gards Consistency in implication-based systems, given an 
inconsistent FRS, the task is to find another consistent 
(and less informative) FRS’ as close as possible to FRS. 
On the other hand, solving the covering problem consists 
of completing knowledge: given a FRS in which the input 
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space is not fully covered, the task is to find a FRS’, as 
close as possible to FRS, that covers all the input space. 
When both problems are present in a given application 
they can be solved by first addressing the covering prob- 
lem, resulting in a new (and possibly inconsistent) FRS’, 
and then restoring the consistency of FE’ ,  if needed. 

In a companion paper [SI we present an approach to 
restore consistency for a class of implication-based fuzzy 
rules known as gradual rules [3], corresponding to state- 
ments of the form “the more X is A;, the more Y is Bi”, 
using the characterization of consistency conditions given 
by Dubois, Prade and Ughetto in [4] ,  [5]. Our approach 
involves the use of similarity relations to resolve potential 
inconsistencies among rules by weakening them. Namely, 
the solution proposed amounts to applying a weakening 
inference rule of the form 

: [WK]  If X is A then Y is B 
If X is A then Y is “approzimate1yE” 

to some of (or all) the rules in a rule base K B  and re- 
placing the original ones hy the new derived weaker rules. 
Obviously, such a transformation is sound in the sense 
that, from a logical point of view, the new rule base KB’ 
can be considered as a logical consequence of the original 
one, i.e. we could write K B  + KB’ ,  since KB’ is less 
informative than K B .  

In the present paper we propose a solution for the 
covering problem, also based on similarity reasoning. 
Namely, when the rule base does not fully cover the input 
space what we propose is to  consider a kind of extrap 
olative inference rule of the form 

: [EX]  If X is A then Y is B 
If X is “approzimatelyA” then Y is B 

or, alternatively, an even intuitively better rule of the 
form 

: [EX‘] If X is A then Y is B 
If X is “approzimatelyA” 
then Y is “approzimatelyJ3” 

Such inference rules are indeed extrapolative mechanisms 
since they enlarge the range of applicability of the origi- 
nal rule, and of course, they are not logically sound rules 
in contrast to the above inference rule [ W K ] .  So, in 
this case, the new rule base KB’, obtained from a orig- 
inal K B  by applying the inference rules [EX]  or [EX’] 
to some of the rules in K B ,  is indeed more informative 
than K B ,  and thus it cannot be just a logical conse- 
quence of K B ,  but of K B  together with some extra do- 
main knowledge D. Then we could write K B  KB’ 
but { K B , D }  + KB’.  
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The paper is organized as follows. In Section I1 we de- 
scribe how to extrapolate a set of rules in order to cover 
a given set of uncovered input points. This mechanism 
is used in Section I11 to outline a method to solve the 
covering problem for a FRS. The extrapolation process 
is applied over specific subsets of rules, which can be dif- 
ferent depending on the set of input points to be covered. 
How to select these subset of rules is described in Section 
Iv. 

11. COVERING BY SIMILARITY-BASED 

Assume we have a set of rules 

RULE SET EXTRAPOLATION 

K = {Rj : If X is Aj then Y is B j } j E ~ ,  

where, in the general case, X = ( X I , .  . . , X n )  is a multi- 
dimensional variable taking values on a domain R = RI x 
. . . x R, and A, = ( A j l , .  . . ,A,,,), with Aj; being a fuzzy 
sets of 0;. 

The set of points of the input domain R uncovered by 
K is the set 

UK =  tu^,.. . ,tun) I V j  E J,3i : 15 i 5 n,Aj; (u; )  = O } .  

Let us consider a set of uncovered points 0 # U UK. 
To solve the covering problem of K relative to the region 
U means to produce another rule set K’,  by applying the 
extrapolative mechanism [EX’] to the rules in K ,  such 
that it covers U and which is as close to K as possible, 
i.e. KB’ contains as less extra knowledge as possible in 
relation to K B .  

What the inference rule [EX’] does,is to transform 
a fuzzy rule by relaxing the premise conditions of the 
kind “X is A” into conditions “X is approzimatelyA. 
Within our similarity-based approach, if A is a fuzzy set 
defined on a domain R,  we interpret approzimately-4 as 
the image of A by some similarity relation S on R ,  S o  A,  
defined as the the sup-min composition 

(S o A)(w) = sup min(S(tu, tu‘), A(tu’)). 
W‘ER 

Then, the above extrapolation rule [EX’] can be rewritten 
as 

: [EX’] If X is A then Y is B 
If X is SX o A then Y is SY 0 B 

for some suitable similarity relations Sx and Sy on the 
input and output domains respectively. 

The set of similarity relations on a domain R form a 
lattice (not linearly ordered) with respect to the point- 
wise ordering (or fuzzy-set inclusion) relationship. The 
top of the lattice is the similarity ST which makes all the 
elements in the domain maximally similar: ST(V, U‘) = 1 
for all U , U ’  E U y .  The bottom of the lattice SL is 



the classical identity relation: S,(v,v’) = 1 if v = U’, 

S~(v ,v ’ )  = 0, otherwise. The higher a similarity is 
placed in the lattice (i.e. the bigger are their d u e s ) ,  
the less discriminating it is. 

From a knowledge representation point of view, it is 
clear that the bigger is a similarity relation S the more 
imprecise is the set A; = S o Aj,  and the stronger is a 
rule 

R;: “If X is A; then Y is Bj”.  

Thus, since we are interested in introducing as less addi- 
tional knowledge as possible when replacing the rules, we 
are interested in using a similarity S as small as possible. 
On the other hand, the bigger the similarity S, the larger 
the region covered by the rule Rj, so the bigger is S the 
better is KB’ from the covering problem point of view. 
Notice that if S 5 S’, then if R; covers a region, so will 
R;’. Moreover, the trivial solutions do not help at all: if 
we take S = ST, R; will for sure cover all the domain but 
it will be completely useless; if we take the S = 5’1, of 
course, there is no information gain since R; = Rj, but 
the covering problem will remain. Therefore, optimal so- 
lutions would be the smallest S’s for which R; covers an 
uncovered region. 

Therefore, the above aim of fmding a K’ as close as 
possible to K and covering a region U, is to be under- 
stood as finding the smallest similarity relations S i ,  S$ 
such that 

K’ = {R; : If X is S i  o A j  then Y is S i  o B , } j c ~  

covers a given uncovered region U, i.e. such that U be 
included in the support of some S i  oAj’s (at least one!). 

As far as we were only concerned with the covering 
problem, to simplify the problem by taking similarities 
Si’s to be just the classical identity relation, so from 
now on we shall only be concerned with similarities on 
the input domain. Nevertheless the above covering prob- 
lem is still non-trivial. As a fisrt step, that will become 
clear in the next sections, we restrict ourselves now to 
the following eztmpolation problem: 

given am uncovered region U, find a smallest simi- 
larity relation Sx on R such that 

K’ = {R; : If X is SX o Aj then Y is B j } j c ~  

fully covers U in the sense that U be included in the 
support of each SX o Aj’s 

Moreover, to be pragmatic, we shall address this problem 
with respect to what we call covering nested families of 
similarity relations. By this we mean a parametric family 
S = {So, S+,} U {Sx}AErZ(o,+,) of similarity relations 
on R such that: 

Fig. 1. Partition of input spaces 

(i) So = SL, 
(ii) S+, = ST, and 
(iii) A < A’, then SA + SA, 

Here S + S’ means S(z,y) 5 S’(z,y) for all z,y E U y  
and S(zo,y~) < S‘(zo,y0) for some zo,yo E UY. 

Therefore, given a parametric family {S}A our extrap- 
olation problem is reduced to find the smallest X such 
that UA. C support(S~ o Aj)  for all j E J .  

Example. For an easier understanding, let us con- 
sider the following example. Let K be composed of the 
following two rules: 

RI: If Xl is A1 and X Z  is BZ then Y is CI 
Rz: If Xl is Az and X ,  is B1 then Y is CZ 

where the domains of variables X I  and X Z  are RI = Rz = 
& and the fuzzy sets involved are depicted in Figure 1. 
This set of rules has obvious problems of covering, in 
particular, consider the uncovered region U = (WO,%) 
also shown in Figure 1. So, let us solve the extrapolation 
problem of K relative to the region U. For this consider 
the following simple parametric family S of similarity 
relations: for each X > 0 define 

sA(z,Y) = P X ( b - Y l ) ,  

where 

PA(.) = max(1- A-’.z,O). 

One can easily check that if A is a trapezoidal fuzzy num- 
ber [a, b,c,d], then SA o Bi is again a trapezoidal fuzzy 
number defined by the Ctuple [Q - A, b, c, d f A]. 

Then the approach consists of replacing rules R1 and 
Rz respectively by the new rules 

R;: If XI is A; and X z  is B; then Y is CI 
4: If XI is A; and X Z  is B,’ then Y is CZ 

whereAf=SA,oAiandB; =S~ ,oB; , fo r i=1 ,2 ,wi th  
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Fig. 2. Extrapolated terms of the input spaces covering the 
region (WO, VO). 

A0 = inf{X I SA o A1 2 WO, SA o As 2 WO}, 
do = inf{c5 I Sa o B1 2 VO,& o BZ 2 VO},  

That is, we enlarge the fuzzy sets Ai's and Bi's as much 
as necessary for their supports to cover the regions WO 
and Vo respectively. As it can be easily checked, in this 
case, we get X, = length(W0) and 60 = length(&), and 
the produced extrapolated fuzzy sets are the ones shown 
in Figure 2. 

111. THE COVERING PROBLEM 
The covering problem in a FRS, i.e., what do we do 

when there does not exist any rule in the rule base KB of 
FRS whose premise addresses a given input vector X', 
may occur in at least two deffective situations. In a first 
case, there may be "holes" in the input space of a given 
linguistic variable, i.e., regions not covered by the union 
of the supports of all the terms associated with that var- 
able l .  The other case occurs when, even if there are no 
holes in the partitions, for a given input vector X' there 
exists no rule in the KB whose premise covers it. In this 
work we mainly address this latter problem since the first 
one can be considered as a particular case of the second 
one. 

A related problem concerns how should a solution to 
the covering problem affect outputs of inputs already cov- 
ered by the original KB. On the one hand, when a general 
solution is employed, e.g. by stretching (extrapolating) 
all the terms so that all possible inputs are covered, it 
is possible that the new KB produces, for a given input 
vector covered by rules in the original KB, a distinct out- 
put than the one produced by the original KB. To avoid 
this side effect, if UKB = Uk=1,,Ua is the total uncov- 
ered region by KB, a local solution can be used in which 

'A  term is considered to be associated with a linguistic variable 
when there exists at least one rule in the KB in which that term is 
employed as the value of that variable. 

the original KB is employed for the regions already cov- 
ered by it and a new specific KBi is created for each 
uncovered region U, of the input space. 

In the remaining o f t  his section we outline a method 
to the covering problem following this local approach, 
present a simple framework on which it can be applied 
and show how to determine the uncovered regions con- 
sidering that framework. 

A. Method proposed 

Let us suppose the premises of the rules of the original 
KB involve n variables X I ,  . . . , X,,, each variable X, tak- 
ing values in a domain R k  and let U,, be the total set 
of uncovered points by K B .  Notice that UKB can be put 

UKB = Ui=l,,,,Ui 

where each Ui is a Cartesian product of uncovered subre- 
gions in each subdomain RL. Let us denote an uncovered 
region Ui by a tuple (U:, ..., U:), where each U/ is an 
interval in R k ,  such that there is no rule that covers all 
the U,!% simultaneously. 

The method consists in the following two main steps: 

a) Given an uncovered multidimensional region Ui in 
the input space, find a specific rule sub-base KBi 
whose range of applicability is the "closest" one to 
Ui . 

ii) Extrapolate the rules in KB, by means of a suitable 
similarity relation(s) in such a way that the "extrap- 
olated" rule base KB; yields a valid output for any 
input inside the region Ui.  

In Section IV we describe how to deal with i). while 
the process of extrapolation addressed in ii) is just the 
one described in the previous section. 

B. Working framework 

Before detailing the method in the next sections we intro- 
duce some of the definitions we shall use in the remaining 
of this document. . Let T be a fuzzy set in R with membership function 

p ~ ( . ) .  The support and the core of a term T are re- 
spectively defined as supp(T) = {U I p ~ ( w )  > 0) 
and cure(T) = {w  I ~ T ( w )  = 1). Let I1 = 
[a l ,b l ]  and 12 = [az ,bzJ be 2 intervals in R. Then 
hull( l lr lz)  = [min(al,a2),maz(bl,b2)] is the con- 
vex hull of I1 and Iz.  
A fuzzy set T on the real numbers scale is said to 
be a fuzzy number if it is normalized (i.e., 3w E 
R, p ~ ( w )  = l), unimodal, upper semi-continuous, 
and has a bounded support [7]. 

as 
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For the sake of clarity, in this work we propose imple- 
mentations of the method in the context of a very simple 
framework. More complex implementations may however 
be designed for any larger framework. 

The terms associated with a linguistic variable are 
distinct fuzzy numbers in consecutive order. We say 
that a set of terms { T I , .  . . ,Tn} is in consecutive 
order when for all i, if supp(T;) n supp(Ti-t) # 0 
and supp(D,) n supp(Ti+l) # 0 ,  then supp(T;) fl 

If T and T' are consecutive terms associated with a 
linguistic input variable defined on Cl then, ~ T ( w )  + 
~ T , ( w )  5 1 for all w E supp(T) n supp(T'). This 
amounts to say that the terms of an input variable 
may at most form a Ruspini's fuzzy partition of the 
domain of the variable. 

supp(T,) = 0, v j  {i - 1, i + l}. 

C. Determination of uncovered regions 

Considering our simple working framework, each possibly 
uncovered region on the domain of variable Xk can be 
described as: 

F P  - - [supp(Ti-,) n supp(Ti)1 U 
[hull(supp(Tt-i), ~ ~ p p ( T i ) )  -supp(Ti-i) -SWP(T;)I, 

whereeachTj,j E {i-l,i,i+l},isatemassociatedwith 
variable xk. When F:' # supp(Ti-1) n supp(T;) = 0 
then F:' is said to be a hole in the partition of the dc- 
main nk. For example, region WO in Figure 1 corresponds 
to FL1> and region Wl in Figure 3 corresponds to a hole 

A multidimensional region U = (___,Uk,... ), U' E 
{ F P ,  F,<'>} will be said to be uncoveredin the following 

For some k, U' is a hole in the partition of domain 

. There does not exist a rule 

F:;' = ~upp(T;) - SU~P(T;- , )  - ~ l l ~ p ( T ; + i ) ,  

F?. 

Cases: 

nk. 

Rj : If XI is Tj1 and ... X,, is Tin then Y is D j  

such that Uk E SUpp(Tjk), for k = 1,n. 

IV. DETERMINATION OF RULES CLOSE 
TO UNCOVERED REGIONS 

In this section, given a rule base K B ,  we describe first 
how to determine the set of rules KB; that are most 
closely related to each uncovered region U;, according to 
a metric-like criterium, in the particular case in which 
the partitions contain no holes. Then we propose a 
similarity-based to solve the problem of partitions pre- 
senting holes. 

A. Creation of KB;% for non-hole uncovered regions 

In the case in which the fuzzy terms related to each input 
variable are such that if T and T' are consecutive terms 
then 0 < p ~ ( w )  + ~T,(w) 5 1 for all w E supp(T) n 
supp(T'), (i.e. the partition has no "holes"), a reasonable 
closeness measure consists in taking the highest number 
of variables Xk covered simultaneously by each rule in 
KB. More formally, let U = {U,, ..., U,} be the set of 
uncovered multidimensional regions. We define 

e; = mazj,l,,cij 

where ~j denotes the number of intervals from Ui cov- 
ered by terms in rule Rj. Then we define KBi = {Rj I 
eij = e;}  as the set of rules most closely related to the 
uncovered region Ui. 

For instance, let us suppose we have the set of rules: 

RI : If XI is A1 and Xz is E1 and X3 is C1 then Y is 0 1  
Rz : If XI is AZ and XZ is BZ and X3 is CZ then Y is DZ 
RI : If XI is A3 and Xz is Ez and X3 is C, then Y is 0 3  

and a region U; such that U,! is covered by A1 but not 
from A2 U AS, U? is covered by BZ but not from B1, 
and U: is covered by C2 but not from CI. Then we 
have 9, = 1, and yz = di3 = 2. Therefore, ci = 2 and 

If there are holes in the partitions of the input space, 
the above approach can be inadequate, particularly when 
an uncovered region U; is composed solely of holes. In 
that case, we would get as KEi the whole rule base KE.  
An alternative approach to deal with this situation uses 
similarity relations and is presented in Section V. 

B. Dealing with holes in the input Partitions 

Similarity relations can be used to deal with input parti- 
tions having holes by ranking rules according to how close 
they are (under a suitable metric notion) to an uncovered 
region U under concern. Then we can extrapolate that 
(those) rule(s) which are closer. 

For instance, assume the input space partitions are 
now the ones depicted in Figure 3 and consider the un- 
covered region U = (W1,Vl). Let S' and S2 be two 
covering nested families of similarity relations on Cl1 and 
Rz respectively, for each rule R, in the K B ,  we compute, 
as above, 

X j  = inf{X I supp(S: o A j )  1 WI}, 
Sj = inf{b I supp(Si o Bj)  2 VI}, 

Intuitively, the larger the X j  and Sj, the more we need 
to enlarge the fuzzy sets Aj and Ej  to cover the regions 

KE; = {Rz,R$}. 
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V. FUTURE WORK 
When for a given input not only at least one but two 

fuzzy gradual rules are required to be applied, then the 
covering problem in that caae is obviously related to in- 
terpolation methods in sparse rule bases. Interpolation 
mechanisms in fuzzy rule systems have already received 
considerable attention in the literature (see for instance 
[l] for a comparative survey and the references listed 
there). We plan to check how our approach works in an 
interpolation problem setting and compare it with other 
existing approaches. 
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?/1 v, a, 

Fig. 3. Partition of input spaces 

Fig, 4. Extrapolated t m  of the input spaces covering the 
region (Wl, VI). 

Wl and VI respectively. Therefore we can define a dis- 
tance meamre between the region U and the rule Rj as 

d ( U , R j )  = h((Xj,dj)) 

for some suitable combination function h of the scalar 
vector (Xj,dj), the choice of which may depend on the 
problem context. Obvious candidates are aggregation 
functions, like weighted means or more sophisticated op- 
erators, or even a vector ranking method based on well- 
known criteria like Pareto (partial order), lexi-min (total 
order) or similar. 

Then, we get a ranking of the closest rules to region 
U, from where we select a set of rules to he finally ex- 
trapolated. Again, we can consider different criteria to 
select this set, for instance, just the optimal ones, or the 
k-closest ones for some natural k to be specified. 

Following with the previous example, and assuming 
the rules RI,& are in the rule base, then it is clear 
that both have equal distance to (W1,K) since XI = 
Xz = length(Wl) and d1 = 62 = length(V1). In that case, 
the extrapolated fuzzy sets would be the ones depicted 
in Figure 4. 
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