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Abstract: - In the present paper we study the close approach between a celestial body and a cloud of particles. 
This is the situation that occurs when a fragmented comet crosses the orbit of a planet like Jupiter, Saturn, etc. It 
is assumed that the dynamical system is formed by two main bodies that are in circular orbits around their center 
of mass and a cloud of particles that is moving under the gravitational attraction of the two primaries. The 
motion is assumed to be planar for all the particles and the dynamics given by the “patched-conic” 
approximation is used, which means that a series of two-body problems are used to generate analytical equations 
that describe the problem. The goal is to study the change of the orbit of this cloud of particles after the close 
approach with the planet. It is assumed that all the particles that belong to the cloud have semi-major axis a ± da 
and eccentricity e ± de before the close approach with the planet. It is desired to known those values after the 
close approach. In particular, we will study the effects of the periapsis distance in this maneuver. 
 
Key-Words: - Astrodynamics, Orbital maneuvers, Swing-By, Gravity assisted maneuvers, Orbital motion. 
 
1   Introduction 
In astronautics, the close approach between a 
spacecraft and a planet is a very popular technique 
used to decrease fuel expenditure in space missions. 
This maneuver modifies the velocity, energy and 
angular momentum of a spacecraft. There are many 
important applications very well known, like the 
Voyager I and II that used successive close 
encounters with the giant planets to make a long 
journey to the outer Solar System; the Ulysses 
mission that used a close approach with Jupiter to 
change its orbital plane to observe the poles of the 
Sun, etc. 

In the present paper we study the close approach 
between a planet and a cloud of particles. It is 
assumed that the dynamical system is formed by two 
main bodies (usually the Sun and one planet) that are 
in circular orbits around their center of mass and a 
cloud of particles that is moving under the 
gravitational attraction of the two primaries. The 
motion is assumed to be planar for all the particles 
and the dynamics given by the “patched-conic” 
approximation is used, which means that a series of 
two-body problems are used to generate analytical 
equations that describe the problem. The standard 
canonical system of units is used and it implies that 
the unit of distance is the distance between the two 
primaries and the unit of time is chosen such that the 
period of the orbit of the two primaries is 2p.  

 The goal is to study the change of the orbit of this 
cloud of particles after the close approach with the 
planet. It is assumed that all the particles that belong 
to the cloud have semi-major axis a ± da and 
eccentricity e ± de before the close approach with the 
planet. It is desired to known those values after the 
close approach. 

Among the several sets of initial conditions that 
can be used to identify uniquely one swing-by 
trajectory, a modified version of the set used in the 
papers written by [18], [19] and [20] is used here. It is 
composed by the following three variables: 1) Vp, the 
velocity of the spacecraft at periapse of the orbit 
around the secondary body; 2) The angle ψ, that is 
defined as the angle between the line M1-M2 (the 
two primaries) and the direction of the periapse of the 
trajectory of the spacecraft around M2; 3) rp, the 
distance from the spacecraft to the center of M2 in 
the moment of the closest approach to M2 (periapse 
distance). The values of Vp and ψ are obtained from 
the initial orbit of the spacecraft around the Sun using 
the “patched-conics” approximation and rp is a free 
parameter that is varied to obtain the results. 
 
 
2   Review of the Literature for the 
Swing-By 
The literature shows several applications of the 
swing-by technique. Some of them can be found in 
Swenson[1], that studied a mission to Neptune using 
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swing-by to gain energy to accomplish the mission; 
[2], that made a similar study for a mission to Pluto; 
[3], that formulated a mission to study the Earth’s 
geomagnetic tail; [4], [5] and [6], that planned the 
mission ISEE-3/ICE; [7], that made the first studies 
for the Voyager mission; [8], that design a mission to 
flyby the comet Halley; [9], [10] that studied multiple 
flyby for interplanetary missions; [11] and [12] that 
design missions with multiple lunar swing-bys; [13], 
that studied the effects of the atmosphere in a swing-
by trajectory; [14], that used a swing-by in Venus to 
reach Mars; [15], that studied numerically a swing-by 
in three dimensions, including the effects in the 
inclination; [16], that considered the possibility of 
applying an impulse during the passage by the 
periapsis; [17], that classified trajectories making a 
swing-by with the Moon. The most usual approach to 
study this problem is to divide the problem in three 
phases dominated by the “two-body” celestial 
mechanics. Other models used to study this problem 
are the circular restricted three-body problem (like in 
[18], [19], and [20]) and the elliptic restricted three-
body problem ([21]). 
 
 
3  Orbital Change of a Single Particle 
This section will briefly describe the orbital change 
of a single particle subjected to a close approach with 
the planet under the “patched-conics” model. It is 
assumed that the particle is in orbit around the Sun 
with given semi-major axis (a) and eccentricity (e). 
The swing-by is assumed to occur in the planet 
Jupiter for the numerical calculations shown below, 
but the analytical equations are valid for any system 
of primaries. The periapse distance (rp) is assumed to 
be known. As an example, for the numerical 
calculations, the following numerical values are used: 
a = 1.2 canonical units, e = 0.3, µJ = 0.00094736, rp = 
0.0001285347 (100000 km = 1.4 Jupiter’s radius), 
where µJ is the gravitational parameter of Jupiter in 
canonical units (total mass of the system equals to 
one). 

The first step is to obtain the energy (EB) and 
angular momentum (CB) of the particle before the 
swing-by. They are given by: 
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Then, it is possible to calculate the magnitude of 
the velocity of the particle with respect to the Sun in 
the moment of the crossing with Jupiter’s orbit (Vi), 

as well as the true anomaly of that point (q). They 
come from: 
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using the fact that the distance between the Sun and 
Jupiter (rSJ) is one and taking only the positive value 
of the true anomaly. 

Next, it is calculated the angle between the 
inertial velocity of the particle and the velocity of 
Jupiter (the flight path angle g), as well as the 
magnitude of the velocity of the particle with respect 
to Jupiter in the moment of the approach (V∞). They 
are given by (assuming  a counter-clock-wise orbit 
for the particle): 
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using the fact that the velocity of Jupiter around the 
Sun (V2) is one. Fig. 1 shows the vector addition used 
to derive the equations. 
 
 
 
 
 
 
 
 
 

 
 

 
Fig. 1 – Vector addition during the close-

approach. 
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Those information allow us to obtain the turning 
angle (2d) of the particle around Jupiter, from: 
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The angle of approach (y) has two values, depending 
if the particle is passing in front (when we call 
Solution 1) or behind (when we call Solution 2) the 
planet. These two values will be called y1 and y2. 
They are obtained from: 
 

3011.61 =++= δβπψ  
 
and 
 

5882.622 =−+= δβπψ  
 

The correspondent variations in energy and 
angular momentum are obtained from the equation 

ψδ sensen2 2 ∞−=∆=∆ VVEC , (since w = 1). 
The  results are: 

 
009811.011 −=∆=∆ EC  
1644.022 −=∆=∆ EC  

 
By adding those quantities to the initial values we 

get the values after the swing-by. They are: E1 = -
0.4260, C1 = 1.0346, E2 = -0.5806, C2 = 0.8801. 

Finally, to obtain the semi-major axis and the 
eccentricity after the swing-by it is possible to use 
the equations: 

E2
a µ

−=  

 
and 

 

a
C1e

2

µ
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The results are: a1 = 1.1723, e1 = 0.2937, a2 = 

0.8603, e2 = 0.3144. 
 
 

4  Orbital Change of a Cloud of 
Particles 
The algorithm just described can now be applied to a 
cloud of particles passing close to Jupiter and Saturn. 
The idea is to simulate a cloud of particles that have 
orbital elements given by: a ± da and e ± de. The goal 

is to map this cloud of particles to obtain the new 
distribution of semi-major axis and eccentricities 
after the swing-by. Fig. 2 shows some results for 
Jupiter, for the case da = de = 0.001, rp = 1.1 and 5.0 
RJ and Fig. 3 shows the equivalent results for Saturn. 
 
Those figures allow us to get some conclusions. The 
solution called “Solution 1” has a larger amplitude 
than the Solution 2 in both orbital elements, but it 
concentrates the orbital elements in a line, while the 
so called “Solution 2” generates a distribution close 
to a square. The area occupied by the points is 
smaller for “Solution 1”. Both vertical and horizontal 
lines are rotated and become diagonal lines with 
different inclinations. The effect of increasing the 
periapsis distance is to generate plots with larger 
amplitudes, but with the points more concentrated, 
close to a straight line. 
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Júpiter rp=1.1 
 
 
 
 

0.288

0.29

0.292

0.294

0.296

0.298

0.3

0.302

0.985 0.99 0.995 1 1.005 1.01 1.015
Semi-major axis

Ec
ce

nt
ric

ity

0.385

0.39

0.395

0.4

0.405

0.41

0.415

0.42

0.425

1.44 1.46 1.48 1.5 1.52 1.54 1.56
Semi-major axis

Ec
ce

nt
ric

ity

0.286

0.288

0.29

0.292

0.294

0.296

0.298

0.3

0.302

1.005 1.01 1.015 1.02 1.025 1.03 1.035
Semi-major axis

Ec
ce

nt
ric

ity

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Júpiter rp=5 
Fig. 2 – Swing-by for a cloud of particles with Jupiter for rp = 1.1 (above) and 5.0 (below) RJ. 
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Fig. 3 – Swing-by for a cloud of particles with Saturn for rp = 1.1 (above) and 5.0 (below) RJ. 

 Eccentricity vs. Semi-major axis 
before the Swing-By 

Eccentricity vs. Semi-major axis 
after Swing-By for “Solution 1”

Eccentricity vs. Semi-major axis 
after Swing-By for “Solution 2”

0.288

0.29

0.292

0.294

0.296

0.298

0.3

0.302

0.985 0.99 0.995 1 1.005 1.01 1.015
Semi-major axis

Ec
ce

nt
ric

ity

0.49
0.495

0.5
0.505

0.51
0.515

0.52
0.525

0.53
0.535

1.85 1.9 1.95 2 2.05
Semi-major axis

Ec
ce

nt
ric

ity

0.315

0.32

0.325

0.33

0.335

0.34

0.345

0.85 0.855 0.86 0.865 0.87 0.875 0.88
Semi-major axis

Ec
ce

nt
ric

ity

Eccentricity vs. Semi-major axis 
after Swing-By for “Solution 1”

Eccentricity vs. Semi-major axis 
after Swing-By for “Solution 2”

Eccentricity vs. Semi-major axis 
before the Swing-By 

0.288

0.29

0.292

0.294

0.296

0.298

0.3

0.302

0.985 0.99 0.995 1 1.005 1.01 1.015
Semi-major axis

Ec
ce

nt
ric

ity

0.405

0.41

0.415

0.42

0.425

0.43

0.435

0.44

0.445

1.52 1.54 1. 1.5 1.56 8 6 1.62 1.64 1.66
Semi-major axis

Ec
ce

nt
ric

ity

0.288
0.29

0.292
0.294
0.296
0.298

0.3
0.302
0.304
0.306
0.308

0.965 0.97 0.975 0.98 0.985 0.99
Semi-major axis

Ec
ce

nt
ric

ity

Eccentricity vs. Semi-major axis 
after Swing-By for “Solution 2”

Eccentricity vs. Semi-major axis 
after Swing-By for “Solution 1”

Eccentricity vs. Semi-major axis 
before the Swing-By 

0.288

0.29

0.292

0.294

0.296

0.298

0.3

0.302

0.985 0.99 0.995 1 1.005 1.01 1.015
Semi-major axis

Ec
ce

nt
ric

ity

0.535
0.54

0.545
0.55

0.555
0.56

0.565
0.57

0.575
0.58

0.585

2.05 2.1 2.15 2.2 2.25 2.3 2.35
Semi-major axis

Ec
ce

nt
ric

ity

0.345

0.35

0.355

0.36

0.365

0.37

0.375

0.38

0.8 0.805 0.81 0.815 0.82 0.825 0.83
Semi-major axis

Ec
ce

nt
ric

ity

 
Eccentricity vs. Semi-major axis 
after Swing-By for “Solution 2”

Eccentricity vs. Semi-major axis 
after Swing-By for “Solution 1”

Eccentricity vs. Semi-major axis 
before the Swing-By 

Proceedings of the 8th WSEAS International Conference on SIGNAL PROCESSING, ROBOTICS and AUTOMATION

ISSN: 1790-5117 129 ISBN: 978-960-474-054-3



Fig. 4 – Effects of the periapsis distances for Jupiter, Mars, Saturn and Uranus. 
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After performing a large number of simulations using 
different values for the periapsis distance, it is 
possible to study the effects of this parameter in the 
whole maneuver. In Fig. 4, Man1 refers to the 
solution 1 and Man2 refers to the solution 2. 
 
From those results we can see that different planets 
show different behaviors regarding this maneuver. 
For the large planets, the amplitude has a sharp 
maximum for the variation in amplitude. It means 
that there is a specific value for the periapsis distance 
that maximizes the dispersion of the particles. This 
information can be used for practical applications, 
like in the case that you can control the periapsis 
distance (like a satellite that will explode, but that 
you can control its trajectory before the explosion), 
and then you can choose the position that causes 
larger amplitudes. For Mars the behavior shows a 
decreasing amplitude, so if you want to maximize the 
amplitude you need to send the spacecraft as close as 
possible to the planet. 
 
5   Conclusion 
The figures above allow us to get some conclusions. 
The solution called “Solution 1” has a larger 
amplitude than the Solution 2 in both orbital 
elements, but it concentrates the orbital elements in a 
line, while the so called “Solution 2” generates a 
distribution close to a square. The area occupied by 

the points is smaller for “Solution 1”. Both vertical 
and horizontal lines are rotated and become diagonal 
lines with different inclinations. The effect of 
increasing the periapse distance is to generate plots 
with larger amplitudes, but with the points more 
concentrated, close to a straight line. In general, 
results like those ones shown here  can be used to 
understand better the effects of the periapsis distance. 
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