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Abstract. In this paper, we discuss a method of orbit determination for an artificial satellite based on the signals of the GPS

constellation. The Global Positioning System is a powerful and low cost process to compute orbits for some artificial Earth satellites.
This work presents a method of orbit determination for satellites with an onboard GPS receiver. Pseudoranges are used in the

measurement equations for the orbit estimator. The estimator considered is the recursive least squares method, numerically

improved with orthogonal Givens rotations and thus avoiding problems concerning inversion of matrices. Up to high order

geopotential perturbations are taken into account. Preliminary results indicate that precision better than 10m is easily obtained

using batches of one orbital period for the TOPEX satellite (two hours of orbital period). Standard deviation of about 5m resulted for
the residuals of pseudo-range measurements.
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1. Introduction

The Global Positioning System is a powerful and low cost process to compute orbits for low Earth orbits of
artificial satellites. Theoretically four GPS satellites, simultaneously visible, are enough to determine the position
parameters of an artificial satellite carrying an onboard GPS receiver.

Orbit determination for artificial satellite is a non-linear problem where the perturbing forces are not easily
modelled. The GPS satellites send signals such that accurate measurements of distances are performed based in the
comparison between received signals and template signals generated by the receiver (Leick, 1995; Parkinson, 1996).
Through a GPS receiver on board of an artificial satellite it is possible to obtain such measurements (pseudo ranges) that
can be used to estimate the state vector that characterizes the orbit of the satellite.

Using knowledge about the dynamics of the system and assuming statistics for the measurement errors, the state
vector is computed based on a set of observations. The error between the nominal value and these resulting from the
estimation process is minimised according to the least squares criterion (Bierman, 1977; Kuga, 1989; Chiaradia, 2000).

The aim of this work is to determine the orbit of an artificial satellite carrying a GPS receiver, using pseudo-range
measurements between the satellite and the GPS constellation to furnish the data that will be used in the estimator, the
recursive least squares method improved with orthogonal Givens rotations.

2. Dynamical Model

The problem of orbit determination is essentially non linear since the dynamical process, that is, the orbital motion
is described in an inertial frame by a system of ordinary differential equations of the following form

vr =& (1)
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where )z,y,x(:r  is the position vector, v  is the velocity vector, Ñstands for modelled perturbations and
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b,b,b=b  are constants referred to the receiver clock bias. In the equations for the estimator the state vector is

defined by
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with 222 zyxr ++= . The Eqs. (1) e (2) can be written as:
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where fm is a vector-valued function expressing the adopted modeling in the estimator and the vector valued function
fnm stands for the unmodeled part.

The state transition matrix which relates the state between tk and tk+1  can be computed by (Kuga, 1989):

( ) ( ) ( )
kk

t,tt,t,t ÖxFÖ =& (6)

for [ ]
k0

t,tt ∈  and initial condition ( ) ÉÖ =
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t,t . The 99×  matrix F(x,t) is contains partial derivatives of the

accelerations of the satellite with respect to the components of state vector. Thus, the transition matrix can be obtained
integrating Eq. (6).

The transition matrix will be numerically integrated together with the orbit, according to the Eqs. (1), (2), (3) and
(6).

Let us consider in the recursive least squares method, the dynamical model as perfect, that is, fnm = 0. Thus, setting f
= fm for the accelerations of the satellite, the matrix F can be written as:
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where 
33×0  is a 33×  matrix of zeros; 

33×É  is an identity matrix 33×  and 
33×A  is the gradient matrix 33×  given by:
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In this work the modelled forces are due to the geopotential taking into account the spherical harmonic coefficients
up to 50th order and degree of JGM-2 model, implemented using Pine's recursive formulation (Pines, 1973).

3. Measurement Model

 The non-linear equation representing the scalar model of observations is given by:

( )
kkkk

t, íxhy += (9)

where:  
k

y  is the vector of m observations; ( )
kk

xh  is the m-dimensional non-linear vector function of the state ;
k

x

k
í is the m-dimensional vector of observation errors with statistics given by ( )

kk
R,0N=í .

Pseudo-range observations characterize measurements between the GPS satellites and the receiver's antenna,
referring to the epochs of emission and reception of the signals. Pseudorange is the type of measurement to be used in
an orbit determination process using GPS and can be written as:

ν+++−+ρ= tropioniii DD)dTdt(cP (10)

where
Pi  is the pseudorange measured by the user with respect to the ith GPS satellite;

 
i

ρ  is the geometric distance;

 c   is the speed of light;
 dt  is the user clock offset;
 

i
dT  is the ith GPS satellite clock offset;

 
ion

D  are ionospheric corrections (not considered in this work);
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 tropD  are tropospheric corrections (not considered in this work); and

 ν  denotes measurement random noise.

The user clock offset is modelled as: 2
210

tbtbbcdt ∆+∆+= , where [ ]
210

b,b,b=b  are parameters to be estimated

and their physical meaning are respectively the receiver clock bias, bias rate (drift) and rate of bias rate (drift rate).
The geometric distance is given by:

 ( ) ( ) ( )2
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where (X,Y,Z)i are the Cartesian coordinates of the ith GPS satellite at the instant of emission of the signal and (x,y,z)
are the Cartesian coordinates of the user's satellite at instant of reception of the signal.

The linearized measurement equations can be given as:

kkkk
íxHy +∆=∆ (12)

where:    
kxx

k
k

=∂
∂

=
x

h
H e    ( )

kk
xxx −=∆

For GPS pseudo-range measurements, the sensitivity matrix Hk will be given by (Chiaradia et al., 1999; Chiaradia,
2000):
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where t∆  is the elapsed time of measurements since the initial epoch.
In the recursive least squares process the matrix Hk, must be multiplied by the transition matrix, thus
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where 0,kΦ  is the transition matrix between the instants 
k0

tandt , according to Eq. (6).

4. Recursive Least Squares Method Through Givens Rotations

An estimator that uses the least squares theory, start ing from an initial information, should have its convergence
checked. Taking this into account and in order to validate the method for an orbit determination application program, it
will be used here a recursive approach, that is, the Recursive Least Squares Method. Thus, using Kalman formulation,
the equations for the state estimates are given by (Kuga et al., 2000):

� Kalman's gain:
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� estimated state:
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� state error covariance matrix:
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ˆ
−−= PHKIP (17)
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Extensive analysis of Eqs. (15-17) has shown that such equations may be sensitive to numerical errors (Bierman,
1977). On the other hand, the non-recursive normal equations needs matrix inversions which should be avoided. In
order to overcome such problems, there exist in the literature several methods, using orthogonal transformations, to
yield best numerical performance concerning problems due to error's propagation or uncertainty in the informations.
The main aim to apply orthogonal transformations in matrix and vectors in the least squares method is to substitute the
brute force, used in matrix inversion, by a method more robust and less prone to numerical errors. In this respect,
Givens rotations are the most adequate transformations to selectively annihilate elements of a matrix, making easy to
implement the least squares method in a recursive way. Using Givens rotations a matrix can be made a triangular matrix
through a sequence of rotations using classical orthogonal matrices.

Indeed, the solution of the normal equations can be sensitive to small errors in the matrix H that are inevitable when
forming the product (HTH), with a limited machine accuracy. In order to avoid the normal equations given by
( ) yx TT HHH = , we can use a process based on the QR factorisation (Golub and Van Loan, 1989)  choosing:
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in other words, the matrix H is factored into an orthogonal matrix Q and an upper triangular matrix R.
Methods for performing the QR-factorisation has been proposed by Householder (1958) and Givens (1958),

involving orthogonal transformations which subsequently annihilate the sub-diagonal elements of H. The simple
method of Householder transformation eliminates all sub-diagonal elements in a given column of H at a time. When it
is necessary to eliminate specific elements (selectively) of a matrix, the Givens rotations  is the most suitable
transformation. Since null elements are introduced in desired positions of the matrix, Givens rotations require more
computer time. Nevertheless it is preferred for recursive implementation of the least squares method due to this
characteristic of selective annihilation. Thus, the complete transformation can be given by (Montenbruck and Suarez,
1994):
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where: ( ) 1,i2,in,1imax,ii UUUU L−=  denotes the sequence of rotations required eliminating the sub-diagonal elements in the

i-th row of H.
A single n-dimensional orthogonal transformation matrix ( )φ

ik
U  is equal to the identity matrix except for the

elements:
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which define a rotation by an angle φ  in the ( )ik  plane.

The new elements of HUH
ik

'=  are given by
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 where φsin  and φcos  are given by
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Orthogonal transformations of matrices have a considerable role in the numerical computations of the least squares
problems. In fact, the Euclidean norm of a vector does not change, the same accuracy is yielded with single computer
arithmetic that otherwise requires a double precision arithmetic and the problem is solved in a numerically more robust
form.

This is the estimation method used in this work. This method is suitable to the recursive character of the Recursive
Least Squares Method, and does not require storage of big matrices still providing a good numerical accuracy.
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5. Results

Actual Topex/Poseidon satellite (T/P) data is chosen to validate the proposed method. The Topex/Poseidon satellite
was launched in August 10th 1992, in a jointly effort conducted by the United States National Aeronautics and Space
Administration (NASA) and the French space agency, Centre National d'Etudes Spatiales (CNES). The T/P satellite
orbits the Earth at an altitude of 1336 km, inclination 66°, with near zero eccentricity and an orbital period of about 1.87
hours. The T/P satellite has a GPS receiver onboard as experimental equipment to verify several proposed methods for
orbit determination, geodetic coordinates translation, ocean level and geopotential models. The receiver can track up to
6 GPS satellite at once on two frequencies if Anti-Spoofing is inactive.

The onboard dual frequency GPS receiver enables to test the ability of Precise Orbit Determination (POD). Rinex
format for T/P observations data, GPS group data and navigation messages, can be easily found at Internet.

Here, the following files were used (Chiaradia et al, 2000):

� T/P observation files. Pseudorange codes are transmitted in two frequencies in GPS time step of 10 seconds
and are presented by the GPS Data Processing Facility of the Jet Propulsion Laboratory (JPL) in Rinex
format;

� Files with the Precise Orbit Ephemeris (POE) generated by the Jet Propulsion Laboratory (JPL) in one minute
UTC time steps in Inertial True of date coordinates;

� GPS navigation message files in Rinex format presented by Crustal Dynamics Data Information System
(CDDIS) of the Goddard Space Flight Center.

In this work the estimates position and velocity are compared with the T/P Precise Orbit Ephemeris (POE).
JPL/POE provides positions estimate with a precision of 15 cm or better.

The test conditions for the proposed problem are the following:

� Actual Topex/Poseidon pseudoranges data set collected by the onboard GPS receiver on November 18th 1993;
� Geopotential perturbations taking into account the spherical harmonic coefficients up to 50th order and degree

of JGM-2  model;
� Pseudorange measurements in frequency L1 (Code);
� Recursive least squares method with Givens rotations;
� 2 hours data set (about 1 orbital period).

The estimates obtained by our method were compared with the POE reference and produced the following
statistics:

� position error:  8.22 ± 1.74  (m);
� pseudorange residual: -0.003 ± 4.306 (m).

The Figure 1 shows the position error and Fig. 2 shows the pseudorange residuals  versus time, compared with the
JPL/POE reference.
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Figure 1 – The position error
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Figure 2 – The pseudorange residuals

6. Conclusions

The aim of this work was to determine the orbit of an artificial satellite using an onboard GPS receiver.
Pseudoranges are used in the measurement equations for the orbit estimator. The estimator considered was the recursive
least squares method through Givens rotations.

Full 2 hours pseudoranges data set (about one orbital period) collected by the GPS receiver aboard the T/P satellite
was used. The modelled forces included the geopotential taking into account the spherical harmonic coefficients up to
50th degree of JGM-2 model. The pseudorange measurements used were those collected in the single frequency L1

(code).
Results estimated in this work, using T/P data set of November 18th, 1993, and compared against the post-processed

GPS ephemeris POE/JPL, has demonstrated accuracy better than 10m. The statistical errors (standard deviation) for
pseudorange residuals are about 5 m.

Chiaradia (2000), using Kalman filter technique for orbit determination in real time, also used actual data for the
Topex/Poseidon satellite as comparison.  The results errors obtained in position and velocity  were about 15 to 20m and
0.014 to 0.018m/s, respectively.

In accordance with the obtained results, we can conclude that the recursive least squares with Givens rotations is a
reliable and precise method for orbit determination using single frequency GPS measurements.
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