
INPE-9785-PRE/5372

INTERCHANGE INSTABILITIES IN LIGHTNING DISCHARGES

Gerson Otto Ludwig
Marcelo Magalhães Fares Saba

Carl Potvin1

1Institut de Recherche d’Hydro-Québec, 1800 Lionel-Boulet, Québec, Canada.

Paper accepted to be presented at the 30th  EPS Conference on Controlled Fusion and
Plasma Physics – EPS2003 , 7 – 11 July, St. Petersburg, Russia.

INPE
São José dos Campos

2003



Interchange Instabilities in Lightning Discharges

G. O. Ludwig1, M. M. F. Saba2, C. Potvin3

1Associated Plasma Laboratory, 2Division of Space Geophysics
National Space Research Institute, 12227-010, São José dos Campos, SP, Brazil

3Institut de Recherche d’Hydro-Québec, 1800 Lionel-Boulet, Québec, Canada

Triggered lightning experiments have been recently carried out in the International
Center for Triggered and Natural Lightning in Cachoeira Paulista, SP, Brazil. Small
rockets carrying a thin copper wire connected to a launching platform arti…cially triggered
nine ‡ashes. This setup is similar to previous experiments[1] , but a fast CCD camera
was used for the …rst time to obtain detailed images during the continuous current
phase (pause) of lightning discharges. Figure 1 shows a sequence of pictures (taken at
1000 frames per second) that starts with the …rst stroke of a series of two subsequent
return strokes and proceeds with the slow cooling stage of the discharge channel, which
is maintained by a continuous current that ‡ows during the pause between successive
strokes. The peak measured current during this triggered lightning is 45 kA and the
visible channel has an estimated radius of 0.5m. The last frame shows the start of the
second return stroke, which ends on the tip of a Franklin lightning rod that can be seen
on the right side of the sequence of pictures. The beaded appearance usually registered
during the decay of triggered lightning discharges is clearly seen in this sequence.

Figure 1: Beaded structure in a lightning discharge shown at 1ms time intervals.
Typically, the current in the main return stroke attains the median value of 30-40kA

in 1-3¹s and decays with a time constant 30-60¹s to a continuous current value of the
order of 100A during pauses between successive strokes[2] . Figure 2 illustrates the current
waveform I (t) assumed for the discharge shown in Fig. 1, according with standard models,
at two time scales, 0-200¹s and 200-1000¹s.

Figure 2: Current waveform for a lightning discharge with the peak value 45kA.



t = 5¹s t = 300¹s t = 1 ms
I (A) >30,000 &100 »=100
T (K) 40,000 10,000 8,000

p (atm) >15 .1 »=1
a (cm) <1 9 8

expansion contraction

Table 1: Typical parameters in the evolution of atmospheric discharges.

Table 1 gives succinct results of a numerical simulation[3] that correspond to typical
parameters in the evolution of atmospheric discharges. After the initial explosive
expansion, the simulation shows a slow contraction of the channel boundary of radius
a during the stage of formation of the continuous current channel. This situation is
favorable to the occurrence of the Rayleigh-Taylor instability (the pressure and density
gradients are oppositely directed) with turbulent ‡uctuations concentrated in a thin layer
at the channel boundary, where the density gradient is largest[3] .

The purpose of the present paper is to investigate the role of interchange (sausage and
kink) instabilities in the formation of the beaded structure of lightning discharges. It
will be shown that the periodicity in space of the structure can be explained in terms of
interchange instabilities in a cylindrical discharge with anomalous viscosity. The viscosity
contributes with a surface tension that generates the beaded con…guration.

Considering the discharge as a perfectly conductive viscous ‡uid the single-‡uid
equations of motion are written as follows:
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The stability analysis is carried out for the simplest equilibrium where the inside of the
channel is both current and magnetic …eld free. The external azimuthal magnetic …eld
Bµ of the pinch is produced by a surface current K = I= (2¼a) ‡owing in the z direction.
The equilibrium pro…les are
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where pe is the external gas pressure, and U (r) and ± (r) are the unit step and Dirac delta
functions, respectively.

For a small perturbation in the ‡uid velocity, given in terms of the Lagrangian
displacement
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. The air outside the discharge is neutral and can be assumed

inviscid for the ambient temperature. The magnetic …eld perturbation outside is solenoidal
and irrotational, and can be derived from a scalar potential. The air inside is current and



magnetic …eld free for the assumed equilibrium (in any case, the Alfvén velocity is much
smaller than the sound speed and the magnetic perturbations can be neglected inside the
ionized channel). Viscosity e¤ects are relevant inside the discharge because of the high
temperature and the transient turbulent ‡uctuations.

If bn denotes the unit normal to the interface and hXi the increment of X across the
interface, the boundary conditions are:
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Taking into account the perturbation of the normal vector
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Now, to …nd the normal modes one must solve a boundary layer problem (Prandtl,
1905) by the method of matched asymptotic expansions in the inverse Reynolds number
´i= (½icia), where ´i, ½i and ci denote the viscosity, mass density and sound speed inside the
discharge, respectively. However, for low-frequency perturbations (small growth rate of
the instability) one can neglect terms of order ´1i!2 with respect to ´0i!2 and ´1i!1 (vorticity
e¤ects and small corrections to the sound speed are neglected in this approximation), and
show that the pressure balance equation can be satis…ed by substituting the internal
inviscid solution
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It follows that the dispersion relation to lowest order in ´i isµ
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pinch, and Im and Km are the modi…ed Bessel functions (½e and ce =
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the mass density and sound speed in the external air, respectively).
For small values of ! the dispersion relation is essentially a second order equation.

The …rst order term in !, proportional to the viscosity, reduces the growth rate of the
instability at short wavelengths and characterizes the spatial structure of the perturbed
discharge. It is interesting to note that the viscosity of air at atmospheric pressure
attains a maximum value ´i »= 2:1 £ 10¡4 Pa near 10; 000K. However, this maximum
value is insu¢cient to explain the structure observed in Fig. 1. It can be explained if one
takes into account the anomalous character of the viscosity, associated with the transient
turbulent ‡uctuations. In the following paragraph the magnitude of the e¤ective viscosity
coe¢cient ´turb = ½ºturb is estimated.

Using either dimensional analysis or mixing length arguments, the order of magnitude



of the kinematic viscosity for turbulent motion characterized by the mass density ½, the
large scale velocity ‡uctuations ¢u and the scale length ` is[4]

ºturb » ¢u`
In terms of the Reynold’s number R = ¢u`=º one has ºturb » Rº. Now, the growth
rate of the Rayleigh-Taylor instability for short wavelengths is given by ° =

p
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where g is the “gravitational” acceleration and L½ = ½= jr½j is the density scale-length.
One can estimate ` » L½ and ¢u » ®ci, where ci =

p
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(R0 = 8:314 £ 103 J K¡1 Mole¡1, °i »= 1:4, Mi = 28:96 kg Mole¡1) and ® a numerical
coe¢cient of the order of unity, resulting in a value of the Reynold’s number R = ®ciL½=ºi
(possibly not fully developed turbulence). For a discharge at atmospheric pressure
(pi »= pe = 1:013 £ 105 Pa, ½i = Mipi= (R0Ti)) with internal temperature Ti = 10; 000K
one obtains R »= 3:4 £ 105®L½. From the simulation results[3] one can take L½=a » 10¡2
for a channel radius a »= 9 cm at the beginning of the contraction stage, and expect a two
orders of magnitude increase in the e¤ective viscosity compared to the molecular viscosity.

Figure 4 shows the normalized growth rate i!a=ci versus the normalized wave number
ka of the m = 0 (continuous line) and m = 1 (dashed line) sausage and kink instabilities,
respectively (higher order modes are stable), for a discharge with the same conditions as
above and assuming ºturb »= 100ºi. On the left-hand side plot it is assumed that I = 1 kA
and on the right-hand side that I = 100A (approximate values of the current in the
time interval 200¹s . t . 400¹s). The characteristic growth time of the interchange
instabilities is ¿ »= 45ms for a wavelength of about 25 cm on the left-hand side plot, and
¿ »= 1:4 s for a wavelength of 1m on the right-hand side.

Figure 4: Growth rates of the sausage (continuous) and kink (dashed) instabilities.
A close examination of the beaded structure shown in Fig. 1 indicates that the

wavelengths calculated above, where the instabilities are stronger, lie in the correct range
to explain the structure. The calculated growth rates are very small, which is consistent
with the frozen character of the instability during the pause between successive strokes.
However, a much faster growth is needed to explain the appearance of the beaded structure
during the short contraction stage (i.e. from t »= 300¹s to 1ms). The problem with the
model above is the incorrect representation of the discharge quasi-equilibrium during this
stage. It would be necessary to include a transient radial “gravitational” acceleration (the
same that is responsible for the short wavelength Rayleigh-Taylor instability) to account
for the e¤ect of the contraction. This will be done in a forthcoming paper.
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